Internet DRAFT - draft-boro-opsawg-teas-attachment-circuit
draft-boro-opsawg-teas-attachment-circuit
OPSAWG M. Boucadair, Ed.
Internet-Draft Orange
Intended status: Standards Track R. Roberts, Ed.
Expires: 10 September 2023 Juniper
O. G. D. Dios
Telefonica
S. B. Giraldo
Nokia
B. Wu
Huawei Technologies
9 March 2023
YANG Data Models for 'Attachment Circuits'-as-a-Service (ACaaS)
draft-boro-opsawg-teas-attachment-circuit-05
Abstract
This document specifies a YANG service data model for Attachment
Circuits (ACs). This model can be used for the provisioning of ACs
prior or during service provisioning (e.g., Network Slice Service).
The document specifies also a module that updates other service and
network modules with the required information to bind specific
services to ACs that are created using the AC service model.
Also, the document specifies a set of reusable groupings. Whether a
service model reuses structures defined in the AC models or simply
include an AC reference is a design choice of these service models.
Relying upon the AC service model to manage ACs over which a service
is delivered has the merit to decorrelate the management of a service
vs. upgrade the AC components to reflect recent AC technologies or
features.
Discussion Venues
This note is to be removed before publishing as an RFC.
Discussion of this document takes place on the Operations and
Management Area Working Group Working Group mailing list
(opsawg@ietf.org), which is archived at
https://mailarchive.ietf.org/arch/browse/opsawg/.
Source for this draft and an issue tracker can be found at
https://github.com/boucadair/attachment-circuit-model.
Boucadair, et al. Expires 10 September 2023 [Page 1]
Internet-Draft ACaaS March 2023
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 10 September 2023.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Scope and Intended Use . . . . . . . . . . . . . . . . . 3
1.2. Position ACaaS vs. Other Data Models . . . . . . . . . . 6
1.2.1. Why Not Using L2SM as Reference Data Model for
ACaaS? . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2. Why Not Using L3SM as Reference Data Model for
ACaaS? . . . . . . . . . . . . . . . . . . . . . . . 7
2. Conventions and Definitions . . . . . . . . . . . . . . . . . 7
3. Sample Uses of the Data Models . . . . . . . . . . . . . . . 8
3.1. ACs Terminated by One or Multiple Customer Devices . . . 8
3.2. Separate AC Provisioning vs. Actual Service
Provisioning . . . . . . . . . . . . . . . . . . . . . . 9
4. Description of the Data Models . . . . . . . . . . . . . . . 10
4.1. The Bearer Service ("ietf-bearer-svc") YANG Module . . . 11
Boucadair, et al. Expires 10 September 2023 [Page 2]
Internet-Draft ACaaS March 2023
4.2. The Attachment Circuit Service ("ietf-ac-svc") YANG
Module . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1. Overall Structure . . . . . . . . . . . . . . . . . . 12
4.2.2. Service Profiles . . . . . . . . . . . . . . . . . . 13
4.2.3. Attachment Circuits Profiles . . . . . . . . . . . . 15
4.2.4. AC Placement Constraints . . . . . . . . . . . . . . 16
4.2.5. Attachment Circuits . . . . . . . . . . . . . . . . . 16
5. YANG Modules . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1. The Bearer Service ("ietf-bearer-svc") YANG Module . . . 29
5.2. The AC Service ("ietf-ac-svc") YANG Module . . . . . . . 35
6. Security Considerations . . . . . . . . . . . . . . . . . . . 52
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 54
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.1. Normative References . . . . . . . . . . . . . . . . . . 54
8.2. Informative References . . . . . . . . . . . . . . . . . 56
Appendix A. Examples . . . . . . . . . . . . . . . . . . . . . . 59
A.1. Request A New Bearer . . . . . . . . . . . . . . . . . . 59
A.2. Request An AC over An Existing Bearer . . . . . . . . . . 60
A.3. Request An AC for a Known Peer SAP . . . . . . . . . . . 61
A.4. One CE, Two ACs . . . . . . . . . . . . . . . . . . . . . 62
A.5. Control Precedence over Multiple ACs . . . . . . . . . . 65
A.6. Illustrate the Use of Global Profiles . . . . . . . . . . 66
A.7. Illustrate the Use of Per-Node Profiles . . . . . . . . . 68
A.8. Multiple CEs . . . . . . . . . . . . . . . . . . . . . . 70
A.9. Binding Attachment Circuits to an IETF Network Slice . . 72
A.10. Connecting a Virtualized Environment Running in a Cloud
Provider . . . . . . . . . . . . . . . . . . . . . . . . 78
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 82
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 82
1. Introduction
1.1. Scope and Intended Use
Connectivity services are provided by networks to customers via
dedicated terminating points (e.g., service functions, customer edges
(CEs), peer ASBRs, data centers gateways, Internet Exchange Points).
A connectivity service is basically about ensuring data transfer
received from (or destined to) a given terminating point to (or from)
other terminating points that belong to the same customer/service, an
interconnection node, or an ancillary node. A set of objectives for
the connectivity service may eventually be negotiated and agreed upon
between a customer a network provider. For that data transfer to
take place within the provider network, it is assumed that adequate
setup is provisioned over the links that connect customer terminating
points and a provider network so that data can be successfully
exchanged over these links. The required setup is referred to in
Boucadair, et al. Expires 10 September 2023 [Page 3]
Internet-Draft ACaaS March 2023
this document as Attachment Circuits (ACs), while the underlying link
is referred to as "bearers".
This document adheres to the definition of an Attachment Circuit as
provided in Section 1.2 of [RFC4364], especially:
Routers can be attached to each other, or to end systems, in a
variety of different ways: PPP connections, ATM Virtual Circuits
(VCs), Frame Relay VCs, ethernet interfaces, Virtual Local Area
Networks (VLANs) on ethernet interfaces, GRE tunnels, Layer 2
Tunneling Protocol (L2TP) tunnels, IPsec tunnels, etc. We will
use the term "attachment circuit" to refer generally to some such
means of attaching to a router. An attachment circuit may be the
sort of connection that is usually thought of as a "data link", or
it may be a tunnel of some sort; what matters is that it be
possible for two devices to be network layer peers over the
attachment circuit.
When a customer requests a new value-added service, the service can
be bound to existing attachment circuits or trigger the instantiation
of new attachment circuits. The provisioning of an value-added
service should, thus, accommodate both deployments.
Also, because the instantiation of an attachment circuit requires
coordinating the provisioning of endpoints that might not belong to
the same administrative entity (customer vs. provider or distinct
operational teams within the same provider, etc.), *programmatic
means to expose 'attachment circuits'-as-a-service will greatly
simplify the provisioning of value added services* that will be
delivered over an attachment circuits.
This document specifies a YANG service data model ("ietf-ac-svc") for
managing attachment circuits that are exposed by a network to its
customers (e.g., an enterprise site, a network function, a hosting
infrastructure, a peer network provider). The model can be used for
the provisioning of ACs prior or during advanced service provisioning
(e.g., Network Slice Service).
Boucadair, et al. Expires 10 September 2023 [Page 4]
Internet-Draft ACaaS March 2023
The "ietf-ac-svc" includes a set of reusable groupings. Whether a
service model reuses structures defined in the "ietf-ac-svc" or
simply includes an AC reference (that was communicated during AC
service instantiation) is a design choice of these service models.
Relying upon the AC service model to manage ACes over which services
are delivered has the merit to decorrelate the management of the
(core) service vs. upgrade the AC components to reflect recent AC
technologies or new features (e.g., new encryption scheme, additional
routing protocol). *This document favors the approach of completely
relying upon the AC service model instead of duplicating data nodes
into specific modules of advanced services that are delivered over an
Attachment Circuit.*
Because the provisioning of an AC requires a bearer to be in place,
this document allows customers to manage their bearer requests by
means of a new module, called "ietf-bearer-svc". The customers can
then retrieve a provider-assigned bearer reference that they will
include in their AC service requests.
An AC service request can provide a reference to a bearer or a set of
peer SAPs. Both schemes are supported in the AC service model.
Each AC is identified with a unique identifier within a (provider)
domain. From a network provider standpoint, an AC can be bound to a
single or multiple Service Attachment Points (SAPs)
[I-D.ietf-opsawg-sap]. Likewise, the same SAP can be bound to one or
multiple ACs. However, the mapping between an AC and a PE in the
provider network that terminates that AC is hidden to the application
that makes use of the AC service model. Such mapping information is
internal to the network controllers. As such, the details about the
(node-specific) attachment interfaces are not exposed in the AC
service model.
The AC service model *does not make any assumption about the internal
structure or even the nature or the services that will be delivered
over an attachment circuit*. Customers do not have access to that
network view other than the ACes that the ordered. For example, the
AC service model can be used to provision a set of ACes to connect
multiple sites (Site1, Site2, ..., SiteX) for customer that also
requested VPN services. If these provisioning of these services
require specific configured on ASBR nodes, such configuration is
handled at the network level and is not exposed at the service level
to the customer. However, the network controller will have access to
such a view as the service points in these ASBRs will be exposed as
SAPs with "role" set to "ietf-sap-ntw:nni" [I-D.ietf-opsawg-sap].
The AC service model can be used in a variety of contexts, such as
(but not limited to) those provided in Appendix A:
Boucadair, et al. Expires 10 September 2023 [Page 5]
Internet-Draft ACaaS March 2023
* Request an attachment circuit for a known peer SAP (Appendix A.3).
* Instantiate multiple attachment circuits over the same bearer
(Appendix A.4).
* Control the precedence over multiple attachment circuits
(Appendix A.5).
* Bind a slice service to a set of pre-provisioned attachment
circuits (Appendix A.9).
* Connect a Cloud Infrastructure to a service provider network
(Appendix A.10).
The examples use the IPv4 address blocks reserved for documentation
[RFC5737], the IPv6 prefix reserved for documentation [RFC3849], and
the Autonomous System (AS) numbers reserved for documentation
[RFC5398].
The YANG data models in this document conform to the Network
Management Datastore Architecture (NMDA) defined in [RFC8342].
1.2. Position ACaaS vs. Other Data Models
The AC model specified in this document *is not a network model*
[RFC8969]. As such, the model does not expose details related to
specific nodes in the provider's network that terminate an AC. The
mapping between an AC as seen by a customer and the network
implementation of an AC is maintained by the network controllers, and
is not exposed to the customer. Such a mapping can be maintained
using a variety of network models, e.g., augmented SAP AC network
model [I-D.boro-opsawg-ntw-attachment-circuit].
The AC service model *is not a device model*. A network provider may
use a variety of device models (e.g., Routing management [RFC8349] or
BGP [I-D.ietf-idr-bgp-model]) to provision an AC service.
1.2.1. Why Not Using L2SM as Reference Data Model for ACaaS?
The L2SM [RFC8466] covers some AC-related considerations.
Nevertheless, the L2SM structure is too layer 2 centric. For
example, the L2SM part does not cover Layer 3 provisioning, which is
required for the instantiation of typical ACs.
Boucadair, et al. Expires 10 September 2023 [Page 6]
Internet-Draft ACaaS March 2023
1.2.2. Why Not Using L3SM as Reference Data Model for ACaaS?
Similar to the L2NM, the L3SM [RFC8299] covers some AC-related
considerations. Nevertheless, the L3SM structure does not adequately
cover layer 2 provisioning matters. Moreover, the L3SM is drawn with
conventional L3VPN deployments in mind and, as such, has some
limitations for instantiating ACs in other deployment contexts (e.g.,
cloud environments). For example, the L3SM does not allow to
provision multiple BGP sessions over the same AC.
2. Conventions and Definitions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
The meanings of the symbols in the YANG tree diagrams are defined in
[RFC8340].
This document uses the following terms:
Bearer: A physical or logical link that connects a customer node (or
site) to a provider network. A bearer can be a wireless or wired
link. One or multiple technologies can be used to build a bearer.
The bearer type can be specified by a customer.
The operator allocates a unique bearer reference to identify a
bearer within its network (e.g., customer line identifier). Such
a reference can be retrieved by a customer and used in subsequent
service placement requests to unambiguously identify where a
service is to be bound.
The concept of bearer can be generalized to refer to the required
underlying connection for the provisioning of an attachment
circuit. One or multiple attachment circuits may be hosted over
the same bearer (e.g., multiple VLANs on the same bearer that is
provided by a physical link).
Network controller: Denotes a functional entity responsible for the
management of the service provider network.
Service orchestrator: Refers to a functional entity that interacts
with the customer of a network service. The service orchestrator
is typically responsible for the attachment circuits, the Provider
Edge (PE) selection, and requesting the activation of the
requested service to a network controller.
Boucadair, et al. Expires 10 September 2023 [Page 7]
Internet-Draft ACaaS March 2023
Service provider network: A network that is able to provide network
services (e.g., Layer 2 VPN, Layer 3, and Network Slice Services).
Service provider: A service provider that offers network services
(e.g., Layer 2 VPN, Layer 3, and Network Slice Services).
3. Sample Uses of the Data Models
3.1. ACs Terminated by One or Multiple Customer Devices
Figure 1 depicts two target topology flavors that involve ACs. These
topologies are characterized as follows:
* A Customer Terminating Point (CTP) may be a physical node or a
logical entity. A CTP is seen by the network as a peer SAP.
* The same AC request may include one or multiple ACs that may
belong to one or both of these flavors. For the sake of
simplifying the illustration, only a subset of these ACs is shown
in Figure 1.
* CTPs may be dedicated to one single service or host multiple
services (e.g., service functions [RFC7665]).
* A single AC (as seen by a network provider) may be bound to one or
multiple peer SAPs (e.g., CTP#1 and CTP#2). For example, and as
discussed in [RFC4364], multiple CTPs (CEs) can be attached to a
PE over the same attachment circuit. This is typically
implemented if the layer 2 infrastructure between the CTP and the
network provides a multipoint service.
* The same CTP may terminate multiple ACs. These ACes may be over
the same or distinct bearers.
* The customer may request protection schemes where the ACs bound to
a customer endpoints are terminated by the same PE (e.g., CTP#3),
distinct PEs (e.g., CTP#34), etc.
Boucadair, et al. Expires 10 September 2023 [Page 8]
Internet-Draft ACaaS March 2023
┌───────┐ ┌────────────────────┐ ┌───────┐
│ ├──────┐ │ ├────AC─────┤ │
│ CTP#1 │ │ │ ├────AC─────┤ CTP#3 |
└───────┘ │ │ │ └───────┘
├───AC────┤ Network │
┌───────┐ │ │ │
│ │ │ │ │ ┌───────┐
│ CTP#2 ├──────┘ │ │─────AC────┤ CTP#4 │
└───────┘ │ │ └────+──┘
└───────────+────────┘ |
| |
└────────────AC───────────┘
Figure 1: Examples of ACs
3.2. Separate AC Provisioning vs. Actual Service Provisioning
The procedure to provision a service in a service provider network
may depend on the practices adopted by a service provider, including
the flow put in place for the provisioning of advanced network
services and how they are bound to an attachment circuit. For
example, the same attachment circuit may be used to host multiple
services. In order to avoid service interference and redundant
information in various locations, a service provider may expose an
interface to manage ACs network-wide. Customers can the request a
base attachment circuit to be put in place, and then refer to that
base AC when requesting services that are bound to that AC.
Figure 2 shows the positioning of the AC service model is the overall
service delivery process.
Boucadair, et al. Expires 10 September 2023 [Page 9]
Internet-Draft ACaaS March 2023
+---------------+
| Customer |
+-------+-------+
Customer Service Model |
e.g., slice-svc, ac-svc,|bearer-svc
+-------+-------+
| Service |
| Orchestration |
+-------+-------+
Network Model |
e.g., l3vpn-ntw, sap, ac-ntw |
+-------+-------+
| Network |
| Orchestration |
+-------+-------+
Network Configuration Model |
+-----------+-----------+
| |
+--------+------+ +--------+------+
| Domain | | Domain |
| Orchestration | | Orchestration |
+---+-----------+ +--------+------+
Device | | |
Configuration | | |
Model | | |
+----+----+ | |
| Config | | |
| Manager | | |
+----+----+ | |
| | |
| NETCONF/CLI..................
| | |
+--------------------------------+
+----+ Bearer | | Bearer +----+
|CTP +--------+ Network +--------+ CTP|
+----+ | | +----+
+--------------------------------+
Site A Site B
Figure 2: An Example of AC Model Usage
4. Description of the Data Models
Boucadair, et al. Expires 10 September 2023 [Page 10]
Internet-Draft ACaaS March 2023
4.1. The Bearer Service ("ietf-bearer-svc") YANG Module
Figure 3 shows the tree for managing the bearers (that is, the
properties of the attachment that are below Layer 3). A bearer can
be a wireless or wired link. A reference to a bearer is generated by
the operator. Such a reference can be used, e.g., in a subsequent
service request to create an AC. The anchoring of the AC can also be
achieved by indicating (with or without a bearer reference), a peer
SAP identifier (e.g., an identifier of a Service Function).
module: ietf-bearer-svc
+--rw bearers
+--rw bearer* [id]
+--rw id string
+--rw description? string
+--rw op-comment? string
+--rw customer-point
| +--rw identified-by? identityref
| +--rw device
| | +--rw device-id? string
| | +--rw location
| | +--rw address? string
| | +--rw postal-code? string
| | +--rw state? string
| | +--rw city? string
| | +--rw country-code? string
| +--rw site
| | +--rw site-id? string
| | +--rw location
| | +--rw address? string
| | +--rw postal-code? string
| | +--rw state? string
| | +--rw city? string
| | +--rw country-code? string
| +--rw custom-id? string
+--rw requested-type? identityref
+--ro bearer-reference? string {vpn-common:bearer-reference}?
+--rw requested-start? yang:date-and-time
+--rw requested-stop? yang:date-and-time
+--ro actual-start? yang:date-and-time
+--ro actual-stop? yang:date-and-time
+--rw status
+--rw admin-status
| +--rw status? identityref
| +--rw last-change? yang:date-and-time
+--ro oper-status
+--ro status? identityref
+--ro last-change? yang:date-and-time
Boucadair, et al. Expires 10 September 2023 [Page 11]
Internet-Draft ACaaS March 2023
Figure 3: Bearers Tree Structure
The same customer site (CE, NF, etc.) can terminate one or multiple
bearers; each of them uniquely identified by a reference that is
assigned by the network provider. These bearers can terminate on the
same or distinct network nodes. CEs that terminate multiple bearers
are called multi-homed CEs.
The descriptions of the bearer data nodes are as follows:
'id': Used to uniquely identify a bearer. This identifier is
typically selected by the client when requesting a bearer.
'description': Includes a textual description of the bearer.
'op-comment': Includes operational comments that may be useful for
managing the bearer (building, level, etc.). No structure is
associated with this data node to accommodate all deployments.
'customer-point': Specifies the customer terminating point for the
bearer. A bearer request can indicate a site, a device, a
combination thereof, or a custom information when requesting a
bearer. All these schemes are supported in the model.
'requested-type': Specifies the requested bearer type (Ethernet,
wireless, etc.).
'bearer-reference': Returns an internal reference for the service
provider to identify the bearer. This reference can be used when
requesting services. Appendix A.1 provides an example about how
this reference can be retrieved by a customer. Whether the
'bearer-reference' mirrors the content of the 'id' is deployment
specific. The module does not assume nor preclude such schemes.
'status': Used to track the overall status of a given bearer. Both
operational and administrative status are maintained together with
a timestamp. See [RFC9181] for more details.
4.2. The Attachment Circuit Service ("ietf-ac-svc") YANG Module
4.2.1. Overall Structure
The overall tree structure of the AC service module is shown in
Figure 4.
Boucadair, et al. Expires 10 September 2023 [Page 12]
Internet-Draft ACaaS March 2023
+--rw specific-provisioning-profiles
| ...
+--rw service-provisioning-profiles
| ...
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| ...
+--rw ac* [name]
...
+--rw l2-connection
| ...
+--rw ip-connection
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
...
Figure 4: Overall AC Service Tree Structure
The full ACaaS tree is available at [AC-SVC-Tree]. The full reusable
groupings defined in the ACaaS module are shown in [AC-SVC-GRP].
Each AC is identified with a unique identifier within a domain. The
mapping between this AC and a local PE that terminates the AC is
hidden to the application that makes use of the AC service model.
This information is internal to the Network controller. As such, the
details about the (node-specific) attachment interfaces are not
exposed in this service model.
The AC service model uses groupings and types defined in the AC
common model [I-D.boro-opsawg-teas-common-ac]. Therefore, the
description of these nodes are not reiterated in the following
subsections.
4.2.2. Service Profiles
Boucadair, et al. Expires 10 September 2023 [Page 13]
Internet-Draft ACaaS March 2023
4.2.2.1. Description
The 'specific-provisioning-profiles' container (Figure 5) can be used
by a service provider to maintain a set of specific profiles that are
similar to those defined in [RFC9181]. The exact definition of the
profiles is local to each service provider. The model only includes
an identifier for these profiles in order to facilitate identifying
and binding local policies when building an AC.
module: ietf-ac-svc
+--rw specific-provisioning-profiles
| +--rw valid-provider-identifiers
| +--rw external-connectivity-identifier* [id]
| | {external-connectivity}?
| | +--rw id string
| +--rw encryption-profile-identifier* [id]
| | +--rw id string
| +--rw qos-profile-identifier* [id]
| | +--rw id string
| +--rw bfd-profile-identifier* [id]
| | +--rw id string
| +--rw forwarding-profile-identifier* [id]
| | +--rw id string
| +--rw routing-profile-identifier* [id]
| +--rw id string
+--rw service-provisioning-profiles
| +--rw service-profile-identifier* [id]
| +--rw id string
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| ...
+--rw ac* [name]
...
+--rw l2-connection
| ...
+--rw ip-connection
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
...
Figure 5: Service Profiles
Boucadair, et al. Expires 10 September 2023 [Page 14]
Internet-Draft ACaaS March 2023
As shown in Figure 5, two profile types can be defined: 'specific-
provisioning-profiles' and 'service-provisioning-profiles'. Whether
only specific profiles, service profiles, or a combination thereof
are used is local to each service provider.
The following specific provisioning profiles can be defined:
'external-connectivity-identifier': Refers to a profile that defines
the external connectivity provided to a site that is connected via
an AC. External connectivity may be access to the Internet or
restricted connectivity, such as access to a public/private cloud.
'encryption-profile-identifier': Refers to a set of policies related
to the encryption setup that can be applied when provisioning an
AC.
'qos-profile-identifier': Refers to a set of policies, such as
classification, marking, and actions (e.g., [RFC3644]).
'bfd-profile-identifier': Refers to a set of Bidirectional
Forwarding Detection (BFD) policies [RFC5880] that can be invoked
when building an AC.
'forwarding-profile-identifier': Refers to the policies that apply
to the forwarding of packets conveyed within an AC. Such policies
may consist, for example, of applying Access Control Lists (ACLs).
'routing-profile-identifier': Refers to a set of routing policies
that will be invoked (e.g., BGP policies) when building an AC.
4.2.2.2. Referencing Service/Specific Profiles
All the abovementioned profiles are uniquely identified by the
NETCONF/RESTCONF server by an identifier. To ease referencing these
profiles by other data models, specific typedefs are defined for each
of these profiles. Likewise, an attachment circuit reference typedef
is defined when referencing a (global) attachment circuit by its name
is required. These typedefs SHOULD be used when other modules need a
reference to one of these profiles or attachment circuits.
4.2.3. Attachment Circuits Profiles
The 'ac-group-profile' defines reusable parameters for a set of ACes.
Each profile is identified by 'name'. Some of the data nodes can be
adjusted at the 'ac'. These adjusted values take precedence over the
global values. The structure of 'ac-group-profile' is similar to the
one used to model each 'ac' (Figure 7).
Boucadair, et al. Expires 10 September 2023 [Page 15]
Internet-Draft ACaaS March 2023
4.2.4. AC Placement Constraints
The 'placement-constraints' specifies the placement constraints of an
AC. For example, this container can be used to request avoiding to
connecting two ACes to the same PE. The full set of supported
constraints is defined in [RFC9181] (see 'placement-diversity', in
particular).
The structure of 'placement-constraints' is shown in Figure 6.
+--rw specific-provisioning-profiles
| ...
+--rw service-provisioning-profiles
| ...
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| +--rw constraint* [constraint-type]
| +--rw constraint-type identityref
| +--rw target
| +--rw (target-flavor)?
| +--:(id)
| | +--rw group* [group-id]
| | +--rw group-id string
| +--:(all-accesses)
| | +--rw all-other-accesses? empty
| +--:(all-groups)
| +--rw all-other-groups? empty
+--rw ac* [name]
...
Figure 6: Overall Attachment Circuits Tree Structure
4.2.5. Attachment Circuits
The structure of 'attachment-circuits' is shown in Figure 7.
Boucadair, et al. Expires 10 September 2023 [Page 16]
Internet-Draft ACaaS March 2023
+--rw specific-provisioning-profiles
| ...
+--rw service-provisioning-profiles
| ...
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| ...
+--rw ac* [name]
+--rw customer-name? string
+--rw description? string
+--rw requested-start? yang:date-and-time
+--rw requested-stop? yang:date-and-time
+--ro actual-start? yang:date-and-time
+--ro actual-stop? yang:date-and-time
+--rw peer-sap-id* string
+--rw ac-global-profile* ac-global-profile-reference
+--rw ac-node-profile* ac-node-group-reference
+--rw group* [group-id]
| +--rw group-id string
| +--rw precedence? identityref
+--rw name string
+--rw l2-connection
| ...
+--rw ip-connection
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
...
Figure 7: Overall Attachment Circuits Tree Structure
The description of the data nodes is as follows:
'customer-name': Indicates the name of the customer who ordered the
AC.
'description': Includes a textual description of the AC.
'peer-sap-id': Includes references to the remote endpoints of an
attachment circuit [I-D.ietf-opsawg-sap].
'ac-group-profile': Indicates references to one or more profils that
are defined in Section 4.2.3.
Boucadair, et al. Expires 10 September 2023 [Page 17]
Internet-Draft ACaaS March 2023
'group': Lists the groups to which an AC belongs [RFC9181]. For
example, the 'group-id' is used to associate redundancy or
protection constraints of ACes. An example is provided in
Appendix A.5.
'name': Associates a name that uniquely identifies an AC within a
service provider network.
'l2-connection': See Section 4.2.5.1.
'l3-connection': See Section 4.2.5.2.
'routing': See Section 4.2.5.3.
'oam': See Section 4.2.5.4.
'security': See Section 4.2.5.5.
4.2.5.1. Layer 2 Connection Structure
The 'l2-connection' container (Figure 8) is used to configure the
relevant Layer 2 properties of an AC. This structure relies upon the
common groupings defined in [I-D.boro-opsawg-teas-common-ac].
+--rw specific-provisioning-profiles
| ...
+--rw service-provisioning-profiles
| ...
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| ...
+--rw ac* [name]
+--rw customer-name? string
+--rw description? string
+--rw requested-start? yang:date-and-time
+--rw requested-stop? yang:date-and-time
+--ro actual-start? yang:date-and-time
+--ro actual-stop? yang:date-and-time
+--rw peer-sap-id* string
+--rw ac-global-profile* ac-global-profile-reference
+--rw ac-node-profile* ac-node-group-reference
+--rw name string
+--rw l2-connection
| +--rw encapsulation
| | +--rw type? identityref
| | +--rw dot1q
Boucadair, et al. Expires 10 September 2023 [Page 18]
Internet-Draft ACaaS March 2023
| | | +--rw tag-type? identityref
| | | +--rw cvlan-id? uint16
| | +--rw priority-tagged
| | | +--rw tag-type? identityref
| | +--rw qinq
| | +--rw tag-type? identityref
| | +--rw svlan-id uint16
| | +--rw cvlan-id uint16
| +--rw (l2-service)?
| | +--:(l2-tunnel-service)
| | | +--rw l2-tunnel-service
| | | +--rw type? identityref
| | | +--rw pseudowire
| | | | +--rw vcid? uint32
| | | | +--rw far-end? union
| | | +--rw vpls
| | | | +--rw vcid? uint32
| | | | +--rw far-end* union
| | | +--rw vxlan
| | | +--rw vni-id uint32
| | | +--rw peer-mode? identityref
| | | +--rw peer-ip-address* inet:ip-address
| | +--:(l2vpn)
| | +--rw l2vpn-id? vpn-common:vpn-id
| +--rw bearer-reference? string
| {vpn-common:bearer-reference}?
+--rw ip-connection
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
...
Figure 8: Layer 2 Connection Tree Structure
4.2.5.2. Layer 3 Connection Structure
The 'l3-connection' container is used to configure the relevant Layer
3 properties of an AC. This structure relies upon the common
groupings defined in [I-D.boro-opsawg-teas-common-ac]. Both IPv4 and
IPv6 parameters are supported.
Figure 9 shows the structure of the IPv4 connection.
Boucadair, et al. Expires 10 September 2023 [Page 19]
Internet-Draft ACaaS March 2023
+--rw specific-provisioning-profiles
| ...
+--rw service-provisioning-profiles
| ...
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| ...
+--rw ac* [name]
+--rw customer-name? string
+--rw description? string
+--rw requested-start? yang:date-and-time
+--rw requested-stop? yang:date-and-time
+--ro actual-start? yang:date-and-time
+--ro actual-stop? yang:date-and-time
+--rw peer-sap-id* string
+--rw ac-global-profile* ac-global-profile-reference
+--rw ac-node-profile* ac-node-group-reference
+--rw name string
+--rw l2-connection
| ...
+--rw ip-connection
| +--rw ipv4 {vpn-common:ipv4}?
| | +--rw local-address?
| | | inet:ipv4-address
| | +--rw virtual-address?
| | | inet:ipv4-address
| | +--rw prefix-length? uint8
| | +--rw address-allocation-type?
| | | identityref
| | +--rw (allocation-type)?
| | +--:(dynamic)
| | | +--rw (address-assign)?
| | | | +--:(number)
| | | | | +--rw number-of-dynamic-address? uint16
| | | | +--:(explicit)
| | | | +--rw customer-addresses
| | | | +--rw address-pool* [pool-id]
| | | | +--rw pool-id string
| | | | +--rw start-address
| | | | | inet:ipv4-address
| | | | +--rw end-address?
| | | | inet:ipv4-address
| | | +--rw (provider-dhcp)?
| | | | +--:(dhcp-service-type)
| | | | +--rw dhcp-service-type?
| | | | enumeration
Boucadair, et al. Expires 10 September 2023 [Page 20]
Internet-Draft ACaaS March 2023
| | | +--rw (dhcp-relay)?
| | | +--:(customer-dhcp-servers)
| | | +--rw customer-dhcp-servers
| | | +--rw server-ip-address*
| | | inet:ipv4-address
| | +--:(static-addresses)
| | +--rw address* [address-id]
| | +--rw address-id string
| | +--rw customer-address? inet:ipv4-address
| +--rw ipv6 {vpn-common:ipv6}?
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
...
Figure 9: Layer 3 Connection Tree Structure (IPv4)
Figure 10 shows the structure of the IPv6 connection.
+--rw specific-provisioning-profiles
| ...
+--rw service-provisioning-profiles
| ...
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| ...
+--rw ac* [name]
+--rw customer-name? string
+--rw description? string
+--rw requested-start? yang:date-and-time
+--rw requested-stop? yang:date-and-time
+--ro actual-start? yang:date-and-time
+--ro actual-stop? yang:date-and-time
+--rw peer-sap-id* string
+--rw ac-global-profile* ac-global-profile-reference
+--rw ac-node-profile* ac-node-group-reference
+--rw name string
+--rw l2-connection
| ...
+--rw ip-connection
| +--rw ipv4 {vpn-common:ipv4}?
| | ...
| +--rw ipv6 {vpn-common:ipv6}?
Boucadair, et al. Expires 10 September 2023 [Page 21]
Internet-Draft ACaaS March 2023
| +--rw local-address?
| | inet:ipv6-address
| +--rw virtual-address?
| | inet:ipv6-address
| +--rw prefix-length? uint8
| +--rw address-allocation-type?
| | identityref
| +--rw (allocation-type)?
| +--:(dynamic)
| | +--rw (address-assign)?
| | | +--:(number)
| | | | +--rw number-of-dynamic-address? uint16
| | | +--:(explicit)
| | | +--rw customer-addresses
| | | +--rw address-pool* [pool-id]
| | | +--rw pool-id string
| | | +--rw start-address
| | | | inet:ipv6-address
| | | +--rw end-address?
| | | inet:ipv6-address
| | +--rw (provider-dhcp)?
| | | +--:(dhcp-service-type)
| | | +--rw dhcp-service-type?
| | | enumeration
| | +--rw (dhcp-relay)?
| | +--:(customer-dhcp-servers)
| | +--rw customer-dhcp-servers
| | +--rw server-ip-address*
| | inet:ipv6-address
| +--:(static-addresses)
| +--rw address* [address-id]
| +--rw address-id string
| +--rw customer-address? inet:ipv6-address
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
...
Figure 10: Layer 3 Connection Tree Structure (IPv6)
Boucadair, et al. Expires 10 September 2023 [Page 22]
Internet-Draft ACaaS March 2023
4.2.5.3. Routing
As shown in the tree depicted in Figure 11, the 'routing-protocols'
container defines the required parameters to enable the required
routing features for an AC. One or more routing protocols can be
associated with an AC. Such routing protocols are then enabled
between a PE and the CE. Each routing instance is uniquely
identified to accommodate scenarios where multiple instances of the
same routing protocol have to be configured on the same link.
In addition to static routing, the module supports BGP, OSPF, IS-IS,
and RIP.
The model also supports the Virtual Router Redundancy Protocol (VRRP)
[RFC5798] on an AC.
+--rw specific-provisioning-profiles
| ...
+--rw service-provisioning-profiles
| ...
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| ...
+--rw ac* [name]
+--rw customer-name? string
+--rw description? string
+--rw requested-start? yang:date-and-time
+--rw requested-stop? yang:date-and-time
+--ro actual-start? yang:date-and-time
+--ro actual-stop? yang:date-and-time
+--rw peer-sap-id* string
+--rw ac-global-profile* ac-global-profile-reference
+--rw ac-node-profile* ac-node-group-reference
+--rw name string
+--rw l2-connection
| ...
+--rw ip-connection
| ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| +--rw id string
| +--rw type? identityref
| +--rw routing-profiles* [id]
| | +--rw id routing-profile-reference
| | +--rw type? identityref
| +--rw static
Boucadair, et al. Expires 10 September 2023 [Page 23]
Internet-Draft ACaaS March 2023
| | +--rw cascaded-lan-prefixes
| | +--rw ipv4-lan-prefixes* [lan next-hop]
| | | {vpn-common:ipv4}?
| | | +--rw lan inet:ipv4-prefix
| | | +--rw lan-tag? string
| | | +--rw next-hop union
| | | +--rw metric? uint32
| | | +--rw status
| | | +--rw admin-status
| | | | +--rw status? identityref
| | | | +--rw last-change? yang:date-and-time
| | | +--ro oper-status
| | | +--ro status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--rw ipv6-lan-prefixes* [lan next-hop]
| | {vpn-common:ipv6}?
| | +--rw lan inet:ipv6-prefix
| | +--rw lan-tag? string
| | +--rw next-hop union
| | +--rw metric? uint32
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw bgp
| | +--rw peer-groups
| | | +--rw peer-group* [name]
| | | +--rw name string
| | | +--ro local-address? inet:ip-address
| | | +--ro local-as? inet:as-number
| | | +--rw peer-as? inet:as-number
| | | +--rw address-family? identityref
| | | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(ao)
| | | | +--rw enable-ao? boolean
| | | | +--rw ao-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(md5)
| | | | +--rw md5-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(explicit)
| | | +--rw key-id? uint32
Boucadair, et al. Expires 10 September 2023 [Page 24]
Internet-Draft ACaaS March 2023
| | | +--rw key? string
| | | +--rw crypto-algorithm?
| | | identityref
| | +--rw neighbor* [id]
| | +--rw id string
| | +--rw remote-address? inet:ip-address
| | +--ro local-address? inet:ip-address
| | +--rw peer-group?
| | | -> ../../peer-groups/peer-group/name
| | +--ro local-as? inet:as-number
| | +--rw peer-as? inet:as-number
| | +--rw address-family? identityref
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(ao)
| | | | +--rw enable-ao? boolean
| | | | +--rw ao-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(md5)
| | | | +--rw md5-keychain?
| | | | key-chain:key-chain-ref
| | | +--:(explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw ospf
| | +--rw address-family? identityref
| | +--rw area-id yang:dotted-quad
| | +--rw metric? uint16
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
Boucadair, et al. Expires 10 September 2023 [Page 25]
Internet-Draft ACaaS March 2023
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw isis
| | +--rw address-family? identityref
| | +--rw area-address area-address
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
| +--rw rip
| | +--rw address-family? identityref
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
Boucadair, et al. Expires 10 September 2023 [Page 26]
Internet-Draft ACaaS March 2023
| +--rw vrrp
| +--rw address-family? identityref
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw oam
| ...
+--rw security
...
Figure 11: Routing Tree Structure
For all supported routing protocols, 'address-family' indicates
whether IPv4, IPv6, or both address families are to be activated.
For example, this parameter is used to determine whether RIPv2
[RFC2453], RIP Next Generation (RIPng), or both are to be enabled
[RFC2080].
Similar to [RFC9182], this version of the ACaaS assumes that
parameters specific to the TCP-AO are preconfigured as part of the
key chain that is referenced in the ACaaS. No assumption is made
about how such a key chain is preconfigured. However, the structure
of the key chain should cover data nodes beyond those in [RFC8177],
mainly SendID and RecvID (Section 3.1 of [RFC5925]).
4.2.5.4. OAM
As shown in the tree depicted in Figure 12, the 'oam' container
defines OAM-related parameters of an AC.
Boucadair, et al. Expires 10 September 2023 [Page 27]
Internet-Draft ACaaS March 2023
+--rw specific-provisioning-profiles
| ...
+--rw service-provisioning-profiles
| ...
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| ...
+--rw ac* [name]
...
+--rw l2-connection
| ...
+--rw ip-connection
| ...
+--rw routing-protocols
| ...
+--rw oam
| +--rw bfd {vpn-common:bfd}?
| +--rw holdtime? uint32
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
+--rw security
...
Figure 12: OAM Tree Structure
4.2.5.5. Security
As shown in the tree depicted in Figure 13, the 'security' container
defines a set of AC security parameters.
Boucadair, et al. Expires 10 September 2023 [Page 28]
Internet-Draft ACaaS March 2023
+--rw specific-provisioning-profiles
| ...
+--rw service-provisioning-profiles
| ...
+--rw attachment-circuits
+--rw ac-group-profile* [name]
| ...
+--rw placement-constraints
| ...
+--rw ac* [name]
...
+--rw l2-connection
| ...
+--rw ip-connection
| ...
+--rw routing-protocols
| ...
+--rw oam
| ...
+--rw security
+--rw encryption {vpn-common:encryption}?
| +--rw enabled? boolean
| +--rw layer? enumeration
+--rw encryption-profile
+--rw (profile)?
+--:(provider-profile)
| +--rw provider-profile?
| ac-svc:encryption-profile-reference
+--:(customer-profile)
+--rw customer-key-chain?
key-chain:key-chain-ref
Figure 13: Security Tree Structure
5. YANG Modules
5.1. The Bearer Service ("ietf-bearer-svc") YANG Module
This module uses types defined in [RFC6991] and [RFC9181].
<CODE BEGINS>
file ietf-bearer-svc@2022-11-30.yang
module ietf-bearer-svc {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-bearer-svc";
prefix bearer-svc;
import ietf-vpn-common {
Boucadair, et al. Expires 10 September 2023 [Page 29]
Internet-Draft ACaaS March 2023
prefix vpn-common;
reference
"RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3
VPNs";
}
import ietf-ac-common {
prefix ac-common;
reference
"RFC CCCC: A YANG Service Data Model for Attachment Circuits";
}
organization
"IETF OPSAWG (Operations and Management Area Working Group)";
contact
"WG Web: <https://datatracker.ietf.org/wg/opsawg/>
WG List: <mailto:opsawg@ietf.org>
Editor: Mohamed Boucadair
<mailto:mohamed.boucadair@orange.com>
Author: Richard Roberts
<mailto:rroberts@juniper.net>
Author: Oscar Gonzalez de Dios
<mailto:oscar.gonzalezdedios@telefonica.com>
Author: Samier Barguil
<mailto:ssamier.barguil_giraldo@nokia.com>
Author: Bo Wu
<mailto:lana.wubo@huawei.com>";
description
"This YANG module defines a generic YANG model for exposing
network bearers as a service.
Copyright (c) 2023 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC xxx; see the
RFC itself for full legal notices.";
revision 2022-11-30 {
description
"Initial revision.";
reference
Boucadair, et al. Expires 10 September 2023 [Page 30]
Internet-Draft ACaaS March 2023
"RFC xxxx: A YANG Service Data Model for Attachment Circuits";
}
// Identities
identity identification-type {
description
"Base identity for identification of bearers.";
}
identity device-id {
base identification-type;
description
"Identification of bearers based on device..";
}
identity site-id {
base identification-type;
description
"Identification of bearers based on site.";
}
identity site-and-device-id {
base identification-type;
description
"Identification of bearers based on site and device.";
}
identity custom {
base identification-type;
description
"Identification of bearers based on other custom criteria.";
}
identity bearer-type {
description
"Base identity for bearers type.";
}
identity ethernet {
base bearer-type;
description
"Ethernet.";
}
identity wireless {
base bearer-type;
description
Boucadair, et al. Expires 10 September 2023 [Page 31]
Internet-Draft ACaaS March 2023
"Wireless.";
}
grouping location-information {
description
"Basic location information";
container location {
description
"Location of the node.";
leaf address {
type string;
description
"Address (number and street) of the device/site.";
}
leaf postal-code {
type string;
description
"Postal code of the device/site.";
}
leaf state {
type string;
description
"State of the device/site. This leaf can also be
used to describe a region for a country that
does not have states.";
}
leaf city {
type string;
description
"City of the device/site.";
}
leaf country-code {
type string {
pattern '[A-Z]{2}';
}
description
"Country of the device/site.
Expressed as ISO ALPHA-2 code.";
}
}
}
container bearers {
description
"Main container for the bearers.";
list bearer {
key "id";
description
Boucadair, et al. Expires 10 September 2023 [Page 32]
Internet-Draft ACaaS March 2023
"Maintains a list of bearers.";
leaf id {
type string;
description
"An identifier of the bearer.";
}
leaf description {
type string;
description
"A description of this bearer.";
}
leaf op-comment {
type string;
description
"Includes comments that can be shared with operational teams and
which may be useful for the activation of a bearer. This may include,
for example, information about the building, level, etc.";
}
container customer-point {
description
"Base container to link the Bearer existence";
leaf identified-by {
type identityref {
base identification-type;
}
description
"Attribute used to identify the bearer";
}
container device {
when "derived-from-or-self(../identified-by, "
+ "'device-id') or derived-from-or-self(../identified-by, "
+ "'site-and-device-id')" {
description
"Only applicable if identified-by is device.";
}
description
"Bearer is linked to device.";
leaf device-id {
type string;
description
"Identifier for the device where that bearer belongs.";
}
uses location-information;
}
container site {
when "derived-from-or-self(../identified-by, "
+ "'site-id') or derived-from-or-self(../identified-by, "
+ "'site-and-device-id')" {
Boucadair, et al. Expires 10 September 2023 [Page 33]
Internet-Draft ACaaS March 2023
description
"Only applicable if identified-by is site.";
}
description
"Bearer is linked to a site.";
leaf site-id {
type string;
description
"Identifier for the site or sites where that bearer belongs.";
}
uses location-information;
}
leaf custom-id {
when "derived-from-or-self(../identified-by, "
+ "'custom')" {
description
"Only enabled id identified-by is custom.";
}
type string;
description
"The semantic of this identifier is shared between the
customer/provider using out-of-band means.";
}
}
leaf requested-type {
type identityref {
base bearer-type;
}
description
"Type of the requested bearer (e.g., Ethernet, or wireless)";
}
leaf bearer-reference {
if-feature "vpn-common:bearer-reference";
type string;
config false;
description
"This is an internal reference for the service provider
to identify the bearers.";
}
uses ac-common:op-instructions;
uses vpn-common:service-status;
}
}
}
<CODE ENDS>
Boucadair, et al. Expires 10 September 2023 [Page 34]
Internet-Draft ACaaS March 2023
5.2. The AC Service ("ietf-ac-svc") YANG Module
This module uses types defined in [RFC6991], [RFC9181], [RFC8177],
and [I-D.boro-opsawg-teas-common-ac].
<CODE BEGINS>
file ietf-ac-svc@2022-11-30.yang
module ietf-ac-svc {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-ac-svc";
prefix ac-svc;
import ietf-ac-common {
prefix ac-common;
reference
"RFC CCCC: A Common YANG Data Model for Attachment Circuits";
}
import ietf-vpn-common {
prefix vpn-common;
reference
"RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3
VPNs";
}
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types, Section 4";
}
import ietf-key-chain {
prefix key-chain;
reference
"RFC 8177: YANG Data Model for Key Chains";
}
organization
"IETF OPSAWG (Operations and Management Area Working Group)";
contact
"WG Web: <https://datatracker.ietf.org/wg/opsawg/>
WG List: <mailto:opsawg@ietf.org>
Editor: Mohamed Boucadair
<mailto:mohamed.boucadair@orange.com>
Author: Richard Roberts
<mailto:rroberts@juniper.net>
Author: Oscar Gonzalez de Dios
<mailto:oscar.gonzalezdedios@telefonica.com>
Author: Samier Barguil
<mailto:ssamier.barguil_giraldo@nokia.com>
Boucadair, et al. Expires 10 September 2023 [Page 35]
Internet-Draft ACaaS March 2023
Author: Bo Wu
<mailto:lana.wubo@huawei.com>";
description
"This YANG module defines a YANG model for exposing
attachment circuits (ACs) as a service.
Copyright (c) 2023 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX; see the
RFC itself for full legal notices.";
revision 2022-11-30 {
description
"Initial revision.";
reference
"RFC XXXX: A YANG Service Data Model for Attachment Circuits";
}
/* A set of typedefs to ease referencing cross-modules */
typedef attachment-circuit-reference {
type leafref {
path "/ac-svc:attachment-circuits/ac-svc:ac/ac-svc:name";
}
description
"Defines a reference to an attachment circuit that can be used
by other modules.";
}
/*typedef ac-global-profile-reference {
type leafref {
path "/ac-svc:attachment-circuits/ac-global-profile/id";
}
description
"Defines a reference to a gloabl attachment circuit that can be used
by other modules.";
}*/
typedef ac-group-reference {
type leafref {
Boucadair, et al. Expires 10 September 2023 [Page 36]
Internet-Draft ACaaS March 2023
path "/ac-svc:attachment-circuits/ac-group-profile/name";
}
description
"Defines a reference to an attachment circuit profile.";
}
typedef encryption-profile-reference {
type leafref {
path "/ac-svc:specific-provisioning-profiles/valid-provider-identifiers"
+ "/encryption-profile-identifier/id";
}
description
"Defines a type to an encryption profile for referencing
purposes.";
}
typedef qos-profile-reference {
type leafref {
path "/ac-svc:specific-provisioning-profiles/valid-provider-identifiers"
+ "/qos-profile-identifier/ac-svc:id";
}
description
"Defines a type to a QoS profile for referencing purposes.";
}
typedef bfd-profile-reference {
type leafref {
path "/ac-svc:specific-provisioning-profiles/valid-provider-identifiers"
+ "/bfd-profile-identifier/ac-svc:id";
}
description
"Defines a type to a BFD profile for referencing purposes.";
}
typedef forwarding-profile-reference {
type leafref {
path "/ac-svc:specific-provisioning-profiles/valid-provider-identifiers"
+ "/forwarding-profile-identifier/ac-svc:id";
}
description
"Defines a type to a forwarding profile for referencing purposes.";
}
typedef routing-profile-reference {
type leafref {
path "/ac-svc:specific-provisioning-profiles/valid-provider-identifiers"
+ "/routing-profile-identifier/id";
}
Boucadair, et al. Expires 10 September 2023 [Page 37]
Internet-Draft ACaaS March 2023
description
"Defines a type to a routing profile for referencing purposes.";
}
/******************** Reusable groupings ********************/
// Basic Layer 2 connection
grouping l2-connection-basic {
description
"Defines Layer 2 protocols and parameters that can be factorized
when provisioning Layer 2 connectivity among multiple ACs.";
container encapsulation {
description
"Container for Layer 2 encapsulation.";
leaf type {
type identityref {
base vpn-common:encapsulation-type;
}
description
"Encapsulation type.";
}
container dot1q {
when "derived-from-or-self(../type, 'vpn-common:dot1q')" {
description
"Only applies when the type of the tagged interface
is 'dot1q'.";
}
description
"Tagged interface.";
uses ac-common:dot1q;
}
container qinq {
when "derived-from-or-self(../type, 'vpn-common:qinq')" {
description
"Only applies when the type of the tagged interface
is 'qinq'.";
}
description
"Includes QinQ parameters.";
uses ac-common:qinq;
}
}
}
// Full Layer 2 connection
grouping l2-connection {
Boucadair, et al. Expires 10 September 2023 [Page 38]
Internet-Draft ACaaS March 2023
description
"Defines Layer 2 protocols and parameters that are used to enable
AC connectivity.";
container encapsulation {
description
"Container for Layer 2 encapsulation.";
leaf type {
type identityref {
base vpn-common:encapsulation-type;
}
description
"Encapsulation type.";
}
container dot1q {
when "derived-from-or-self(../type, 'vpn-common:dot1q')" {
description
"Only applies when the type of the tagged interface
is 'dot1q'.";
}
description
"Tagged interface.";
uses ac-common:dot1q;
}
container priority-tagged {
when "derived-from-or-self(../type, "
+ "'vpn-common:priority-tagged')" {
description
"Only applies when the type of the tagged interface is
'priority-tagged'.";
}
description
"Priority-tagged interface.";
uses ac-common:priority-tagged;
}
container qinq {
when "derived-from-or-self(../type, 'vpn-common:qinq')" {
description
"Only applies when the type of the tagged interface
is 'qinq'.";
}
description
"Includes QinQ parameters.";
uses ac-common:qinq;
}
}
choice l2-service {
description
"The Layer 2 connectivity service can be provided by indicating
Boucadair, et al. Expires 10 September 2023 [Page 39]
Internet-Draft ACaaS March 2023
a pointer to an L2VPN or by specifying a Layer 2 tunnel
service.";
container l2-tunnel-service {
description
"Defines a Layer 2 tunnel termination.";
uses ac-common:l2-tunnel-service;
}
case l2vpn {
leaf l2vpn-id {
type vpn-common:vpn-id;
description
"Indicates the L2VPN service associated with an Integrated
Routing and Bridging (IRB) interface.";
}
}
}
leaf bearer-reference {
if-feature "vpn-common:bearer-reference";
type string;
description
"This is an internal reference for the service provider
to identify the bearer associated with this AC.";
}
}
// Basic IP connection
grouping ip-connection-basic {
description
"Defines basic IP connection parameters.";
container ipv4 {
if-feature "vpn-common:ipv4";
description
"IPv4-specific parameters.";
uses ac-common:ipv4-connection-basic;
}
container ipv6 {
if-feature "vpn-common:ipv6";
description
"IPv6-specific parameters.";
uses ac-common:ipv6-connection-basic;
}
}
// Full IP connection
grouping ip-connection {
description
Boucadair, et al. Expires 10 September 2023 [Page 40]
Internet-Draft ACaaS March 2023
"Defines IP connection parameters.";
container ipv4 {
if-feature "vpn-common:ipv4";
description
"IPv4-specific parameters.";
uses ac-common:ipv4-connection;
}
container ipv6 {
if-feature "vpn-common:ipv6";
description
"IPv6-specific parameters.";
uses ac-common:ipv6-connection;
}
}
// Routing protocol list
grouping routing-protocol-list {
description
"List of routing protocols used on the AC.";
leaf type {
type identityref {
base vpn-common:routing-protocol-type;
}
description
"Type of routing protocol.";
}
list routing-profiles {
key "id";
description
"Routing profiles.";
leaf id {
type routing-profile-reference;
description
"Reference to the routing profile to be used.";
}
leaf type {
type identityref {
base vpn-common:ie-type;
}
description
"Import, export, or both.";
}
}
}
// Basic routing parameters
Boucadair, et al. Expires 10 September 2023 [Page 41]
Internet-Draft ACaaS March 2023
grouping routing-basic {
description
"Defines basic parameters for routing protocols.";
list routing-protocol {
key "id";
description
"List of routing protocols used on the AC.";
leaf id {
type string;
description
"Unique identifier for the routing protocol.";
}
uses routing-protocol-list;
container bgp {
when "derived-from-or-self(../type, 'vpn-common:bgp-routing')" {
description
"Only applies when the protocol is BGP.";
}
description
"Configuration specific to BGP.";
container peer-groups {
description
"Configuration for BGP peer-groups";
list peer-group {
key "name";
description
"List of BGP peer-groups configured on the local system -
uniquely identified by peer-group name";
uses ac-common:bgp-peer-group-with-name;
}
}
}
container ospf {
when "derived-from-or-self(../type, "
+ "'vpn-common:ospf-routing')" {
description
"Only applies when the protocol is OSPF.";
}
description
"Configuration specific to OSPF.";
uses ac-common:ospf-basic;
}
container isis {
when "derived-from-or-self(../type, "
+ "'vpn-common:isis-routing')" {
description
"Only applies when the protocol is IS-IS.";
}
Boucadair, et al. Expires 10 September 2023 [Page 42]
Internet-Draft ACaaS March 2023
description
"Configuration specific to IS-IS.";
uses ac-common:isis-basic;
}
container rip {
when "derived-from-or-self(../type, "
+ "'vpn-common:rip-routing')" {
description
"Only applies when the protocol is RIP.
For IPv4, the model assumes that RIP
version 2 is used.";
}
description
"Configuration specific to RIP routing.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both
address families are to be activated.";
}
}
container vrrp {
when "derived-from-or-self(../type, "
+ "'vpn-common:vrrp-routing')" {
description
"Only applies when the protocol is the
Virtual Router Redundancy Protocol (VRRP).";
}
description
"Configuration specific to VRRP.";
reference
"RFC 5798: Virtual Router Redundancy Protocol (VRRP)
Version 3 for IPv4 and IPv6";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both address families
are to be enabled.";
}
}
}
}
// Full routing parameters
Boucadair, et al. Expires 10 September 2023 [Page 43]
Internet-Draft ACaaS March 2023
grouping routing {
description
"Defines routing protocols.";
list routing-protocol {
key "id";
description
"List of routing protocols used on the AC.";
leaf id {
type string;
description
"Unique identifier for the routing protocol.";
}
uses routing-protocol-list;
container static {
when "derived-from-or-self(../type, "
+ "'vpn-common:static-routing')" {
description
"Only applies when the protocol is static routing
protocol.";
}
description
"Configuration specific to static routing.";
container cascaded-lan-prefixes {
description
"LAN prefixes from the customer.";
uses ac-common:ipv4-static-rtg;
uses ac-common:ipv6-static-rtg;
}
}
container bgp {
when "derived-from-or-self(../type, "
+ "'vpn-common:bgp-routing')" {
description
"Only applies when the protocol is BGP.";
}
description
"Configuration specific to BGP.";
container peer-groups {
description
"Configuration for BGP peer-groups";
list peer-group {
key "name";
description
"List of BGP peer-groups configured on the local system -
uniquely identified by peer-group name";
uses ac-common:bgp-peer-group-with-name;
leaf local-address {
type inet:ip-address;
Boucadair, et al. Expires 10 September 2023 [Page 44]
Internet-Draft ACaaS March 2023
config false;
description
"The local IP address that will be used to establish
the BGP session.";
}
uses ac-common:bgp-authentication;
}
}
list neighbor {
key "id";
description
"List of BGP neighbors.";
leaf id {
type string;
description
"A neighbor identifier.";
}
leaf remote-address {
type inet:ip-address;
description
"The remote IP address of this entry's BGP peer.
If this leaf is not present, this means that the primary
customer IP address is used as remote IP address.";
}
leaf local-address {
type inet:ip-address;
config false;
description
"The local IP address that will be used to establish
the BGP session.";
}
leaf peer-group {
type leafref {
path "../../peer-groups/peer-group/name";
}
description
"The peer-group with which this neighbor is associated.";
}
uses ac-common:bgp-peer-group-without-name;
uses ac-common:bgp-authentication;
uses vpn-common:service-status;
}
}
container ospf {
when "derived-from-or-self(../type, "
+ "'vpn-common:ospf-routing')" {
description
Boucadair, et al. Expires 10 September 2023 [Page 45]
Internet-Draft ACaaS March 2023
"Only applies when the protocol is OSPF.";
}
description
"Configuration specific to OSPF.";
uses ac-common:ospf-basic;
uses ac-common:ospf-authentication;
uses vpn-common:service-status;
}
container isis {
when "derived-from-or-self(../type, "
+ "'vpn-common:isis-routing')" {
description
"Only applies when the protocol is IS-IS.";
}
description
"Configuration specific to IS-IS.";
uses ac-common:isis-basic;
uses ac-common:isis-authentication;
uses vpn-common:service-status;
}
container rip {
when "derived-from-or-self(../type, "
+ "'vpn-common:rip-routing')" {
description
"Only applies when the protocol is RIP.
For IPv4, the model assumes that RIP version 2 is used.";
}
description
"Configuration specific to RIP routing.";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both address families
are to be activated.";
}
uses ac-common:rip-authentication;
uses vpn-common:service-status;
}
container vrrp {
when "derived-from-or-self(../type, "
+ "'vpn-common:vrrp-routing')" {
description
"Only applies when the protocol is the Virtual Router
Redundancy Protocol (VRRP).";
}
description
Boucadair, et al. Expires 10 September 2023 [Page 46]
Internet-Draft ACaaS March 2023
"Configuration specific to VRRP.";
reference
"RFC 5798: Virtual Router Redundancy Protocol (VRRP)
Version 3 for IPv4 and IPv6";
leaf address-family {
type identityref {
base vpn-common:address-family;
}
description
"Indicates whether IPv4, IPv6, or both
address families are to be enabled.";
}
uses vpn-common:service-status;
}
}
}
// Encryption choice
grouping encryption-choice {
description
"Container for the encryption profile.";
choice profile {
description
"Choice for the encryption profile.";
case provider-profile {
leaf provider-profile {
type encryption-profile-reference;
description
"Reference to a provider encryption profile.";
}
}
case customer-profile {
leaf customer-key-chain {
type key-chain:key-chain-ref;
description
"Customer-supplied key chain.";
}
}
}
}
// Basic security parameters
grouping ac-security-basic {
description
"AC-specific security parameters.";
container encryption {
Boucadair, et al. Expires 10 September 2023 [Page 47]
Internet-Draft ACaaS March 2023
if-feature "vpn-common:encryption";
description
"Container for AC security encryption.";
leaf enabled {
type boolean;
description
"If set to 'true', traffic encryption on the connection
is required. Otherwise, it is disabled.";
}
leaf layer {
when "../enabled = 'true'" {
description
"Included only when encryption is enabled.";
}
type enumeration {
enum layer2 {
description
"Encryption occurs at Layer 2.";
}
enum layer3 {
description
"Encryption occurs at Layer 3.
For example, IPsec may be used when a customer requests
Layer 3 encryption.";
}
}
description
"Indicates the layer on which encryption is applied.";
}
}
container encryption-profile {
when "../encryption/enabled = 'true'" {
description
"Indicates the layer on which encryption is enabled.";
}
description
"Container for the encryption profile.";
uses encryption-choice;
}
}
// Basic AC parameter
grouping ac-basic {
description
"Grouping for basic parameters for an attachment circuit.";
leaf id {
type string;
Boucadair, et al. Expires 10 September 2023 [Page 48]
Internet-Draft ACaaS March 2023
description
"An identifier of the AC.";
}
container l2-connection {
description
"Defines Layer 2 protocols and parameters that are required to
enable AC connectivity.";
uses l2-connection-basic;
}
container ip-connection {
description
"Defines IP connection parameters.";
uses ip-connection-basic;
}
container routing-protocols {
description
"Defines routing protocols.";
uses routing-basic;
}
container oam {
description
"Defines the Operations, Administration, and Maintenance (OAM)
mechanisms used.";
container bfd {
if-feature "vpn-common:bfd";
description
"Container for BFD.";
uses ac-common:bfd;
}
}
container security {
description
"AC-specific security parameters.";
uses ac-security-basic;
}
}
// Full AC parameters
grouping ac {
description
"Grouping for an attachment circuit.";
leaf name {
type string;
description
"A name of the AC. Data models that need to reference an attachment
circuits should use attachment-circuit-reference.";
}
Boucadair, et al. Expires 10 September 2023 [Page 49]
Internet-Draft ACaaS March 2023
container l2-connection {
description
"Defines Layer 2 protocols and parameters that are required to
enable AC connectivity.";
uses l2-connection;
}
container ip-connection {
description
"Defines IP connection parameters.";
uses ip-connection;
}
container routing-protocols {
description
"Defines routing protocols.";
uses routing;
}
container oam {
description
"Defines the OAM mechanisms used.";
container bfd {
if-feature "vpn-common:bfd";
description
"Container for BFD.";
uses ac-common:bfd;
uses vpn-common:service-status;
}
}
container security {
description
"AC-specific security parameters.";
uses ac-security-basic;
}
}
/******************** Main AC containers ********************/
container specific-provisioning-profiles {
description
"Contains a set of valid profiles to reference for an AC.";
uses vpn-common:vpn-profile-cfg;
}
container service-provisioning-profiles {
description
"Contains a set of valid profiles to reference for an AC.";
list service-profile-identifier {
key "id";
description
"List of generic service profile identifiers.";
Boucadair, et al. Expires 10 September 2023 [Page 50]
Internet-Draft ACaaS March 2023
leaf id {
type string;
description
"Identification of the service profile to be used.
The profile only has significance within the service
provider's administrative domain.";
}
}
}
container attachment-circuits {
description
"Main container for the attachment circuits.";
/*list ac-global-profile {
key "id";
description
"Maintains a list of AC profiles.";
uses ac-basic;
}*/
list ac-group-profile {
key "name";
description
"Maintains a list of per-node AC profiles.";
uses ac;
}
container placement-constraints {
description
"Diversity constraint type.";
uses vpn-common:placement-constraints;
}
list ac {
key "name";
description
"Global provisioning of attachment circuits.";
leaf customer-name {
type string;
description
"Indicates the name of the customer that requested this AC.";
}
leaf description {
type string;
description
"Associates a description with an AC.";
}
uses ac-common:op-instructions;
leaf-list peer-sap-id {
type string;
description
Boucadair, et al. Expires 10 September 2023 [Page 51]
Internet-Draft ACaaS March 2023
"One or more peer SAPs can be indicated.";
}
/*leaf-list ac-global-profile {
type ac-global-profile-reference;
description
"A reference to an AC profile.";
}*/
leaf-list ac-group-profile {
type ac-group-reference;
description
"A reference to a per-node AC profile.";
}
list group {
key "group-id";
description
"List of group-ids.";
leaf group-id {
type string;
description
"Indicates the group-id to which the network access
belongs.";
}
leaf precedence {
type identityref {
base ac-common:precedence-type;
}
description
"Defines redundancy of an AC.";
}
}
uses ac;
}
}
}
<CODE ENDS>
6. Security Considerations
The YANG modules specified in this document define schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
Boucadair, et al. Expires 10 September 2023 [Page 52]
Internet-Draft ACaaS March 2023
The Network Configuration Access Control Model (NACM) [RFC8341]
provides the means to restrict access for particular NETCONF or
RESTCONF users to a preconfigured subset of all available NETCONF or
RESTCONF protocol operations and content.
There are a number of data nodes defined in these YANG modules that
are writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
and delete operations to these data nodes without proper protection
or authentication can have a negative effect on network operations.
These are the subtrees and data nodes and their sensitivity/
vulnerability in the "ietf-ac-svc" module:
* TBC
* TBC
Some of the readable data nodes in these YANG module may be
considered sensitive or vulnerable in some network environments. It
is thus important to control read access (e.g., via get, get-config,
or notification) to these data nodes. These are the subtrees and
data nodes and their sensitivity/vulnerability in the "ietf-ac-svc"
module:
'customer-name', 'l2-connection', and 'ip-connection': An attacker
can retrieve privacy-related information, which can be used to
track a customer. Disclosing such information may be considered a
violation of the customer-provider trust relationship.
'keying-material': An attacker can retrieve the cryptographic keys
protecting the underlying connectivity services (routing, in
particular). These keys could be used to inject spoofed routing
advertisements.
Several data nodes ('bgp', 'ospf', 'isis', and 'rip') rely upon
[RFC8177] for authentication purposes. As such, the AC service
module inherits the security considerations discussed in Section 5 of
[RFC8177]. Also, these data nodes support supplying explicit keys as
strings in ASCII format. The use of keys in hexadecimal string
format would afford greater key entropy with the same number of key-
string octets. However, such a format is not included in this
version of the AC service model, because it is not supported by the
underlying device modules (e.g., [RFC8695]).
Boucadair, et al. Expires 10 September 2023 [Page 53]
Internet-Draft ACaaS March 2023
7. IANA Considerations
IANA is requested to register the following URIs in the "ns"
subregistry within the "IETF XML Registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf-bearer-svc
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-ac-svc
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
IANA is requested to register the following YANG modules in the "YANG
Module Names" subregistry [RFC6020] within the "YANG Parameters"
registry.
Name: ietf-bearer-svc
Maintained by IANA? N
Namespace: urn:ietf:params:xml:ns:yang:ietf-bearer-svc
Prefix: bearer-svc
Reference: RFC xxxx
Name: ietf-ac-svc
Maintained by IANA? N
Namespace: urn:ietf:params:xml:ns:yang:ietf-ac-svc
Prefix: ac-svc
Reference: RFC xxxx
8. References
8.1. Normative References
[I-D.boro-opsawg-teas-common-ac]
Boucadair, M., Roberts, R., de Dios, O. G., Barguil, S.,
and B. Wu, "A Common YANG Data Model for Attachment
Circuits", Work in Progress, Internet-Draft, draft-boro-
opsawg-teas-common-ac-01, 6 March 2023,
<https://datatracker.ietf.org/doc/html/draft-boro-opsawg-
teas-common-ac-01>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.
Boucadair, et al. Expires 10 September 2023 [Page 54]
Internet-Draft ACaaS March 2023
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/rfc/rfc3688>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
2006, <https://www.rfc-editor.org/rfc/rfc4364>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
<https://www.rfc-editor.org/rfc/rfc5880>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/rfc/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/rfc/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/rfc/rfc6242>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/rfc/rfc6991>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/rfc/rfc8040>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.
[RFC8177] Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J.
Zhang, "YANG Data Model for Key Chains", RFC 8177,
DOI 10.17487/RFC8177, June 2017,
<https://www.rfc-editor.org/rfc/rfc8177>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/rfc/rfc8341>.
Boucadair, et al. Expires 10 September 2023 [Page 55]
Internet-Draft ACaaS March 2023
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/rfc/rfc8342>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/rfc/rfc8446>.
[RFC9181] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
Ed., and Q. Wu, "A Common YANG Data Model for Layer 2 and
Layer 3 VPNs", RFC 9181, DOI 10.17487/RFC9181, February
2022, <https://www.rfc-editor.org/rfc/rfc9181>.
8.2. Informative References
[AC-SVC-GRP]
"Reusable Groupings in Service Attachment Circuits", 2023,
<https://raw.githubusercontent.com/boucadair/attachment-
circuit-model/main/yang/full-trees/ac-svc-groupings.txt>.
[AC-SVC-Tree]
"Full Service Attachment Circuit Tree Structure", 2023,
<https://raw.githubusercontent.com/boucadair/attachment-
circuit-model/main/yang/full-trees/ac-svc-without-
groupings.txt>.
[I-D.boro-opsawg-ntw-attachment-circuit]
Boucadair, M., Roberts, R., de Dios, O. G., Barguil, S.,
and B. Wu, "A Network YANG Data Model for Attachment
Circuits", Work in Progress, Internet-Draft, draft-boro-
opsawg-ntw-attachment-circuit-01, 1 March 2023,
<https://datatracker.ietf.org/doc/html/draft-boro-opsawg-
ntw-attachment-circuit-01>.
[I-D.ietf-idr-bgp-model]
Jethanandani, M., Patel, K., Hares, S., and J. Haas, "YANG
Model for Border Gateway Protocol (BGP-4)", Work in
Progress, Internet-Draft, draft-ietf-idr-bgp-model-16, 1
March 2023, <https://datatracker.ietf.org/doc/html/draft-
ietf-idr-bgp-model-16>.
Boucadair, et al. Expires 10 September 2023 [Page 56]
Internet-Draft ACaaS March 2023
[I-D.ietf-opsawg-sap]
Boucadair, M., de Dios, O. G., Barguil, S., Wu, Q., and V.
Lopez, "A YANG Network Model for Service Attachment Points
(SAPs)", Work in Progress, Internet-Draft, draft-ietf-
opsawg-sap-15, 18 January 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
sap-15>.
[I-D.ietf-teas-ietf-network-slice-nbi-yang]
Wu, B., Dhody, D., Rokui, R., Saad, T., Han, L., and J.
Mullooly, "IETF Network Slice Service YANG Model", Work in
Progress, Internet-Draft, draft-ietf-teas-ietf-network-
slice-nbi-yang-03, 24 October 2022,
<https://datatracker.ietf.org/doc/html/draft-ietf-teas-
ietf-network-slice-nbi-yang-03>.
[RFC2080] Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080,
DOI 10.17487/RFC2080, January 1997,
<https://www.rfc-editor.org/rfc/rfc2080>.
[RFC2453] Malkin, G., "RIP Version 2", STD 56, RFC 2453,
DOI 10.17487/RFC2453, November 1998,
<https://www.rfc-editor.org/rfc/rfc2453>.
[RFC3644] Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., and B.
Moore, "Policy Quality of Service (QoS) Information
Model", RFC 3644, DOI 10.17487/RFC3644, November 2003,
<https://www.rfc-editor.org/rfc/rfc3644>.
[RFC3849] Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix
Reserved for Documentation", RFC 3849,
DOI 10.17487/RFC3849, July 2004,
<https://www.rfc-editor.org/rfc/rfc3849>.
[RFC5398] Huston, G., "Autonomous System (AS) Number Reservation for
Documentation Use", RFC 5398, DOI 10.17487/RFC5398,
December 2008, <https://www.rfc-editor.org/rfc/rfc5398>.
[RFC5737] Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks
Reserved for Documentation", RFC 5737,
DOI 10.17487/RFC5737, January 2010,
<https://www.rfc-editor.org/rfc/rfc5737>.
[RFC5798] Nadas, S., Ed., "Virtual Router Redundancy Protocol (VRRP)
Version 3 for IPv4 and IPv6", RFC 5798,
DOI 10.17487/RFC5798, March 2010,
<https://www.rfc-editor.org/rfc/rfc5798>.
Boucadair, et al. Expires 10 September 2023 [Page 57]
Internet-Draft ACaaS March 2023
[RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
June 2010, <https://www.rfc-editor.org/rfc/rfc5925>.
[RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
RFC 6151, DOI 10.17487/RFC6151, March 2011,
<https://www.rfc-editor.org/rfc/rfc6151>.
[RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
BGP, LDP, PCEP, and MSDP Issues According to the Keying
and Authentication for Routing Protocols (KARP) Design
Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
<https://www.rfc-editor.org/rfc/rfc6952>.
[RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
Chaining (SFC) Architecture", RFC 7665,
DOI 10.17487/RFC7665, October 2015,
<https://www.rfc-editor.org/rfc/rfc7665>.
[RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
"YANG Data Model for L3VPN Service Delivery", RFC 8299,
DOI 10.17487/RFC8299, January 2018,
<https://www.rfc-editor.org/rfc/rfc8299>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/rfc/rfc8340>.
[RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
Routing Management (NMDA Version)", RFC 8349,
DOI 10.17487/RFC8349, March 2018,
<https://www.rfc-editor.org/rfc/rfc8349>.
[RFC8466] Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG
Data Model for Layer 2 Virtual Private Network (L2VPN)
Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October
2018, <https://www.rfc-editor.org/rfc/rfc8466>.
[RFC8695] Liu, X., Sarda, P., and V. Choudhary, "A YANG Data Model
for the Routing Information Protocol (RIP)", RFC 8695,
DOI 10.17487/RFC8695, February 2020,
<https://www.rfc-editor.org/rfc/rfc8695>.
[RFC8969] Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., and
L. Geng, "A Framework for Automating Service and Network
Management with YANG", RFC 8969, DOI 10.17487/RFC8969,
January 2021, <https://www.rfc-editor.org/rfc/rfc8969>.
Boucadair, et al. Expires 10 September 2023 [Page 58]
Internet-Draft ACaaS March 2023
[RFC9182] Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
Ed., Munoz, L., and A. Aguado, "A YANG Network Data Model
for Layer 3 VPNs", RFC 9182, DOI 10.17487/RFC9182,
February 2022, <https://www.rfc-editor.org/rfc/rfc9182>.
Appendix A. Examples
This section includes a non-exhaustive list of examples to illustrate
the use of the service models defined in this document.
A.1. Request A New Bearer
An example of a request message body to create a bearer is shown in
Figure 14.
{
"ietf-bearer-svc:bearers": {
"bearer": [
{
"id": "an-identifier",
"description": "A bearer example",
"customer-device": {
"device-id": "CE_X_SITE_Y",
"requested-type": "ietf-bearer-svc:ethernet";
}
}
]
}
}
Figure 14: Example of a Message Body to Create A New Bearer
A bearer-reference is then generated by the controller for this
bearer. Figure 15 shows the example of a response message body that
is sent by the controller to reply to a GET request:
Boucadair, et al. Expires 10 September 2023 [Page 59]
Internet-Draft ACaaS March 2023
{
"ietf-bearer-svc:bearers": {
"bearer": [
{
"id": "an-identifier",
"description": "A bearer example",
"customer-device": {
"device-id": "CE_X_SITE_Y",
"requested-type": "ietf-bearer-svc:ethernet"
},
"bearer-reference": "line-156"
}
]
}
}
Figure 15: Example of a Response Message Body with the Bearer
Reference
A.2. Request An AC over An Existing Bearer
An example of a request message body to create a simple AC over an
existing bearer is shown in Figure 16. The bearer reference is
assumed to be known to both the customer and the network provider.
Such a reference can be retrieved, e.g., following the example
described in Appendix A.1 or using other means (including, exchanged
out-of-band or via proprietary APIs).
Boucadair, et al. Expires 10 September 2023 [Page 60]
Internet-Draft ACaaS March 2023
{
"ietf-ac-svc:attachment-circuits": {
"ac": [
{
"name": "ac4585",
"description": "An AC on an existing bearer",
"requested-ac-start": "2023-12-12T05:00:00.00Z",
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"tag-type": "ietf-vpn-common:c-vlan",
"cvlan-id": 550
}
},
"bearer-reference": "line-156"
}
}
]
}
}
Figure 16: Example of a Message Body to Request an AC over an
Existing Bearer
A.3. Request An AC for a Known Peer SAP
An example of a request to create a simple AC, when the peer SAP is
known, is shown in Figure 17. In this example, the peer SAP
identifier points to an identifier of a service function. The
(topological) location of that service function is assumed to be
known to the network controller. For example, this can be determined
as part of an on-demand procedure to instantiate a service function
in a cloud. That instantiated service function can be granted a
connectivity service via the provider network.
Boucadair, et al. Expires 10 September 2023 [Page 61]
Internet-Draft ACaaS March 2023
{
"ietf-ac-svc:attachment-circuits": {
"ac": [
{
"name": "ac4585",
"description": "An AC on an existing bearer",
"requested-ac-start": "2023-12-12T05:00:00.00Z",
"peer-sap-id": [
"nf-termination-ip"
],
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"tag-type": "ietf-vpn-common:c-vlan",
"cvlan-id": 550
}
}
}
}
]
}
}
Figure 17: Example of a Message Body to Request an AC with a Peer SAP
A.4. One CE, Two ACs
Let’s consider the example of an eNodeB (CTP) that is directly
connected to the access routers of the mobile backhaul (see
Figure 18). In this example, two ACs are needed to service the
eNodeB.
+-------------+ +------------------+
| | | PE |
| | | 192.0.2.1 |
| eNodeB |==================| 2001:db8::1 |
| | vlan 1 | |
| |==================| |
| | vlan 2 | |
| | Direct | |
+-------------+ Routing | |
| |
| |
| |
+------------------+
Figure 18: Example of a CE-PE ACs
Boucadair, et al. Expires 10 September 2023 [Page 62]
Internet-Draft ACaaS March 2023
An example of a request to create the ACs to service the eNodeB is
shown in Figure 19. This example assumes that static addressing is
used for both ACs.
{
"ietf-ac-svc:attachment-circuits": {
"ac": [
{
"name": "ac1",
"description": "a first ac with a same peer node",
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
},
"bearer-reference": "line-156"
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.1",
"prefix-length": 30,
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.2"
}
]
},
"ipv6": {
"local-address": "2001:db8::1",
"prefix-length": 64,
"address": [
{
"address-id": "1",
"customer-address": "2001:db8::2"
}
]
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
"type": "ietf-vpn-common:direct-routing"
}
]
Boucadair, et al. Expires 10 September 2023 [Page 63]
Internet-Draft ACaaS March 2023
}
},
{
"name": "ac2",
"description": "a second ac with a same peer node",
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 2
}
},
"bearer-reference": "line-156"
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.1",
"prefix-length": 30,
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.2"
}
]
},
"ipv6": {
"local-address": "2001:db8::1",
"prefix-length": 64,
"address": [
{
"address-id": "1",
"customer-address": "2001:db8::2"
}
]
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
"type": "ietf-vpn-common:direct-routing"
}
]
}
}
]
}
}
Boucadair, et al. Expires 10 September 2023 [Page 64]
Internet-Draft ACaaS March 2023
Figure 19: Example of a Message Body to Request Two ACes on The
Same Link
A.5. Control Precedence over Multiple ACs
When multiple ACs are requested by the same customer (for the same
site), the request can tag one of these ACes as "primary" and the
other ones as "secondary". An example of such a request is shown in
Figure 20. In this example, both ACes are bound to the same "group-
id", and the "precedence" data node is set as a function of the
intended role of each AC (primary or secondary).
{
"ietf-ac-svc:attachment-circuits": {
"ac": [
{
"name": "ac1",
"description": "Example to illustrate AC precedence usage",
"group": [
{
"group-id": "1",
"precedence": "ietf-ac-common:primary"
}
],
"l2-connection": {
"bearer-reference": "bearerX@site1"
}
},
{
"name": "ac2",
"description": "Example to illustrate AC precedence usage",
"group": [
{
"group-id": "1",
"precedence": "ietf-ac-common:secondary"
}
],
"l2-connection": {
"bearer-reference": "bearerY@site1"
}
}
]
}
}
Figure 20: Example of a Message Body to Associate a Precedence
Level with ACes
Boucadair, et al. Expires 10 September 2023 [Page 65]
Internet-Draft ACaaS March 2023
A.6. Illustrate the Use of Global Profiles
An example of a request to create two ACs to service the same CE on
the same link is shown in Figure 21. Unlike Figure 19, this example
factorizes some of the redundant data.
{
"ietf-ac-svc:attachment-circuits": {
"ac-group-profile": [
{
"id": "simple-profile",
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q"
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
"type": "ietf-vpn-common:direct-routing"
}
]
}
}
],
"ac": [
{
"name": "ac1",
"description": "a first ac with a same peer node",
"ac-group-profile": ["simple-profile"],
"l2-connection": {
"encapsulation": {
"dot1q": {
"cvlan-id": 1
}
}
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.1",
"prefix-length": 30,
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.2"
}
]
Boucadair, et al. Expires 10 September 2023 [Page 66]
Internet-Draft ACaaS March 2023
},
"ipv6": {
"local-address": "2001:db8::1",
"prefix-length": 64,
"address": [
{
"address-id": "1",
"customer-address": "2001:db8::2"
}
]
}
}
},
{
"name": "ac2",
"description": "a second ac with a same peer node",
"ac-group-profile": ["simple-profile"],
"l2-connection": {
"encapsulation": {
"dot1q": {
"cvlan-id": 2
}
}
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.1",
"prefix-length": 30,
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.2"
}
]
},
"ipv6": {
"local-address": "2001:db8::1",
"prefix-length": 64,
"address": [
{
"address-id": "1",
"customer-address": "2001:db8::2"
}
]
}
}
}
]
Boucadair, et al. Expires 10 September 2023 [Page 67]
Internet-Draft ACaaS March 2023
}
}
Figure 21: Example of a Message Body to Request Two ACes on The
Same Link (Global Profile)
A.7. Illustrate the Use of Per-Node Profiles
An example of a request to create two ACs to service the same CE on
the same link is shown in Figure 22. Unlike Figure 19, this example
factorizes all redundant data.
{
"ietf-ac-svc:attachment-circuits": {
"ac-group-profile": [
{
"id": "simple-node-profile",
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q"
}
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.1",
"prefix-length": 30,
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.2"
}
]
},
"ipv6": {
"local-address": "2001:db8::1",
"prefix-length": 64,
"address": [
{
"address-id": "1",
"customer-address": "2001:db8::2"
}
]
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
Boucadair, et al. Expires 10 September 2023 [Page 68]
Internet-Draft ACaaS March 2023
"type": "ietf-vpn-common:direct-routing"
}
]
}
}
],
"ac": [
{
"name": "ac1",
"description": "a first ac with a same peer node",
"ac-group-profile": ["simple-node-profile"],
"l2-connection": {
"encapsulation": {
"dot1q": {
"cvlan-id": 1
}
}
}
},
{
"name": "ac2",
"description": "a second ac with a same peer node",
"ac-group-profile": ["simple-node-profile"],
"l2-connection": {
"encapsulation": {
"dot1q": {
"cvlan-id": 2
}
}
}
}
]
}
}
Figure 22: Example of a Message Body to Request Two ACes on The
Same Link (Node Profile)
A customer may request adding a new AC by simply referring to an
existing per-node AC profile as shown in Figure 23. This AC inherits
all the data that was enclosed in the indicated per-node AC profile
(IP addressing, routing, etc.).
Boucadair, et al. Expires 10 September 2023 [Page 69]
Internet-Draft ACaaS March 2023
{
"ietf-ac-svc:attachment-circuits": {
"ac": [
{
"name": "ac3",
"description": "a third AC with a same peer node",
"ac-group-profile": [
"simple-node-profile"
],
"l2-connection": {
"encapsulation": {
"dot1q": {
"cvlan-id": 3
}
},
"bearer-reference": "line-156"
}
}
]
}
}
Figure 23: Example of a Message Body to Add a new AC over an
existing link (Node Profile)
A.8. Multiple CEs
Figure 24 shows an example of CEs that are interconnected by a
service provider network.
+----------------------------------+
+----+ | | +----+
| CE1+-------+ +-------+ CE3|
+----+ | | +----+
| Network |
+----+ | | +----+
|CE2 +-------+ +-------+ CE4|
+----+ | | +----+
+----------------------------------+
Figure 24: Network Topology Example
Figure 25 depicts an example of the message body of a request to
instantiate the various ACs that are shown in Figure 24.
Boucadair, et al. Expires 10 September 2023 [Page 70]
Internet-Draft ACaaS March 2023
{
"ietf-ac-svc:attachment-circuits": {
"ac-group-profile": [
{
"id": "simple-profile",
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"cvlan-id": 1
}
}
}
}
],
"ac": [
{
"name": "ac1",
"description": "First site",
"ac-group-profile": [
"simple-profile"
],
"l2-connection": {
"bearer-reference": "ce1-network"
}
},
{
"name": "ac2",
"description": "Second Site",
"ac-group-profile": [
"simple-profile"
],
"l2-connection": {
"bearer-reference": "ce1-network"
}
},
{
"name": "ac3",
"description": "Third site",
"ac-group-profile": [
"simple-profile"
],
"l2-connection": {
"bearer-reference": "ce3-network"
}
},
{
"name": "ac4",
Boucadair, et al. Expires 10 September 2023 [Page 71]
Internet-Draft ACaaS March 2023
"description": "Another site",
"ac-group-profile": [
"simple-profile"
],
"l2-connection": {
"bearer-reference": "ce4-network"
}
}
]
}
}
Figure 25: Example of a Message Body of a Request to Create
Multiple ACs bound to Multiple CEs
A.9. Binding Attachment Circuits to an IETF Network Slice
This example shows how the AC service model complements
[I-D.ietf-teas-ietf-network-slice-nbi-yang] to connect a site to a
slice service.
First, Figure 26 describes the end-to-end network topology as well
the orchestration scopes:
* The topology is made up of two sites (site1 and site2),
interconnected via a Transport Network (e.g. IP/MPLS Network). A
Network Function is deployed within each site in a dedicated IP
Subnet.
* A 5G SMO is responsible for the deployment Network Functions and
the indirect management of a local Gateway (i.e., CE device).
* An IETF Network Slice Controller is responsible for the deployment
of IETF Network Slices across the TN.
Network Functions are deployed within each site.
Boucadair, et al. Expires 10 September 2023 [Page 72]
Internet-Draft ACaaS March 2023
5G SMO IETF NSC 5G SMO
│ (TN ORCHESTRATOR) │
│ │ │
◄─────┴─────► ◄─────────┴────────► ◄────┴─────►
Site1 TRANSPORT NETWORK Site2
┌───┐ ┌──────────────┐ ┌───┐
│NF1│ │ │ │NF2│
└─┬─┘ ┌───┐ ┌─┴─┐ ┌─┴─┐ ┌───┐ └─┬─┘
│ │ │ │ │ │ │ │ │ │
──┴─────┤GW1├────────┤PE1│ │PE2├────────┤GW2├────┴──
▲ │ │ ▲ │ │ │ │ ▲ │ │ ▲
│ └───┘ │ └─┬─┘ └─┬─┘ │ └───┘ │
│ │ │ │ │ │
│ │ └──────────────┘ │ │
LAN1 │ │ LAN2
198.51.100.0/24 │ │ 203.0.113.0/24
│ │
│ │
Physical Link ID: Physical Link ID:
bearerX@site1 bearerX@site2
Figure 26: An Example of a Network Topology Used to Deploy Slices
Figure 27 describes the logical connectivity enforced thanks to both
IETF Network Slice and Attachment Circuit models.
Boucadair, et al. Expires 10 September 2023 [Page 73]
Internet-Draft ACaaS March 2023
AS 65536 ◄────BGP───► AS 65550
┌───┐ ┌────────┐ ┌───┐
│NF1│ 192.0.2.0/30 │ │ 192.0.2.4/30 │NF2│
└─┬─┘ ┌───┐ ┌──┴┐ ┌┴──┐ ┌───┐ └─┬─┘
│ │ │.1 .2│ │ │ │.5 .6│ │ │
──┴─────┤GW1│----------│PE1│ │PE2│----------│GW2├────┴──
│ │ vlan-id │ │ │ │ vlan-id │ │
└───┘ 100 └──┬┘ └┬──┘ 200 └───┘
198.51.100.0/24 │ │ 203.0.113.0/24
└────────┘
sdp1 sdp2
◄─────────► ◄────────────► ◄─────────►
Attachment Ietf Network Attachment
Circuit Slice Circuit
ac1 EMBB_UP ac2
ac1 properties:
- bearer-reference: bearerX@site1
- vlan-id: 100
- CE-address: 192.0.2.1/30
- PE-address: 192.0.2.2/30
- Routing: static 198.51.100.0/24 via
192.0.2.1 tag primary_UP_slice
ac2 properties:
- bearer-reference: bearerY@site2
- vlan-id: 200
- CE-address: 192.0.2.5/30
- PE-address: 192.0.2.6/30
- Routing: BGP local-as:65536
customer-as:65550
customer-address: 192.0.2.6
Figure 27: Logical Overview
Figure 28 shows the message body of the request to create the
required ACs using the Attachment Circuit module.
=============== NOTE: '\' line wrapping per RFC 8792 ================
{
"ietf-ac-svc:attachment-circuits": {
"ac": [
{
"name": "ac1",
Boucadair, et al. Expires 10 September 2023 [Page 74]
Internet-Draft ACaaS March 2023
"description": "Connection to site1 on vlan 100 for slice \
EMBB_UP",
"requested-ac-start": "2023-12-12T05:00:00.00Z",
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"tag-type": "ietf-vpn-common:c-vlan",
"cvlan-id": 100
}
},
"bearer-reference": "bearerX@site1"
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.2",
"prefix-length": 30,
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.1"
}
]
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
"type": "ietf-vpn-common:static-routing",
"static": {
"cascaded-lan-prefixes": {
"ipv4-lan-prefixes": [
{
"lan": "198.51.100.0/24",
"next-hop": "192.0.2.1",
"lan-tag": "primary_UP_slice"
}
]
}
}
}
]
}
},
{
"name": "ac2",
"description": "Connection to site2 on vlan 200 for slice \
Boucadair, et al. Expires 10 September 2023 [Page 75]
Internet-Draft ACaaS March 2023
EMBB_UP",
"requested-ac-start": "2023-12-12T05:00:00.00Z",
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"tag-type": "ietf-vpn-common:c-vlan",
"cvlan-id": 200
}
},
"bearer-reference": "bearerY@site2"
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.6",
"prefix-length": 30,
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.5"
}
]
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
"type": "ietf-vpn-common:bgp-routing",
"bgp": {
"neighbor": [
{
"id": "1",
"local-as": "65536",
"peer-as": "65550"
}
]
}
}
]
}
}
]
}
}
Figure 28: Message Body of a Request to Create Required ACs
Boucadair, et al. Expires 10 September 2023 [Page 76]
Internet-Draft ACaaS March 2023
Figure 29 shows the message body of the request to create the a slice
service bound to the ACs created using Figure 28. Only references to
these ACs are included in the Slice Service request. This example
assumes that the module that "glues" the service/AC is also supported
by the NSC.
=============== NOTE: '\' line wrapping per RFC 8792 ================
{
"ietf-network-slice-service:network-slice-services": {
"slo-sle-templates": {
"slo-sle-template": [
{
"id": "low-latency-template",
"template-description": "Lowest possible latencey \
forwarding behavior"
}
]
},
"slice-service": [
{
"service-id": "Slice EMBB_UP",
"service-description": "Dedicate TN Slice for EMBB-UP",
"slo-sle-template": "low-latency-template",
"status": {},
"sdps": {
"sdp": [
{
"sdp-id": "sdp1",
"ietf-ac-glue:ac-ref": [
"ac1"
]
},
{
"sdp-id": "sdp2",
"ietf-ac-glue:ac-ref": [
"ac2"
]
}
]
}
}
]
}
}
Figure 29: Message Body of a Request to Create a Slice Service
Referring to the ACs
Boucadair, et al. Expires 10 September 2023 [Page 77]
Internet-Draft ACaaS March 2023
A.10. Connecting a Virtualized Environment Running in a Cloud Provider
This example (Figure 30) shows how the AC service model can be used
to connect a Cloud Infrastructure to a service provider network.
This example makes the following assumptions:
1. A customer (e.g., Mobile Network Team or partner) has a
virtualized infrastructure running in a Cloud Provider. A
simplistic deployment is represented here with a set of Virtual
Machines running in a Virtual Private Environment. The
deployment and management of this infrastructure is achieved via
private APIs that are supported by the Cloud Provider: this
realization is out of the scope of this document.
2. The connectivity to the Data Center is achieved thanks to a
service based on direct attachment (physical connection), which
is delivered upon ordering via an API exposed by the Cloud
Provider. When ordering that connection, a unique "Connection
Identifier" is generated and returned via the API.
3. The customer provisions the networking logic within the Cloud
Provider based on that unique connection Identifier (i.e.,
logical interfaces, IP addressing, and routing).
Boucadair, et al. Expires 10 September 2023 [Page 78]
Internet-Draft ACaaS March 2023
.--------------------------------------------------------.
| Cloud Provider DC |
| |
| |
| ┌───┐ ┌───┐ ┌───┐ |
| │VM1│ │VM2│ │VM3│ Virtual Private Cloud |
| └─┬─┘ └─┬─┘ └─┬─┘ |
| │.2 │.5 │.12 198.51.100.0/24 |
| ─┴─────┴─────┴───┬─────────────────────── |
| │.1 |
| ┌───┴────┐ |
| │ CLOUD │ BGP_ASN: 65536 |
| │PROVIDER│ BGP md5: |
| │ GW │ "nyxNER_c5sdn608fFQl3331d" |
| └───┬────┘ |
| │ ▲ .2 |
'--------------------│-│---------------------------------'
│ │
Direct Interconnection │ │
connection_id: │BGP vlan-id:50
1234-56789 │ │ 192.0.2.0/24
│ │
│ │ .1
.--------------------│-▼---------------------------------.
| If-A┌──┴──┐ Service Provider Network |
| │ │ |
| │ PE1 │ BGP_ASN: 65550 |
| │ │ |
| └─────┘ |
| |
| |
| |
| |
'--------------------------------------------------------'
Figure 30: An Example of Realization for Connecting a Cloud Site
Figure 31 illustrates the pre-provisioning logic for the physical
connection to the Cloud Provider. After this connection is delivered
to the service provider, the network inventory is updated with
"bearer-reference" set to the value of the "Connection Identifier".
Boucadair, et al. Expires 10 September 2023 [Page 79]
Internet-Draft ACaaS March 2023
Customer Cloud
Orchestration DIRECT INTERCONNECTION ORDERING (API) Provider
──────────────────────────────────────────────►
Connection Created with "Connection ID:1234-56789
◄───────────────────────────────────────────────
x
x
x
x
Physical Connection 1234-56789 is delivered and
connected to PE1
Network Inventory Upated with:
bearer-reference: 1234-56789 for PE1/Interface If-A
Figure 31: Illustration of Pre-provisioning
Next, API workflows can be initiated:
* Cloud Provider for the configuration as per (3) above.
* Service provider network via the Attachment Circuit model. This
request can be used in conjunction with additional requests based
on L3SM (VPN provisioning) or Network Slice Service model (5G
hybrid Cloud deployment).
Figure 32 shows the message body of the request to create the
required ACs to connect the Cloud Provider Virtualized (VM) using the
Attachment Circuit module. Note that this Cloud Provider mandates
the use of MD5 authentication for establishing BGP connections.
The module supports MD5 to basically accommodate the installed BGP
base (including by some Cloud Providers). Note that MD5 suffers
from the security weaknesses discussed in Section 2 of [RFC6151]
and Section 2.1 of [RFC6952].
=============== NOTE: '\' line wrapping per RFC 8792 ================
{
"ietf-ac-svc:attachment-circuits": {
"ac": [
{
"name": "ac--BXT-DC-customer-VPC-foo",
"description": "Connection to Cloud Provider BXT on \
connection 1234-56789",
"requested-ac-start": "2023-12-12T05:00:00.00Z",
Boucadair, et al. Expires 10 September 2023 [Page 80]
Internet-Draft ACaaS March 2023
"l2-connection": {
"encapsulation": {
"type": "ietf-vpn-common:dot1q",
"dot1q": {
"tag-type": "ietf-vpn-common:c-vlan",
"cvlan-id": 50
}
},
"bearer-reference": "1243-56789"
},
"ip-connection": {
"ipv4": {
"local-address": "192.0.2.1",
"prefix-length": 24,
"address": [
{
"address-id": "1",
"customer-address": "192.0.2.2"
}
]
}
},
"routing-protocols": {
"routing-protocol": [
{
"id": "1",
"type": "ietf-vpn-common:bgp-routing",
"bgp": {
"neighbor": [
{
"id": "1",
"local-as": "65550",
"peer-as": "65536",
"authentication": {
"keying-material": "\
nyxNER_c5sdn608fFQl3331d"
}
}
]
}
}
]
}
}
]
}
}
Boucadair, et al. Expires 10 September 2023 [Page 81]
Internet-Draft ACaaS March 2023
Figure 32: Message Body of a Request to Create the ACs for
Connecting to the Cloud Provider
Acknowledgments
TBC.
Contributors
Victor Lopez
Nokia
Email: victor.lopez@nokia.com
Ivan Bykov
Ribbon Communications
Email: Ivan.Bykov@rbbn.com
Qin Wu
Huawei
Email: bill.wu@huawei.com
Authors' Addresses
Mohamed Boucadair (editor)
Orange
Email: mohamed.boucadair@orange.com
Richard Roberts (editor)
Juniper
Email: rroberts@juniper.net
Oscar Gonzalez de Dios
Telefonica
Email: oscar.gonzalezdedios@telefonica.com
Samier Barguil Giraldo
Nokia
Email: samier.barguil_giraldo@nokia.com
Bo Wu
Huawei Technologies
Boucadair, et al. Expires 10 September 2023 [Page 82]
Internet-Draft ACaaS March 2023
Email: lana.wubo@huawei.com
Boucadair, et al. Expires 10 September 2023 [Page 83]