Internet DRAFT - draft-bonica-6man-comp-rtg-hdr

draft-bonica-6man-comp-rtg-hdr







6man                                                           R. Bonica
Internet-Draft                                          Juniper Networks
Intended status: Experimental                                  Y. Kamite
Expires: 25 December 2023                 NTT Communications Corporation
                                                               A. Alston
                                                            D. Henriques
                                                          Liquid Telecom
                                                                L. Jalil
                                                                 Verizon
                                                            23 June 2023


                 The IPv6 Compact Routing Header (CRH)
                   draft-bonica-6man-comp-rtg-hdr-31

Abstract

   This document describes an experiment in which two new IPv6 Routing
   headers are implemented and deployed.  Collectively, they are called
   the Compact Routing Headers (CRH).  Individually, they are called
   CRH-16 and CRH-32.

   One purpose of this experiment is to demonstrate that the CRH can be
   implemented and deployed in a production network.  Another purpose is
   to demonstrate that the security considerations, described in this
   document, can be addressed with access control lists.  Finally, this
   document encourages replication of the experiment.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 25 December 2023.







Bonica, et al.          Expires 25 December 2023                [Page 1]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Requirements Language . . . . . . . . . . . . . . . . . . . .   3
   3.  The Compressed Routing Headers (CRH)  . . . . . . . . . . . .   3
   4.  The CRH Forwarding Information Base (CRH-FIB) . . . . . . . .   5
   5.  Processing Rules  . . . . . . . . . . . . . . . . . . . . . .   6
     5.1.  Computing Minimum CRH Length  . . . . . . . . . . . . . .   7
   6.  Mutability  . . . . . . . . . . . . . . . . . . . . . . . . .   7
   7.  Applications And SIDs . . . . . . . . . . . . . . . . . . . .   8
   8.  Management Considerations . . . . . . . . . . . . . . . . . .   8
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   10. Implementation and Deployment Status  . . . . . . . . . . . .   8
   11. IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   12. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   9
   13. Contributors  . . . . . . . . . . . . . . . . . . . . . . . .   9
   14. References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     14.1.  Normative References . . . . . . . . . . . . . . . . . .  10
     14.2.  Informative References . . . . . . . . . . . . . . . . .  10
   Appendix A.  CRH Processing Examples  . . . . . . . . . . . . . .  11
     A.1.  The SID List Contains One Entry For Each Segment In The
           Path  . . . . . . . . . . . . . . . . . . . . . . . . . .  12
     A.2.  The SID List Omits The First Entry In The Path  . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  13

1.  Introduction

   IPv6 [RFC8200] source nodes use Routing headers to specify the path
   that a packet takes to its destination.  The IETF has defined several
   Routing header types [IANA-RH].  This document defines two new
   Routing header types.  Collectively, they are called the Compact
   Routing Headers (CRH).  Individually, they are called CRH-16 and CRH-
   32.




Bonica, et al.          Expires 25 December 2023                [Page 2]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


   The CRH allows IPv6 source nodes to specify the path that a packet
   takes to its destination.  The CRH:

   *  Can be encoded in relatively few bytes.

   *  Is designed to operate within a limited domain.  (See Section 9).

   The following are reasons for encoding the CRH in as few bytes as
   possible:

   *  Many ASIC-based forwarders copy headers from buffer memory to on-
      chip memory.  As header sizes increase, so does the cost of this
      copy.

   *  Because Path MTU Discovery (PMTUD) [RFC8201] is not entirely
      reliable, many IPv6 hosts refrain from sending packets larger than
      the IPv6 minimum link MTU (i.e., 1280 bytes).  When packets are
      small, the overhead imposed by large Routing Headers is excessive.

   This document describes an experiment whose purposes are:

   *  To demonstrate that the CRH can be implemented and deployed.

   *  To demonstrate that the security considerations, described in this
      document, can be addressed with access control lists.

   *  To encourage replication of the experiment.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  The Compressed Routing Headers (CRH)

   Both CRH versions (i.e., CRH-16 and CRH-32) contain the following
   fields:

   *  Next Header - Defined in [RFC8200].

   *  Hdr Ext Len - Defined in [RFC8200].

   *  Routing Type - Defined in [RFC8200].  (CRH-16 value is 5.  CRH-32
      value is 6).




Bonica, et al.          Expires 25 December 2023                [Page 3]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


   *  Segments Left - Defined in [RFC8200].

   *  Type-specific Data - Described in [RFC8200].

   In the CRH, the Type-specific data field contains a list of Segment
   Identifiers (SIDs).  Each SID identifies an entry in the CRH
   Forwarding Information Base (CRH-FIB) (Section 4).  Each CRH-FIB
   entry identifies an interface on the path that the packet takes to
   its destination.

   SIDs are listed in reverse order.  So, the first SID in the list
   represents the final interface in the path.  Because segments are
   listed in reverse order, the Segments Left field can be used as an
   index into the SID list.  In this document, the "current SID" is the
   SID list entry referenced by the Segments Left field.

   The first segment in the path can be omitted from the list.  See
   Appendix A for examples.

   In the CRH-16 (Figure 1), each SID is encoded in 16-bits.  In the
   CRH-32 (Figure 2), each SID is encoded in 32-bits.

   In all cases, the CRH MUST end on a 64-bit boundary.  So, the Type-
   specific data field MUST be padded with zeros if the CRH would
   otherwise not end on a 64-bit boundary.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Next Header  |  Hdr Ext Len  | Routing Type  | Segments Left |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             SID[0]            |          SID[1]               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
     |                          .........
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

                              Figure 1: CRH-16














Bonica, et al.          Expires 25 December 2023                [Page 4]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Next Header  |  Hdr Ext Len  | Routing Type  | Segments Left |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     +                             SID[0]                            +
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     +                             SID[1]                            +
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //                                                              //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     +                             SID[n]                            +
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                              Figure 2: CRH-32

4.  The CRH Forwarding Information Base (CRH-FIB)

   Each SID identifies a CRH-FIB entry.

   Each CRH-FIB entry contains:

   *  An IPv6 address.

   *  A topological function.

   *  Arguments for the topological function.  (Optional).

   The first ten bits of the IPv6 address MUST NOT be fe00.  That prefix
   is reserved for link-local [RFC6890] addresses.

   The topological function specifies how the processing node forwards
   the packet to the interface identified by the IPv6 address.  The
   following are examples:

   *  Forward the packet through the least-cost path to the interface
      identified by the IPv6 address (i.e., loose source routing).

   *  Forward the packet through a specified interface to the interface
      identified by the IPv6 address (i.e.,strict source routing)

   Some topological functions require parameters.  For example, a
   topological function might require a parameter that identifies the
   interface through which the packet is forwarded.

   The CRH-FIB can be populated:

   *  By an operator, using a Command Line Interface (CLI).



Bonica, et al.          Expires 25 December 2023                [Page 5]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


   *  By a controller, using the Path Computation Element (PCE)
      Communication Protocol (PCEP) [RFC5440] or the Network
      Configuration Protocol (NETCONF) [RFC6241].

   *  By a distributed routing protocol [ISO10589-Second-Edition],
      [RFC5340], [RFC4271].

5.  Processing Rules

   The following rules describe CRH processing:

   *  If Segments Left equals 0, skip over the CRH and process the next
      header in the packet.

   *  If Hdr Ext Len indicates that the CRH is larger than the
      implementation can process, discard the packet and send an ICMPv6
      [RFC4443] Parameter Problem, Code 0, message to the Source
      Address, pointing to the Hdr Ext Len field.

   *  Compute L, the minimum CRH length ( Section 5.1).

   *  If L is greater than Hdr Ext Len, discard the packet and send an
      ICMPv6 Parameter Problem, Code 0, message to the Source Address,
      pointing to the Segments Left field.

   *  Decrement Segments Left.

   *  Search for the current SID in the CRH-FIB.  In this document, the
      "current SID" is the SID list entry referenced by the Segments
      Left field.

   *  If the search does not return a CRH-FIB entry, discard the packet
      and send an ICMPv6 Parameter Problem, Code 0, message to the
      Source Address, pointing to the current SID.

   *  If Segments Left is greater than 0 and the CRH-FIB entry contains
      a multicast address, discard the packet and send an ICMPv6
      Parameter Problem, Code 0, message to the Source Address, pointing
      to the current SID.

   *  Copy the IPv6 address from the CRH-FIB entry to the Destination
      Address field in the IPv6 header.

   *  Decrement the IPv6 Hop Limit.

   *  Submit the packet, its topological function and its parameters to
      the IPv6 module.  See NOTE.




Bonica, et al.          Expires 25 December 2023                [Page 6]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


   NOTE: By default, the IPv6 module determines the next-hop and
   forwards the packet.  However, the topological function may elicit
   another behavior.  For example, the IPv6 module may forward the
   packet through a specified interface.

5.1.  Computing Minimum CRH Length

   The algorithm described in this section accepts the following CRH
   fields as its input parameters:

   *  Routing Type (i.e., CRH-16 or CRH-32).

   *  Segments Left.

   It yields L, the minimum CRH length.  The minimum CRH length is
   measured in 8-octet units, not including the first 8 octets.

   <CODE BEGINS>
   switch(Routing Type) {
       case CRH-16:
           if (Segments Left <= 2)
               return(0)
           sidsBeyondFirstWord = Segments Left - 2;
           sidPerWord = 4;
       case CRH-32:
           if (Segments Left <= 1)
               return(0)
           sidsBeyondFirstWord = Segments Left - 1;
           sidsPerWord = 2;
       case default:
           return(0xFF);
       }

   words = sidsBeyondFirstWord div sidsPerWord;
   if (sidsBeyondFirstWord mod sidsPerWord)
       words++;

   return(words)
   <CODE ENDS>

6.  Mutability

   In the CRH, the Segments Left field is mutable.  All remaining fields
   are immutable.







Bonica, et al.          Expires 25 December 2023                [Page 7]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


7.  Applications And SIDs

   A CRH contains one or more SIDs.  Each SID is processed by exactly
   one node.

   Therefore, a SID is not required to have domain-wide significance.
   Applications can:

   *  Allocate SIDs so that they have domain-wide significance.

   *  Allocate SIDs so that they have node-local significance.

8.  Management Considerations

   PING and TRACEROUTE [RFC2151] both operate correctly in the presence
   of the CRH.

9.  Security Considerations

   Networks that process the CRH MUST NOT accept packets containing the
   CRH from outside of their limited domain.  Domain border routers
   SHOULD discard packets that satisfy the following criteria:

   *  The packet contains a CRH

   *  The Segments Left field in the CRH has a value greater than 0

   *  The Destination Address field in the IPv6 header represents an
      interface that resides inside of the limited domain.

   Many border routers cannot filter packets based upon the Segments
   Left value.  These border routers MAY discard packets that satisfy
   the following criteria:

   *  The packet contains a CRH

   *  The Destination Address field in the IPv6 header represents an
      interface that resides inside of the limited domain.

10.  Implementation and Deployment Status

   Juniper Networks has produced experimental implementations of the CRH
   on the MX-series (ASIC-based) router

   Liquid Telecom has produced experimental implementations of the CRH
   on software based routers.





Bonica, et al.          Expires 25 December 2023                [Page 8]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


   The CRH has carried non-production traffic in CERNET and Liquid
   Telecom.

11.  IANA Considerations

   This document makes the following registrations in the "Internet
   Protocol Version 6 (IPv6) Parameters" "Routing Types" subregistry
   maintained by IANA:

            +-------+------------------------------+---------------+
            | Value | Description                  | Reference     |
            +=======+==============================+===============+
            | 5     | CRH-16                       | This document |
            +-------+------------------------------+---------------+
            | 6     | CRH-32                       | This document |
            +-------+------------------------------+---------------+


12.  Acknowledgements

   Thanks to Dr. Vanessa Ameen, Fernando Gont, Naveen Kottapalli, Joel
   Halpern, Tony Li, Xing Li, Gerald Schmidt, Nancy Shaw, Ketan
   Talaulikar, and Chandra Venkatraman for their contributions to this
   document.

13.  Contributors

      Gang Chen

      Baidu

      No.10 Xibeiwang East Road Haidian District

      Beijing 100193 P.R.  China

      Email: phdgang@gmail.com


      Yifeng Zhou

      ByteDance

      Building 1, AVIC Plaza, 43 N 3rd Ring W Rd Haidian District

      Beijing 100000 P.R.  China

      Email: yifeng.zhou@bytedance.com




Bonica, et al.          Expires 25 December 2023                [Page 9]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


      Gyan Mishra

      Verizon

      Silver Spring, Maryland, USA

      Email: hayabusagsm@gmail.com

14.  References

14.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
              Control Message Protocol (ICMPv6) for the Internet
              Protocol Version 6 (IPv6) Specification", STD 89,
              RFC 4443, DOI 10.17487/RFC4443, March 2006,
              <https://www.rfc-editor.org/info/rfc4443>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
              DOI 10.17487/RFC8200, July 2017,
              <https://www.rfc-editor.org/info/rfc8200>.

   [RFC8201]  McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
              "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
              DOI 10.17487/RFC8201, July 2017,
              <https://www.rfc-editor.org/info/rfc8201>.

14.2.  Informative References

   [IANA-RH]  IANA, "Routing Headers",
              <https://www.iana.org/assignments/ipv6-parameters/
              ipv6-parameters.xhtml#ipv6-parameters-3>.









Bonica, et al.          Expires 25 December 2023               [Page 10]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


   [ISO10589-Second-Edition]
              International Organization for Standardization,
              ""Intermediate system to Intermediate system intra-domain
              routeing information exchange protocol for use in
              conjunction with the protocol for providing the
              connectionless-mode Network Service (ISO 8473)", ISO/IEC
              10589:2002, Second Edition,", November 2001.

   [RFC2151]  Kessler, G. and S. Shepard, "A Primer On Internet and TCP/
              IP Tools and Utilities", FYI 30, RFC 2151,
              DOI 10.17487/RFC2151, June 1997,
              <https://www.rfc-editor.org/info/rfc2151>.

   [RFC4271]  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
              Border Gateway Protocol 4 (BGP-4)", RFC 4271,
              DOI 10.17487/RFC4271, January 2006,
              <https://www.rfc-editor.org/info/rfc4271>.

   [RFC5340]  Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
              for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008,
              <https://www.rfc-editor.org/info/rfc5340>.

   [RFC5440]  Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
              Element (PCE) Communication Protocol (PCEP)", RFC 5440,
              DOI 10.17487/RFC5440, March 2009,
              <https://www.rfc-editor.org/info/rfc5440>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6890]  Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,
              "Special-Purpose IP Address Registries", BCP 153,
              RFC 6890, DOI 10.17487/RFC6890, April 2013,
              <https://www.rfc-editor.org/info/rfc6890>.

Appendix A.  CRH Processing Examples

   This appendix demonstrates CRH processing in the following scenarios:

   *  The SID list contains one entry for each segment in the path
      (Appendix A.1).

   *  The SID list omits the first entry in the path (Appendix A.2).






Bonica, et al.          Expires 25 December 2023               [Page 11]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


    -----------                 -----------                 -----------
   |Node: S    |               |Node: I1   |               |Node: I2   |
   |Loopback:  |---------------|Loopback:  |---------------|Loopback:  |
   |2001:db8::a|               |2001:db8::1|               |2001:db8::2|
    -----------                 -----------                 -----------
         |                                                       |
         |                      -----------                      |
         |                     |Node: D    |                     |
          ---------------------|Loopback:  |---------------------
                               |2001:db8::b|
                                -----------

                        Figure 3: Reference Topology


   Figure 3 provides a reference topology that is used in all examples.

                +=====+==============+===================+
                | SID | IPv6 Address | Forwarding Method |
                +=====+==============+===================+
                | 2   | 2001:db8::2  | Least-cost path   |
                +-----+--------------+-------------------+
                | 11  | 2001:db8::b  | Least-cost path   |
                +-----+--------------+-------------------+

                            Table 1: Node SIDs

   Table 1 describes two entries that appear in each node's CRH-FIB.


A.1.  The SID List Contains One Entry For Each Segment In The Path

   In this example, Node S sends a packet to Node D, via I2.  In this
   example, I2 appears in the CRH segment list.

        +=====================================+===================+
        | As the packet travels from S to I2: |                   |
        +=====================================+===================+
        | Source Address = 2001:db8::a        | Segments Left = 1 |
        +-------------------------------------+-------------------+
        | Destination Address = 2001:db8::2   | SID[0] = 11       |
        +-------------------------------------+-------------------+
        |                                     | SID[1] = 2        |
        +-------------------------------------+-------------------+

                                  Table 2





Bonica, et al.          Expires 25 December 2023               [Page 12]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


        +=====================================+===================+
        | As the packet travels from I2 to D: |                   |
        +=====================================+===================+
        | Source Address = 2001:db8::a        | Segments Left = 0 |
        +-------------------------------------+-------------------+
        | Destination Address = 2001:db8::b   | SID[0] = 11       |
        +-------------------------------------+-------------------+
        |                                     | SID[1] = 2        |
        +-------------------------------------+-------------------+

                                  Table 3

A.2.  The SID List Omits The First Entry In The Path

   In this example, Node S sends a packet to Node D, via I2.  In this
   example, I2 does not appear in the CRH segment list.

        +=====================================+===================+
        | As the packet travels from S to I2: |                   |
        +=====================================+===================+
        | Source Address = 2001:db8::a        | Segments Left = 1 |
        +-------------------------------------+-------------------+
        | Destination Address = 2001:db8::2   | SID[0] = 11       |
        +-------------------------------------+-------------------+

                                  Table 4


        +=====================================+===================+
        | As the packet travels from I2 to D: |                   |
        +=====================================+===================+
        | Source Address = 2001:db8::a        | Segments Left = 0 |
        +-------------------------------------+-------------------+
        | Destination Address = 2001:db8::b   | SID[0] = 11       |
        +-------------------------------------+-------------------+

                                  Table 5


Authors' Addresses

   Ron Bonica
   Juniper Networks
   2251 Corporate Park Drive
   Herndon, Virginia 20171
   United States of America
   Email: rbonica@juniper.net




Bonica, et al.          Expires 25 December 2023               [Page 13]

Internet-Draft       IPv6 Compressed Routing Header            June 2023


   Yuji Kamite
   NTT Communications Corporation
   3-4-1 Shibaura, Minato-ku,
   108-8118
   Japan
   Email: y.kamite@ntt.com


   Andrew Alston
   Liquid Telecom
   Nairobi
   Kenya
   Email: Andrew.Alston@liquidtelecom.com


   Daniam Henriques
   Liquid Telecom
   Johannesburg
   South Africa
   Email: daniam.henriques@liquidtelecom.com


   Luay Jalil
   Verizon
   Richardson, Texas
   United States of America
   Email: luay.jalil@one.verizon.com
























Bonica, et al.          Expires 25 December 2023               [Page 14]