
TCP Maintenance and Minor Extensions A. Zimmermann
(TCPM) WG NetApp, Inc.
Internet-Draft L. Schulte
Intended status: Experimental Aalto University
Expires: November 21, 2014 C. Wolff
 A. Hannemann
 credativ GmbH
 May 20, 2014

 Making TCP Adaptively Robust to Non-Congestion Events
 draft-zimmermann-tcpm-reordering-reaction-01

Abstract

 This document specifies an adaptive Non-Congestion Robustness (aNCR)
 mechanism for TCP. In the absence of explicit congestion
 notification from the network, TCP uses only packet loss as an
 indication of congestion. One of the signals TCP uses to determine
 loss is the arrival of three duplicate acknowledgments. However,
 this heuristic is not always correct, notably in the case when paths
 reorder packets. This results in degraded performance.

 TCP-aNCR is designed to mitigate this performance degradation by
 adaptively increasing the number of duplicate acknowledgments
 required to trigger loss recovery, based on the current state of the
 connection, in an effort to better disambiguate true segment loss
 from segment reordering. This document specifies the changes to TCP
 and TCP-NCR (on which this specification is build on) and discusses
 the costs and benefits of these modifications.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 21, 2014.

Zimmermann, et al. Expires November 21, 2014 [Page 1]

Internet-Draft TCP-aNCR May 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Zimmermann, et al. Expires November 21, 2014 [Page 2]

Internet-Draft TCP-aNCR May 2014

Table of Contents

 1. Introduction . 4
 2. Terminology . 7
 3. Basic Concept . 7
 4. Appropriate Detection and Quantification Algorithms 8
 5. The TCP-aNCR Algorithm . 8
 5.1. Initialization during Connection Establishment 9
 5.2. Initializing Extended Limited Transmit 10
 5.3. Executing Extended Limited Transmit 11
 5.4. Terminating Extended Limited Transmit 12
 5.5. Entering Loss Recovery 14
 5.6. Reordering Extent . 14
 5.7. Retransmission Timeout 14
 6. Protocol Steps in Detail 14
 7. Discussion of TCP-aNCR . 17
 7.1. Variable Duplicate Acknowledgment Threshold 17
 7.2. Relative Reordering Extent 18
 7.3. Reordering during Slow Start 18
 7.4. Preventing Bursts . 19
 7.5. Persistent receiving of Selective Acknowledgments 20
 8. Interoperability Issues 22
 8.1. Early Retransmit . 22
 8.2. Congestion Window Validation 22
 8.3. Reactive Response to Packet Reordering 22
 8.4. Buffer Auto-Tuning . 23
 9. Related Work . 23
 10. IANA Considerations . 25
 11. Security Considerations 25
 12. Acknowledgments . 26
 13. References . 26
 13.1. Normative References 26
 13.2. Informative References 27
 Appendix A. Changes from previous versions of the draft 28
 A.1. Changes from
 draft-zimmermann-tcpm-reordering-reaction-00 28
 Authors’ Addresses . 29

Zimmermann, et al. Expires November 21, 2014 [Page 3]

Internet-Draft TCP-aNCR May 2014

1. Introduction

 One strength of the Transmission Control Protocol (TCP) [RFC0793]
 lies in its ability to adjust its sending rate according to the
 perceived congestion in the network [RFC5681]. In the absence of
 explicit notification of congestion from the network, TCP uses
 segment loss as an indication of congestion (i.e., assuming queue
 overflow). A TCP receiver sends cumulative acknowledgments (ACKs)
 indicating the next sequence number expected from the sender for
 arriving segments [RFC0793]. When segments arrive out of order,
 duplicate ACKs are generated. As specified in [RFC5681], a TCP
 sender uses the arrival of three duplicate ACKs as an indication of
 segment loss. The TCP sender retransmits the segment assumed lost
 and reduces the sending rate, based on the assumption that the loss
 was caused by resource contention on the path. The TCP sender does
 not assume loss on the first or second duplicate ACK, but waits for
 three duplicate ACKs to account for minor packet reordering.
 However, the use of this constant threshold of duplicate ACKs leads
 to performance degradation if the extent of the packet reordering in
 the network increases [RFC4653].

 Whenever interoperability with the TCP congestion control and loss
 recovery standard [RFC5681] is a prerequisite, increasing the
 duplicate acknowledgment threshold (DupThresh) is the method of
 choice to a priori prevent any negative impact - in particular, a
 spurious Fast Retransmit and Fast Recovery phase - that packet
 reordering has on TCP. However, this procedure also delays a Fast
 Retransmit by increasing the DupThresh, and therefore has costs and
 risks, too. According to [Zha+03], these are: (1) a delayed response
 to congestion in the network, (2) a potential expiration of the
 retransmission timer, and (3) a significant increase in the end-to-
 end delay for lost segments.

 In the current TCP standard, congestion control and loss recovery are
 tightly coupled: when the oldest outstanding segment is declared
 lost, a retransmission is triggered, and the sending rate is reduced
 on the assumption that the loss is due to resource contention
 [RFC5681]. Therefore, any change to DupThresh causes not only a
 change to the loss recovery, but also to the congestion control
 response. TCP-NCR [RFC4653] addresses this problem by defining two
 extensions to TCP’s Limited Transmit [RFC3042] scheme: Careful and
 Aggressive Extended Limited Transmit.

 The first variant of the two, Careful Limited Transmit, sends one
 previously unsent segment in response to duplicate acknowledgments
 for every two segments that are known to have left the network. This
 effectively halves the sending rate, since normal TCP operation sends
 one new segment for every segment that has left the network.

Zimmermann, et al. Expires November 21, 2014 [Page 4]

Internet-Draft TCP-aNCR May 2014

 Further, the halving starts immediately and is not delayed until a
 retransmission is triggered. In the case of packet reordering (i.e.,
 not segment loss), TCP-NCR restores the congestion control state to
 its previous state after the event.

 The second variant, Aggressive Limited Transmit, transmits one
 previously unsent data segment in response to duplicate
 acknowledgments for every segment known to have left the network.
 With this variant, while waiting to disambiguate the loss from a
 reordering event, ACK-clocked transmission continues at roughly the
 same rate as before the event started. Retransmission and the
 sending rate reduction happen per [RFC5681] [RFC6675], albeit after a
 delay caused by the increased DupThresh. Although this approach
 delays legitimate rate reductions (possibly slightly, and temporarily
 aggravating overall congestion on the network), the scheme has the
 advantage of not reducing the transmission rate in the face of packet
 reordering.

 A basic requirement for preventing an avoidable expiration of the
 retransmission timer is to generally ensure that an increased
 DupThresh can potentially be reached in time so that Fast Retransmit
 is triggered and Fast Recovery is completed before the RTO expires.
 Simply increasing DupThresh before retransmitting a segment can make
 TCP brittle to packet or ACK loss, since such loss reduces the number
 of duplicate ACKs that will arrive at the sender from the receiver.
 For instance, if cwnd is 10 segments and one segment is lost, a
 DupThresh of 10 will never be met, because duplicate ACKs
 corresponding to at most 9 segments will arrive at the sender. To
 mitigate this issue, the TCP-NCR [RFC4653] modification makes two
 fundamental changes to the way [RFC5681] [RFC6675] currently
 operates.

 First, as mentioned above, TCP-NCR [RFC4653] extends TCP’s Limited
 Transmit [RFC3042] scheme to allow for the sending of new data
 segment while the TCP sender stays in the ’disorder’ state and
 disambiguate loss and reordering. This new data serves to increase
 the likelihood that enough duplicate ACKs arrive at the sender to
 trigger loss recovery, if it is appropriate. Second, DupThresh is
 increased from the current fixed value of three [RFC5681] to a value
 indicating that approximately a congestion window’s worth of data has
 left the network. Since cwnd represents the amount of data a TCP
 sender can transmit in one round-trip time (RTT), this corresponds to
 approximately the largest amount of time a TCP sender can wait before
 the costly retransmission timeout may be triggered.

 Of vital importance is that TCP-NCR [RFC4653] holds DupThresh not
 constant, but dynamically adjusts it on each SACK to the current
 amount of outstanding data, which depends not only on the congestion

Zimmermann, et al. Expires November 21, 2014 [Page 5]

Internet-Draft TCP-aNCR May 2014

 window, but also on the receiver’s advertised window. Thus, it is
 guaranteed that the outstanding data generates a sufficient number of
 duplicate ACKs for reaching DupThresh and a transition to the
 ’recovery’ state. This is important in cases where there is no new
 data available to send.

 Regarding the problem of packet reordering, TCP-NCR’s [RFC4653]
 decision of waiting to receive notice that cwnd bytes have left the
 network before deciding whether the root cause is loss or reordering
 is essentially a trade-off between making the best decision regarding
 the cause of the duplicate ACKs and responsiveness, and represents a
 good compromise between avoiding spurious Fast Retransmits and
 avoiding unnecessary RTOs. On the other hand, if there is no visible
 packet reordering on the network path - which today is the rule and
 not the exception - or the delay caused by the reordering is very
 low, delaying Fast Retransmit is unnecessary in the case of
 congestion, and data is delivered to the application up to one RTT
 later. Especially for delay-sensitive applications, such as a
 terminal session over SSH, this is generally undesirable. By
 dynamically adapting DupThresh not only to the amount of outstanding
 data but also to the perceived packet reordering on the network path,
 this issue can be offset. This is the key idea behind the TCP-aNCR
 algorithm.

 This document specifies a set of TCP modifications to provide an
 adaptive Non-Congestion Robustness (aNCR) mechanism for TCP. The
 TCP-aNCR modifications lend themselves to incremental deployment.
 Only the TCP implementation on the sender side requires modification.
 The changes themselves are modest. TCP-aNCR is built on top of the
 TCP Selective Acknowledgments Option [RFC2018] and the SACK-based
 loss recovery scheme given in [RFC6675] and represents an enhancement
 of the original TCP-NCR mechanism [RFC4653]. Currently, TCP-aNCR is
 an independent approach of making TCP more robust to packet
 reordering. It is not clear if upcoming versions of this draft TCP-
 aNCR will obsolete TCP-NCR or not.

 It should be noted that the TCP-aNCR algorithm in this document could
 be easily adapted to the Stream Control Transmission Protocol (SCTP)
 [RFC2960], since SCTP uses congestion control algorithms similar to
 TCP (and thus has the same reordering robustness issues).

 The remainder of this document is organized as follows. Section 3
 provides a high-level description of the TCP-aNCR mechanism.
 Section 4 defines TCP-aNCR’s requirements for an appropriate
 detection and quantification algorithm. Section 5 specifies the TCP-
 aNCR algorithm and Section 6 discusses each step of the algorithm in
 detail. Section 7 provides a discussion of several design decisions
 behind TCP-aNCR. Section 8 discusses interoperability issues related

Zimmermann, et al. Expires November 21, 2014 [Page 6]

Internet-Draft TCP-aNCR May 2014

 to introducing TCP-aNCR. Finally, related work is presented in
 Section 9 and security concerns in Section 11.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described [RFC2119].

 The reader is expected to be familiar with the TCP state variables
 described in [RFC0793] (SND.NXT), [RFC5681] (cwnd, rwnd, ssthresh,
 FlightSize, IW), [RFC6675] (pipe, DupThresh, SACK scoreboard), and
 [RFC6582] (recover). Further, the term ’acceptable acknowledgment’
 is used as defined in [RFC0793]. That is, an ACK that increases the
 connection’s cumulative ACK point by acknowledging previously
 unacknowledged data. The term ’duplicate acknowledgment’ is used as
 defined in [RFC6675], which is different from the definition of
 duplicate acknowledgment in [RFC5681].

 This specification defines the four TCP sender states ’open’,
 ’disorder’, ’recovery’, and ’loss’ as follows. As long as no
 duplicate ACK is received and no segment is considered lost, the TCP
 sender is in the ’open’ state. Upon the reception of the first
 consecutive duplicate ACK, TCP will enter the ’disorder’ state.
 After receiving DupThresh duplicate ACKs, the TCP sender switches to
 the ’recovery’ state and executes standard loss recovery procedures
 like Fast Retransmit and Fast Recovery [RFC5681]. Upon a
 retransmission timeout, the TCP sender enters the ’loss’ state. The
 ’recovery’ state can only be reached by a transition from the
 ’disorder’ state, the ’loss’ state can be reached from any other
 state.

 The following specification depends on the standard TCP congestion
 control and loss recovery algorithms and the SACK-based loss recovery
 scheme given in [RFC5681], respectively [RFC6675]. The algorithm
 presents an enhancement of TCP-NCR [RFC4653]. The reader is assumed
 to be familiar with the algorithms specified in these documents.

3. Basic Concept

 The general idea behind the TCP-aNCR algorithm is to extend the TCP-
 NCR algorithm [RFC4653], so that - based on an appropriate packet
 reordering detection and quantification algorithm (see Section 4) -
 TCP congestion control and loss recovery [RFC5681] is adaptively
 adjusted to the actual perceived packet reordering on the network
 path.

Zimmermann, et al. Expires November 21, 2014 [Page 7]

Internet-Draft TCP-aNCR May 2014

 TCP-NCR [RFC4653] increases DupThresh from the current fixed value of
 three duplicate ACKs [RFC5681] to approximately until a congestion
 window of data has left the network. Since cwnd represents the
 amount of data a TCP sender can transmit in one RTT, the choice to
 trigger a retransmission only after a cwnd’s worth of data is known
 to have left the network represents roughly the largest amount of
 time a TCP sender can wait before the RTO may be triggered. The
 approach chosen in TCP-aNCR is to take TCP-NCR’s DupThresh as an
 upper bound for an adjustment of the DupThresh that is adaptive to
 the actual packet reordering on the network path.

 Using TCP-NCR’s DupThresh as an upper bound decouples the avoidance
 of spurious Fast Retransmits from the avoidance of unnecessary
 retransmission timeouts. Therefore, the adaptive adjustment of the
 DupThresh to current perceived packet reordering can be conducted
 without taking any retransmission timeout avoidance strategy into
 account. This independence allows TCP-aNCR to quickly respond to
 perceived packet reordering by setting its DupThresh so that it
 always corresponds to the minimum of the maximum possible (TCP-NCR’s
 DupThresh) and the maximum measured reordering extent since the last
 RTO. The reordering extent used by TCP-aNCR is by itself not a
 static absolute reordering extent, but a relative reordering extent
 (see Section 4).

4. Appropriate Detection and Quantification Algorithms

 If the TCP-aNCR algorithm is implemented at the TCP sender, it MUST
 be implemented together with an appropriate packet reordering
 detection and quantification algorithm that is specified in a
 standards track or experimental RFC.

 Designers of reordering detection algorithms who want their
 algorithms to work together with the TCP-aNCR algorithm SHOULD reuse
 the variable ’ReorExtR’ (relative reordering extent) with the
 semantics and defined values specified in
 [I-D.zimmermann-tcpm-reordering-detection]. A ’ReorExtR’ given by
 the detection algorithm holds a value ranging from 0 to 1 which holds
 the new measured reordering sample as a fraction of the data in
 flight. TCP-aNCR then saves this new fraction if it is greater than
 the current value.

5. The TCP-aNCR Algorithm

 When both the Nagle algorithm [RFC0896] [RFC1122] and the TCP
 Selective Acknowledgment Option [RFC2018] are enabled for a
 connection, a TCP sender MAY employ the following TCP-aNCR algorithm

Zimmermann, et al. Expires November 21, 2014 [Page 8]

Internet-Draft TCP-aNCR May 2014

 to dynamically adapt TCP’s congestion control and loss recovery
 [RFC5681] to the currently perceived packet reordering on the network
 path.

 Without the Nagle algorithm, there is no straightforward way to
 accurately calculate the number of outstanding segments in the
 network (and, therefore, no good way to derive an appropriate
 DupThresh) without adding state to the TCP sender. A TCP connection
 that does not use the Nagle algorithm SHOULD NOT use TCP-aNCR. The
 adaptation of TCP-aNCR to an implementation that carefully tracks the
 sequence numbers transmitted in each segment is considered future
 work.

 A necessary prerequisite for TCP-aNCR’s adaptability is that a TCP
 sender has enabled an appropriate detection and quantification
 algorithm that complies with the requirements defined in Section 4.
 If such an algorithm is either non-existent or not used, the behavior
 of TCP-aNCR is completely analogous to the TCP-NCR algorithm as
 defined in [RFC4653]. If a TCP sender does implement TCP-aNCR, the
 implementation MUST follow the various specifications provided in
 Sections 5.1 to 5.7.

5.1. Initialization during Connection Establishment

 After the completion of the TCP connection establishment, the
 following state constants and variables MUST be initialized in the
 TCP transmission control block for the given TCP connection:

 (C.1) Depending on which variant of Extended Limited Transmit should
 be executed, the constant LT_F MUST initialized as follows.
 For Careful Extended Limited Transmit:

 LT_F = 2/3

 For Aggressive Extended Limited Transmit:

 LT_F = 1/2

 This constant reflects the fraction of outstanding data
 (including data sent during Extended Limited Transmit) that
 must be SACKed before a retransmission is at the latest
 triggered.

 (C.2) If TCP-aNCR should adaptively adjust the DupThresh to the
 current perceived packet reordering on the network path, then
 the variable ’ReorExtR’, which stores the maximum relative
 reordering extent, MUST initialized as:

Zimmermann, et al. Expires November 21, 2014 [Page 9]

Internet-Draft TCP-aNCR May 2014

 ReorExtR = 0

 Otherwise the dynamically adaptation of TCP-aNCR SHOULD be
 disabled by setting

 ReorExtR = -1

 A relative reordering extent of 0 results in the standard
 DupThresh of three duplicate ACKs, as defined in [RFC5681]. A
 fixed relative reordering extent of -1 results in the TCP-NCR
 behavior from [RFC4653].

5.2. Initializing Extended Limited Transmit

 If the SACK scoreboard is empty upon the receipt of a duplicate ACK
 (i.e., the TCP sender has received no SACK information from the
 receiver), a TCP sender MUST enter Extended Limited Transmit by
 initialize the following five state variables in the TCP Transmission
 Control Block:

 (I.1) The TCP sender MUST save the current outstanding data:

 FlightSizePrev = FlightSize

 (I.2) The TCP sender MUST save the highest sequence number
 transmitted so far:

 recover = SND.NXT - 1

 Note: The state variable ’recover’ from [RFC6582] can be
 reused, since NewReno TCP uses ’recover’ at the initialization
 of a loss recovery procedure, whereas TCP-aNCR uses ’recover’
 before loss recovery.

 (I.3) The TCP sender MUST initialize the variable ’skipped’ that
 tracks the number of segments for which an ACK does not
 trigger a transmission during Careful Limited Transmit:

 skipped = 0

 During Aggressive Limited Transmit, ’skipped’ is not used.

 (I.4) The TCP sender MUST set DupThresh based on the current
 FlightSize:

 DupThresh = max (LT_F * (FlightSize / SMSS), 3)

 The lower bound of DupThresh = 3 is kept from [RFC5681]

Zimmermann, et al. Expires November 21, 2014 [Page 10]

Internet-Draft TCP-aNCR May 2014

 [RFC6675].

 (I.5) If (ReorExtR != -1) holds, then the TCP sender MUST set
 DupThresh based on the relative reordering extent ’ReorExtR’:

 DupThresh = max (min (DupThresh,
 ReorExtR * (FlightSize / SMSS)), 3)

 In addition to the above steps, the incoming ACK MUST be processed
 with the (E) series of steps in Section 5.3.

5.3. Executing Extended Limited Transmit

 On each ACK that a) arrives after TCP-aNCR has entered the Extended
 Limited Transmit phase (as outlined in Section 5.2) *and* b) carries
 new SACK information, *and* c) does *not* advance the cumulative ACK
 point, the TCP sender MUST use the following procedure.

 (E.1) The TCP sender MUST update the SACK scoreboard and uses the
 SetPipe() procedure from [RFC6675] to set the ’pipe’ variable
 (which represents the number of bytes still considered "in the
 network"). Note: the current value of DupThresh MUST be used
 by SetPipe() to produce an accurate assessment of the amount
 of data still considered in the network.

 (E.2) The TCP sender MUST initialize the variable ’burst’ that
 tracks the number of segments that can at most be sent per ACK
 to the size of the Initial Window (IW) [RFC5681]:

 burst = IW

 (E.3) If a) (cwnd - pipe - skipped >= 1 * SMSS) holds, *and* b) the
 receive window (rwnd) allows to send SMSS bytes of previously
 unsent data, *and* c) there are SMSS bytes of previously
 unsent data available for transmission, then the TCP sender
 MUST transmit one segment of SMSS bytes. Otherwise, the TCP
 sender MUST skip to step (E.7).

 (E.4) The TCP sender MUST increment ’pipe’ by SMSS bytes and MUST
 decrement ’burst’ by SMSS bytes to reflect the newly
 transmitted segment:

 pipe = pipe + SMSS
 burst = burst - SMSS

Zimmermann, et al. Expires November 21, 2014 [Page 11]

Internet-Draft TCP-aNCR May 2014

 (E.5) If Careful Limited Transmit is used, ’skipped’ MUST be
 incremented by SMSS bytes to ensure that the next SMSS bytes
 of SACKed data processed do not trigger a Limited Transmit
 transmission.

 skipped = skipped + SMSS

 (E.6) If (burst > 0) holds, the TCP sender MUST return to step (E.3)
 to ensure that as many bytes as appropriate are transmitted.
 Otherwise, if more than IW bytes were SACKed by a single ACK,
 the TCP sender MUST skip to step (E.7). The additional amount
 of data becomes available again by the next received duplicate
 ACK and the re-execution of SetPipe().

 (E.7) The TCP sender MUST save the maximum amount of data that is
 considered to have been in the network during the last RTT:

 pipe_max = max (pipe, pipe_max)

 (E.8) The TCP sender MUST set DupThresh based on the current
 FlightSize:

 DupThresh = max (LT_F * (FlightSize / SMSS), 3)

 The lower bound of DupThresh = 3 is kept from [RFC5681]
 [RFC6675].

 (E.9) If (ReorExtR != -1) holds, then the TCP sender MUST set
 DupThresh based on the relative reordering extent ’ReorExtR’:

 DupThresh = max (min (DupThresh,
 ReorExtR * (FlightSize / SMSS)), 3)

5.4. Terminating Extended Limited Transmit

 On the receipt of a duplicate ACK that a) arrives after TCP-aNCR has
 entered the Extended Limited Transmit phase (as outlined in
 Section 5.2) *and* b) advances the cumulative ACK point, the TCP
 sender MUST use the following procedure.

 The arrival of an acceptable ACK that advances the cumulative ACK
 point while in Extended Limited Transmit, but before loss recovery is
 triggered, signals that a series of duplicate ACKs was caused by
 reordering and not congestion. Therefore, Extended Limited Transmit
 will be either terminated or re-entered.

Zimmermann, et al. Expires November 21, 2014 [Page 12]

Internet-Draft TCP-aNCR May 2014

 (T.1) If the received ACK extends not only the cumulative ACK point,
 but *also* carries new SACK information (i.e., the ACK is both
 an acceptable ACK and a duplicate ACK), the TCP sender MUST
 restart Extended Limited Transmit and MUST go to step (T.2).
 Otherwise, the TCP sender MUST terminate it and MUST skip to
 step (T.3).

 (T.2) If the Cumulative Acknowledgment field of the received ACK
 covers more than ’recover’ (i.e., SEG.ACK > recover), Extended
 Limited Transmit has transmitted one cwnd worth of data
 without any losses and the TCP sender MUST update the
 following state variables by

 FlightSizePrev = pipe_max
 pipe_max = 0

 and MUST go to step (I.2) to re-start Extended Limited
 Transmit. Otherwise if (SEG.ACK <= recover) holds, the TCP
 sender MUST go to step (I.3). This ensures that in the event
 of a loss the cwnd reduction is based on a current value of
 FlightSizePrev.

 The following steps are executed only if the received ACK does *not*
 carry SACK information. Extended Limited Transmit will be
 terminated.

 (T.3) A TCP sender MUST set ssthresh to:

 ssthresh = max (cwnd, ssthresh)

 This step provides TCP-aNCR with a sense of "history". If the
 next step (T.4) reduces the congestion window, this step
 ensures that TCP-aNCR will slow-start back to the operating
 point that was in effect before Extended Limited Transmit.

 (T.4) A TCP sender MUST reset cwnd to:

 cwnd = FlightSize + SMSS

 This step ensures that cwnd is not significantly larger than
 the amount of data outstanding, a situation that would cause a
 line rate burst.

 (T.5) A TCP is now permitted to transmit previously unsent data as
 allowed by cwnd, FlightSize, application data availability,
 and the receiver’s advertised window.

Zimmermann, et al. Expires November 21, 2014 [Page 13]

Internet-Draft TCP-aNCR May 2014

5.5. Entering Loss Recovery

 The receipt of an ACK that results in deeming the oldest outstanding
 segment is lost via the algorithms in [RFC6675] terminates Extended
 Limited Transmit and initializes the loss recovery according to
 [RFC6675]. One slight change to [RFC6675] MUST be made, however.

 (Ret) In Section 5, step (4.2) of [RFC6675] MUST be changed to:

 ssthresh = cwnd = (FlightSizePrev / 2)

 This ensures that the congestion control modifications are
 made with respect to the amount of data in the network before
 FlightSize was increased by Extended Limited Transmit.

 Once the algorithm in [RFC6675] takes over from Extended Limited
 Transmit, the DupThresh value MUST be held constant until the loss
 recovery phase terminates.

5.6. Reordering Extent

 Whenever the additional detection and quantification algorithm (see
 Section 4) detects and quantifies a new reordering event, the TCP
 sender MUST update the state variable ’ReorExtR’.

 (Ext) Let ’ReorExtR_New’ the newly determined relative reordering
 extent:

 ReorExtR = min (max (ReorExtR, ReorExtR_New), 1)

5.7. Retransmission Timeout

 The expiration of the retransmission timer SHOULD be interpreted as
 an indication of a path characteristics change, and the TCP sender
 SHOULD reset DupThresh to the default value of three.

 (RTO) If an RTO occurs and (ReorExtR != -1) (i.e. TCP-aNCR is used
 and not TCP-NCR), then a TCP sender SHOULD reset ’ReorExtR’:

 ReorExtR = 0

6. Protocol Steps in Detail

 Upon the receipt of the first duplicate ACK in the ’open’ state (the
 SACK scoreboard is empty), the TCP sender starts to execute TCP-aNCR
 by entering the ’disorder’ state and the initialization of Extended
 Limited Transmit. First, the TCP sender saves the current amount of

Zimmermann, et al. Expires November 21, 2014 [Page 14]

Internet-Draft TCP-aNCR May 2014

 outstanding data as well as the highest sequence number transmitted
 so far (SND.NXT - 1) (steps (I.1) and (I.2)). In addition, if the
 TCP connection uses the careful variant of the Extended Careful
 Limited Transmit (step (C.1)), the ’skipped’ variable, which tracks
 the number of segments for which an ACK does not trigger a
 transmission during Careful Limited Transmit, is initialized with
 zero (step (I.3)). The last step during the initialization is the
 determination of DupThresh. Depending on whether TCP-aNCR has been
 configured during the connection establishment to adaptively adjust
 to the currently perceived packet reordering on the path (step
 (C.2)), DupThresh is either determined exclusively based on the
 current FlightSize (as TCP-NCR [RFC4653] does) or, in addition, also
 based on the relative extent reordering (steps (I.4) and (I.5)).

 Depending on which variant of Extended Limited Transmit should be
 executed, the constant LT_F must be set accordingly (step (C.1)).
 This constant reflects the fraction of outstanding data (including
 data sent during Extended Limited Transmit) that must be SACKed
 before a retransmission is triggered at the latest (which is the case
 when a DupThresh that is based on relative reordering extent is
 larger then TCP-NCR’s DupThresh). Since Aggressive Limited Transmit
 sends a new segment for every segment known to have left the network,
 a total of approximately cwnd segments will be sent, and therefore
 ideally a total of approximately 2*cwnd segments will be outstanding
 when a retransmission is finally triggered. DupThresh is then set to
 LT_F = 1/2 of 2*cwnd (or about 1 RTT’s worth of data) (see step
 (I.4)). The factor is different for Careful Limited Transmit,
 because the sender only transmits one new segment for every two
 segments that are SACKed and therefore will ideally have a total of
 maximum of 1.5*cwnd segments outstanding when the retransmission is
 triggered. Hence, the required threshold is LT_F=2/3 of 1.5*cwnd to
 delay the retransmission by roughly 1 RTT.

 For each duplicate ACK received in the ’disorder’ state, which is not
 an acceptable ACK, i.e., it carries new SACK information, but does
 not advance the cumulative ACK point, Extended Limited Transmit is
 executed. First, the SACK scoreboard is updated and based on the
 current value of DupThresh, the amount of outstanding data (step
 (E.1)). Furthermore, the state variable ’burst’ that indicates the
 number of segments that can be sent at most for of each received ACK
 is initialized to the size of the initial window [RFC6928] (step
 E.2)). If more than IW bytes were SACKed by a single ACK, the
 additional amount of data becomes available again by the next
 received duplicate ACK and the re-execution of SetPipe() (step
 (E.1)).

 Next, if new data is available for transmission and both the
 congestion window and the receiver window allow to send SMSS bytes of

Zimmermann, et al. Expires November 21, 2014 [Page 15]

Internet-Draft TCP-aNCR May 2014

 previously unsent data, a segment of SMSS bytes is sent (step (E.3)).
 Subsequently, the corresponding state variables ’pipe’, ’burst’ and -
 optionally - ’skipped’ are updated (steps (E.4) and (E.5)). If, due
 to the current size of the congestion and receiver windows (step
 (E.2)), due to the current value of ’burst’ (step (E.5)), no further
 segment may be sent, the processing of the ACK is terminated.
 Provided that the amount of data that is currently considered to be
 in the network is greater than the previously stored one, this new
 value is stored for later use (step (E.7)). Finally, to take into
 account the new data sent, DupThresh is updated (steps (E.6) and
 (E.7)).

 The arrival of an acceptable ACK in the ’disorder’ state that
 advances the cumulative ACK point during Extended Limited Transmit
 signals that a series of duplicate ACKs was caused by reordering and
 not congestion. Therefore, the receipt of an acceptable ACK that
 does not carry any SACK information terminates Extended Limited
 Transmit (step (T.1)). The slow start threshold is set to the
 maximum of its current value and the current value of cwnd (step
 (T.3)). Cwnd itself is set to the current value of FlightSize plus
 one segment (step (T.4)). As a result, the congestion window is not
 significantly larger than the current amount of outstanding data, so
 that a burst of data is effectively prevented. If new data is
 available for transmission and both the new values of cwnd and rwnd
 allow to send SMSS bytes of previously unsent data, a segment is send
 (step (T.5)).

 On the other hand, if the received ACK acknowledges new data not only
 cumulatively but also selectively - the ACK carries new SACK
 information - Extended Limited Transmit is not terminated but re-
 entered (step (T.1)). If the Cumulative Acknowledgment field of the
 received ACK covers more than ’recover’, one cwnd worth of data has
 been transmitted during Extended Limited Transmit without any packet
 loss. Therefore, FlightSizePrev, the amount of outstanding data
 saved at the beginning of Extended Limited Transmit (step (I.1)), is
 considered outdated (step (T.2)). This step ensures that in the
 event of packet loss, the reduction of the cwnd is based on an up-to-
 date value, which reflects the number of bytes outstanding in the
 network (see Section 7). Finally, regardless of whether or not
 ’recover’ is covered, Extended Limited Transmit is re-entered.

 The second case that leads to a termination of Extended Limited
 Transmit is the receipt of an ACK that signals via the algorithm in
 [RFC6675] that the oldest outstanding segment is considered lost. If
 either DupThresh or more duplicate ACKs are received, or the oldest
 outstanding segment is deemed lost via the function IsLost() of
 [RFC6675], Extended Limited Transmit is terminated and SACK-based
 loss recovery is entered [RFC6675]. Once the algorithm in [RFC6675]

Zimmermann, et al. Expires November 21, 2014 [Page 16]

Internet-Draft TCP-aNCR May 2014

 takes over from Extended Limited Transmit, the DupThresh value MUST
 be held constant until loss recovery is terminated. The process of
 loss recovery itself is not changed by TCP-aNCR. The only exception
 is a slight change of the step (4.2) of RFC 6675 [RFC6675], which
 ensures that the adjustment made by the congestion control - halving
 the congestion window - is made with respect to the initial amount of
 outstanding data while Limited Transmit Extended is executed (step
 (Ret)). The use of FlightSize at this point would no longer be valid
 since the amount of outstanding data may double by executing Extended
 Limited Transmit.

7. Discussion of TCP-aNCR

 The specification of TCP-aNCR represents an incremental update of RFC
 4653 [RFC4653]. All changes made by TCP-aNCR can be divided into two
 categories. On one hand, they implement TCP-aNCR’s ability to
 dynamically adapted TCP congestion control and loss recovery
 [RFC5681] to the currently perceived packet reordering on the network
 path. These include the use of a variable DupThresh and the use of a
 relative reordering extent. On the other hand, the changes that
 basically correct weaknesses of the original TCP-NCR algorithm and
 which are independent of TCP-aNCR adaptability. These include packet
 reordering during slow start, the prevention of bursts, and the
 persistent receipt of SACKs.

7.1. Variable Duplicate Acknowledgment Threshold

 The central point of the TCP-aNCR algorithm is the usage of a
 DupThresh that is adaptable to the perceived packet reordering on the
 network path. Based on the actual amount of outstanding data, TCP-
 NCR’s DupThresh represents roughly the largest amount of time a Fast
 Retransmit can safely be delayed before a costly retransmission
 timeout may be triggered. Therefore, to avoid an RTO, TCP-aNCR’s
 reordering-aware DupThresh is an upper bound of the one calculated in
 TCP-NCR (steps (I.5) and (E.9)). This decouples the avoidance of
 spurious Fast Retransmits from the avoidance of RTOs. It allows TCP-
 aNCR to react fast and efficiently to packet reordering. The
 DupThresh always corresponds to the minimum of the largest possible
 and largest detected reordering. With constant packet reordering in
 terms of the rate and delay, TCP-aNCR gives a DupThresh based on the
 relative reordering extent with an optimal delay for every bandwidth-
 delay-product. If TCP-aNCR should not adaptively adjust the
 DupThresh to the current perceived packet reordering on the network
 path (because for example an appropriate detection and quantification
 algorithm is not implemented), the dynamically adaptation of TCP-aNCR
 can be disabled, so that TCP-aNCR behaves like TCP-NCR [RFC4653].

Zimmermann, et al. Expires November 21, 2014 [Page 17]

Internet-Draft TCP-aNCR May 2014

7.2. Relative Reordering Extent

 Whenever a new reordering event is detected and presented to TCP-aNCR
 in the form of a relative reordering extend ’ReorExtR’, TCP-aNCR
 saves and uses the new ’ReorExtR’ if it is larger than the old one
 (step (EXT)). The upper bound of 1 assures that no excessively large
 value is used. A ’ReorExtR’ larger than one means that more than
 FlightSize bytes would have been received out-of-order before the
 reordered segment is received. The delay caused by the reordering is
 thus longer than the RTT of the TCP connection. Since the RTT is
 roughly the time a Fast Retransmit can safely be delayed before the
 retransmission has to be to avoid an RTO, a maximum ’ReorExtR’ of one
 seems to be a suitable value.

 The expiration of the retransmission timer is interpreted by TCP-aNCR
 as an indication of a change in path characteristics, hence, the
 saved ’ReorExtR’ is assumed to be outdated and will be invalidated
 (step (RTO)). As a consequence, the relative reordering extent
 ’ReorExtR’ increases monotonically between two successive
 retransmission timeouts and corresponds to the maximum measured
 reordering extent since the last RTO. Other approaches would be an
 exponentially-weighted moving average (EWMA) or a histogram of the
 last n reordering extents. The main drawback of an EWMA is however
 that on average half of the detected reordering events would be
 larger than the saved reordering extend. Thus, only half of the
 spurious retransmits could be avoided. Applying an histogram could
 largely avoid the disadvantages of an EWMA, however, it would result
 in a not acceptable increase in memory usage.

 In combination with the invalidation after an RTO, the advantage of
 using maximum is the low complexity as well as its fast convergence
 to the actual maximum reordering on the network path. As a result,
 the negative impact that packet reordering has on TCP’s congestion
 control and loss recovery can be avoided. A disadvantage of using a
 maximum is that if the delay caused by the reordering decreases over
 the lifetime of the TCP connection, a Fast Retransmit is
 unnecessarily long delayed. Nevertheless, since the negative impact
 reordering has on TCP’s congestion control and loss recovery is more
 substantial than the disadvantage of a longer delay, a decrease of
 the ReorExtR between RTOs is considered inappropriate.

7.3. Reordering during Slow Start

 The arrival of an acceptable ACK during Extended Limited Transmit
 signals that previously received duplicate ACKs are the result of
 packet reordering and not congestion, so that Extended Limited
 Transmit is completed accordingly. Upon the termination of Extended
 Limited Transmit, and especially when using the Careful variant, TCP-

Zimmermann, et al. Expires November 21, 2014 [Page 18]

Internet-Draft TCP-aNCR May 2014

 NCR (as well as TCP-aNCR) may be in a situation where the entire cwnd
 is not being utilized. Therefore, to mitigate a potential burst of
 segments, in step (T.2) TCP-NCR sets the slow start threshold to the
 FlightSize that was saved at the beginning of Extended Limited
 Transmit [RFC4653]. This step should ensure that TCP-NCR slow starts
 back to the operating point in use before Extended Limited Transmit.

 Unfortunately, the assignment in step (T.2) is only correct if the
 TCP sender already was in congestion avoidance at the time Extended
 Limited Transmit was entered. Otherwise, if the TCP sender was
 instead in slow start, the value of ssthresh is greater than the
 saved FlightSize so that slow start prematurely concludes. This
 behavior can leave much of the network resources idle, and a long
 time may needed in order to use the full capacity. To mitigate this
 issue, TCP-aNCR sets the slow start threshold to the maximum of its
 current value and the current cwnd (step (T.3)). This continues slow
 start after a reordering event happening during slow start.

7.4. Preventing Bursts

 In cases where a new single SACK covers more than one segment - this
 can happen either due to packet loss or packet reordering on the ACK
 path - TCP-NCR [RFC4653] sends an undesirable burst of data. TCP-
 aNCR solves this problem by limiting the burst size - the maximum of
 data that can send in response to a single SACK - to the Initial
 Window [RFC5681] while executing Extended Limited Transmit (steps
 (E.2), (E.4), and (E.6)). Since IW represents the amount of data
 that a TCP sender is able to send into the network safely without
 knowing its characteristics, it is a reasonable value for the burst
 size, too. If more than IW bytes were SACKed by a single ACK, the
 additional amount of data becomes available again by the next
 received duplicate ACK. Thus, the transmission of new segments is
 spread over the next received ACKs, so that micro bursts - a
 characteristic of packet reordering in the reverse path - are largely
 compensated.

 Another situation that causes undesired bursts of segments with TCP-
 NCR is the receipt of an acceptable ACK during Careful Extended
 Limited Transmit. If multiple segments from a single window of data
 are delayed by packet reordering, typically the first acceptable ACK
 after entering the ’disorder’ state acknowledges data not only
 cumulatively but also selectively. Hence, Extended Limited Transmit
 is not terminated but re-started. If the segments are delayed by the
 reordering for almost one RTT, then the amount of outstanding data in
 the network (’pipe’) is approximately half the amount of data saved
 at the beginning of Extended Limited Transmit (FlightSizePrev). If
 the sequence numbers of the delayed segments are close to each other
 in the sequence number space, the acceptable ACK acknowledges only a

Zimmermann, et al. Expires November 21, 2014 [Page 19]

Internet-Draft TCP-aNCR May 2014

 small amount of data, so that FlightSize is still large. As a
 result, TCP-NCR sets the cwnd to FlightSizePrev in step (T.1). Since
 ’pipe’ is only half of FlightSizePrev due to Careful Extended Limited
 Transmit, TCP-NCR sends a burst of almost half a cwnd worth of data
 in the subsequent step (T.3).

 Note: Even in the case the sequence numbers of the delayed segments
 are not close to each other in the sequence number space and cwnd is
 set in step (T.1) to FlightSize + SMSS, a burst of data will emerge
 due to re-entering Extended Limited Transmit, because TCP-NCR sets
 ’skipped’ to zero in step (I.2) and uses FlightSizePrev in step
 (E.2).

 TCP-aNCR prevents such a burst by making a clear differentiation
 between terminating Extended Limited Transmit and a restarting
 Extended Limited Transmit (step T.1). Only the first case causes the
 congestion window to be set to the current FlightSize plus one
 segment. In the latter case, when re-entering Extended Limited
 Transmit, the congestion window is not adjusted and the original
 (T.1) of the TCP-NCR specification is omitted. The transmission of
 new data is then only performed after re-entering Extended Limited
 Transmit in step (E.2) of the TCP-aNCR specification, where the
 actual burst mitigation takes place.

7.5. Persistent receiving of Selective Acknowledgments

 In some inconvenient cases it could happen that a TCP sender
 persistently receives SACK information due to reordering on the
 network path, e.g., if the segments are often and/or lengthy delayed
 by the packet reordering. With TCP-NCR, the persistent reception of
 SACKs causes Extended Limited Transmit to be entered with the first
 received duplicate ACK but never to be terminated if no packet loss
 occurs - for every received ACK, TCP-NCR either follows steps (E.1)
 to (E.6) or steps (T.1) to (T.4). In particular, TCP-NCR executes a)
 for every acceptable ACK step (T.4) and b) at any time step (I.1)
 again. Hence, the amount of outstanding data saved at the beginning
 of Extended Limited Transmit, FlightSizePrev, is never updated.

 An emerging problem in this context is that during Extended Limited
 Transmit TCP-NCR determines the transmission of new segments in step
 (E.2) solely on the basis of FlightSizePrev, so that an interim
 increase of the cwnd is not considered (according to [RFC5681], the
 congestion window is increased for every received acceptable ACK that
 advances the cumulative ACK point, no matter if it carries SACK
 information or not). As a result, TCP-NCR can only very slowly
 determine the available capacity of the communication path.

 TCP-aNCR addresses this problem by limiting the amount of data that

Zimmermann, et al. Expires November 21, 2014 [Page 20]

Internet-Draft TCP-aNCR May 2014

 is allowed to be sent into the network during Extended Limited
 Transmit not on the basis of FlightSizePrev, but on the size of the
 congestion window. The equation in step E.3 of the TCP-aNCR
 specification is therefore equal to the one used in [RFC6675] (except
 for the ’skipped’ variable). If an acceptable ACK is received during
 the execution of Extended Limited Transmit, re-entering Extended
 Limited Transmit makes any increase in cwnd immediately available.
 Hence, even in the case when persistently receiving SACKs, the
 available capacity of the communication path can be determined
 quickly.

 Another problem resulting from persistently receiving SACKs, and
 which is related to the increase in cwnd in response to received
 acceptable ACKs, is the reduction of cwnd due to a packet loss. When
 a packet is considered lost, the congestion control adjustment is
 done with respect to the amount of outstanding data at the beginning
 of Extended Limited Transmit, FlightSizePrev (step (Ret)). As in the
 previous case, an increase in cwnd is again not taken into account.
 A simple solution to the problem would be to perform the window
 reduction not on the basis of FlightSizePrev but analogous to step
 (E.2) based on the current size of cwnd.

 A problem with this solution is that cwnd can potentially be
 increased, although the TCP connection is limited by the application
 and not by cwnd. Although [RFC2861] specifies that an increase of
 cwnd is only applicable if cwnd is fully utilized, this behavior is
 not specified by any standards track document. But even this
 conservative increase behavior is guaranteed to not be conservative
 enough. If, from a single window of data, both segments are delayed
 but also lost, cwnd would first be increased in response to each
 received acceptable ACKs, while subsequently reduced due to the lost
 segments, which would not result in a halving of the cwnd any more.

 The solution proposed by TCP-aNCR reuses the state variable ’recover’
 from [RFC6582] and adapts the approach taken by NewReno TCP and SACK
 TCP to detect, with help of the state variable, the end of one loss
 recovery phase properly, allowing to recover multiple losses from a
 single window of data efficiently. Therefore, by entering the
 ’disorder’ state and the starting Extended Limited Transmit, TCP-aNCR
 saves the highest sequence number sent so far in ’recover’. If a
 received acceptable ACK covers more than ’recover’, one cwnd’s worth
 of data has been transmitted during Extended Limited Transmit without
 any packet loss. Hence, FlightSizePrev can be updated by ’pipe_max’,
 which reflects the maximum amount of data that is considered to have
 been in the network during the last RTT. This update takes an
 interim increase in cwnd into account, so that in case of packet
 loss, the reduction in cwnd can be based on the current value of
 FlightSizePrev.

Zimmermann, et al. Expires November 21, 2014 [Page 21]

Internet-Draft TCP-aNCR May 2014

8. Interoperability Issues

 TCP-aNCR requires that both the TCP Selective Acknowledgment Option
 [RFC2018] as well as a SACK-based loss recovery scheme compatible to
 one given in [RFC6675] are used by the TCP sender. Hence,
 compatibility to both specifications is REQUIRED.

8.1. Early Retransmit

 The specification of TCP-aNCR in this document and the Early
 Retransmit algorithm specified in [RFC5827] define orthogonal methods
 to modify DupThresh. Early Retransmit allows the TCP sender to
 reduce the number of duplicate ACKs required to trigger a Fast
 Retransmit below the standard DupThresh of three, if FlightSize is
 less than 4*SMSS and no new segment can be sent. In contrast, TCP-
 aNCR allows, starting from the minimum of three duplicate ACKs, to
 increase the DupThresh beyond the standard of three duplicate ACKs to
 make TCP more robust to packet reordering, if the amount of
 outstanding data is sufficient to reach the increased DupThresh to
 trigger Fast Retransmit and Fast Recovery.

8.2. Congestion Window Validation

 The increase of the congestion window during application-limited
 periods can lead to an invalidation of the congestion window, in that
 it no longer reflects current information about the state of the
 network, if the congestion window might never have been fully
 utilized during the last RTT. According to [RFC2861], the congestion
 window should, first, only be increased during slow-start or
 congestion avoidance if the cwnd has been fully utilized by the TCP
 sender and, second, gradually be reduced during each RTT in which the
 cwnd was not fully used.

 A problem that arises in this context is that during Careful Extended
 Limited Transmit, cwnd is not fully utilized due to the variable
 ’skipped’ (see step (E.3)), so that - strictly following [RFC2861] -
 the congestion window should not be increased upon the receipt of an
 acceptable ACK. A trivial solution of this problem is to include the
 variable ’skipped’ in the calculation of [RFC2861] to determine
 whether the congestion window is fully utilized or not.

8.3. Reactive Response to Packet Reordering

 As a proactive scheme with the aim to a priori prevent the negative
 impact that packet reordering has on TCP, TCP-aNCR can conceptually
 be combined with any reactive response to packet reordering, which
 attempts to mitigate the negative effects of reordering a posteriori.
 This is because the modifications of TCP-aNCR to the standard TCP

Zimmermann, et al. Expires November 21, 2014 [Page 22]

Internet-Draft TCP-aNCR May 2014

 congestion control and loss recovery [RFC6675] are implemented in the
 ’disorder’ state and are performed by the TCP sender before it enters
 loss recovery, while reactive responses to packet reordering operate
 generally after entering loss recovery, by undoing the unnecessarily
 changes to the congestion control state.

 If unnecessary changes to the congestion control state are undone
 after loss recovery, which is typically the case if a spurious Fast
 Retransmit is detected based on the DSACK option [RFC3708][RFC4015],
 since first ACK carrying a DSACK option usually arrives at a TCP
 sender only after loss recovery has already terminated, it might
 happen that the restoring of the original value of the congestion
 window is done at a time at which the TCP sender is already back in
 again in the ’disorder’ state and executing Extended Limited
 Transmit. While this is basically compatible with the TCP-aNCR
 specification - the undo simply represents an increase of the
 congestion window - however, some care must be taken that the
 combination of the algorithms does not lead to unwanted behavior.

8.4. Buffer Auto-Tuning

 Although all modifications of the TCP-aNCR algorithm are implemented
 in the TCP sender, the receiver also potentially has a part to play.
 If some segments from a single window of data are delayed by the
 packet reordering in the network, all segments that are received in
 out-of-order have to be queued in the receive buffer until the holes
 in sequence number space have been closed and the data can be
 delivered to the receiving application. In the worst case, which
 occurs if the TCP sender uses Aggressive Limited Transmit and the
 reordering delay is close to the RTT, TCP-aNCR increases the
 receiver’s buffering requirement by up to an extra cwnd. Therefore,
 to maximize the benefits from TCP-aNCR, receivers should advertise a
 large window - ideally by using buffer auto-tuning algorithms - to
 absorb the extra out-of-order data. In the case that the additional
 buffer requirements are not met, the use of the above algorithm takes
 into account the reduced advertised window - with a corresponding
 loss in robustness to packet reordering.

9. Related Work

 Over the past few years, several solutions have been proposed to
 improve the performance of TCP in the face of packet reordering.
 These schemes generally fall into one of two categories (with some
 overlap): mechanisms that try to prevent spurious retransmits from
 happening (proactive schemes) and mechanisms that try to detect
 spurious retransmits and undo the needless congestion control state
 changes that have been taken (reactive schemes).

Zimmermann, et al. Expires November 21, 2014 [Page 23]

Internet-Draft TCP-aNCR May 2014

 [I-D.blanton-tcp-reordering], [Zha+03] and [LM05] attempt to prevent
 packet reordering from triggering spurious retransmits by using
 various algorithms to approximate the DupThresh required to
 disambiguate loss and reordering over a given network path at a given
 time. This basic principle is also used in TCP-aNCR. While
 [I-D.blanton-tcp-reordering] describes four basic approaches on how
 to increase the DupThresh and discusses pros and cons of these
 approaches, presents [Zha+03] a relatively complex algorithm that
 saves the reordering extents in a histogram and calculates the
 DupThresh in a way that a certain percentage of samples is smaller
 then the DupThresh. [LM05] uses an EWMA for the same purpose. Both
 algorithms do not prevent all the spurious retransmissions by design.

 In contrast to the above mentioned algorithms Linux [Linux]
 implements a proactive scheme by setting the DupThresh to the highest
 detected reordering and resets only upon an RTO. To avoid a costly
 retransmission timeout due to the increased DupThresh Linux
 implements first an extension of the Limited Transmit algorithm,
 second limits the DupThresh to an upper bound of 127 duplicate ACKs,
 and third prematurely enters loss recovery if too few segments are
 in-flight to reach the DupThresh and no additional segments can send.
 Especially the last change is commendable since, besides TCP-NCR,
 none of the described algorithms in this section mention a similar
 concern.

 [Boh+06] and [Bha+04] presents proactive schemes based on timers by
 which the DupThresh is ignored altogether. After the timer is
 expired TCP initialize the loss recovery. In [Bha+04] this timer has
 a length of one RTT and is started when the first duplicate ACK is
 received, whereas the approach taken in [Boh+06] solely relies on
 timers to detect packet loss without taking into account any other
 congestion signals such as duplicate ACKs. It assigns each segment
 send a timestamp and retransmits the segment if the corresponding
 timer fires.

 TCP-NCR [RFC4653] tries to prevent spurious retransmits similar to
 [I-D.blanton-tcp-reordering] or [Zha+03] as it delays a
 retransmission to disambiguate loss and reordering. However, TCP-NCR
 takes a simplified approach by simply delay a retransmission by an
 amount based on the current cwnd (in comparison to standard TCP),
 while the other schemes use relatively complex algorithms in an
 attempt to derive a more precise value for DupThresh that depends on
 the current patterns of packet reordering. Many of the features
 offered by TCP-NCR have been taken into account while designing TCP-
 aNCR.

 Besides the proactive schemes, several other schemes have been
 developed to detect and mitigate needless retransmissions after the

Zimmermann, et al. Expires November 21, 2014 [Page 24]

Internet-Draft TCP-aNCR May 2014

 fact. The Eifel detection algorithm [RFC3522], the detection based
 on DSACKs [RFC3708], and F-RTO scheme [RFC5682] represent approaches
 to detect spurious retransmissions, while the Eifel response
 algorithm [RFC4015], [I-D.blanton-tcp-reordering], and Linux [Linux]
 present respectively implement algorithms to mitigate the changes
 these events made to the congestion control state. As discussed in
 Section 8.3 TCP-aNCR could be used in conjunction with these
 algorithms, with TCP-aNCR attempting to prevent spurious retransmits
 and some other scheme kicking in if the prevention failed.

10. IANA Considerations

 This memo includes no request to IANA.

11. Security Considerations

 By taking dedicated actions so that the perceived packet reordering
 in the network is either underestimating or overestimating by the use
 of an relative and absolute reordering, an attacker or misbehaving
 TCP receiver has in regards to TCP’s congestion control two options
 to bias a TCP-aNCR sender. An underestimation of the present packet
 reordering in the network occursi, if for example, a misbehaving TCP
 receiver already acknowledges segments while they are actually still
 in-flight, causing holes premature are closed in the sequence number
 space of the SACK scoreboard. With regard to TCP-aNCR the result of
 an underestimated packet reordering is a too small DupThresh,
 resulting in a premature loss recovery execution. In context of
 TCP’s congestion control the effects of such attacks are limited
 since the lower bound of TCP-aNCR’s DupThresh is the default value of
 three duplicate ACKs [RFC5681], so that in worst case TCP-aNCR
 behaves equal to TCP SACK [RFC6675].

 In contrast to an underestimation, an overestimation of the packet
 reordering in the network occurs, if for example, a misbehaving TCP
 receiver still further send SACKs for subsequent segments before it
 sends an acceptable ACK for the actually already received delayed
 segment, so that the hole in the sequence number space of the SACK
 scoreboard is later closed. In the context of TCP-aNCR the result of
 such an overestimation is a too large DupThresh, so that in the case
 of a packet loss TCP’s loss recovery is executed later than
 necessary. Similar to the previous case, the effects of delayed
 entry into the loss recovery are limited because on the one hand TCP-
 NCR’s DupThresh is used as an upper bound for TCP-aNCR’s variable
 DupThresh so that the entrance to the loss recovery and the
 adaptation of the congestion window may be delayed at most one RTT.
 On the other hand, such a limited delay of the congestion control

Zimmermann, et al. Expires November 21, 2014 [Page 25]

Internet-Draft TCP-aNCR May 2014

 adjustment has even in the worst case only a limited impact on the
 performance of TCP connection and has generally been regarded as safe
 for use on the Internet [Ban+01].

12. Acknowledgments

 The authors would like to thank Daniel Slot for his TCP-NCR
 implementation in Linux. We also thank the flowgrind [Flowgrind]
 authors and contributors for here performance measurement tool, which
 give us a powerful tool to analyze TCP’s congestion control and loss
 recovery behavior in detail.

13. References

13.1. Normative References

 [I-D.zimmermann-tcpm-reordering-detection]
 Zimmermann, A., Schulte, L., Wolff, C., and A. Hannemann,
 "Detection and Quantification of Packet Reordering with
 TCP", draft-zimmermann-tcpm-reordering-detection-01 (work
 in progress), November 2013.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP’s Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

 [RFC4653] Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
 "Improving the Robustness of TCP to Non-Congestion
 Events", RFC 4653, August 2006.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP’s Fast Recovery Algorithm",
 RFC 6582, April 2012.

Zimmermann, et al. Expires November 21, 2014 [Page 26]

Internet-Draft TCP-aNCR May 2014

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",
 RFC 6675, August 2012.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP’s Initial Window", RFC 6928, April 2013.

13.2. Informative References

 [Ban+01] Bansal, D., Balakrishnan, H., Floyd, S., and S. Shenker,
 "Dynamic Behavior of Slowly Responsive Congestion Control
 Algorithms", Proceedings of the Conference on
 Applications, Technologies, Architectures, and Protocols
 for Computer Communication (SIGCOMM’01) pp. 263-274,
 September 2001.

 [Bha+04] Bhandarkar, S., Sadry, N., Reddy, A., and N. Vaidya, "TCP-
 DCR: A Novel Protocol for Tolerating Wireless Channel
 Errors", IEEE Transactions on Mobile Computing vol. 4, no.
 5., pp. 517-529, September 2005.

 [Boh+06] Bohacek, S., Hespanha, J., Lee, J., Lim, C., and K.
 Obraczka, "A New TCP for Persistent Packet Reordering",
 IEEE/ACM Transactions on Networking vol. 2, no. 14, pp.
 369-382, April 2006.

 [Flowgrind]
 "Flowgrind Home Page", <http://www.flowgrind.net>.

 [I-D.blanton-tcp-reordering]
 Blanton, E., Dimond, R., and M. Allman, "Practices for TCP
 Senders in the Face of Segment Reordering",
 draft-blanton-tcp-reordering-00 (work in progress),
 February 2003.

 [LM05] Leung, C. and C. Ma, "Enhancing TCP Performance to
 Persistent Packet Reordering", KICS Journal of
 Communications and Networks vol. 7, no. 3, pp. 385-393,
 September 2005.

 [Linux] "The Linux Project", <http://www.kernel.org>.

 [RFC0896] Nagle, J., "Congestion control in IP/TCP internetworks",
 RFC 896, January 1984.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

Zimmermann, et al. Expires November 21, 2014 [Page 27]

Internet-Draft TCP-aNCR May 2014

 [RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion
 Window Validation", RFC 2861, June 2000.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC3522] Ludwig, R. and M. Meyer, "The Eifel Detection Algorithm
 for TCP", RFC 3522, April 2003.

 [RFC3708] Blanton, E. and M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions", RFC 3708,
 February 2004.

 [RFC4015] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
 for TCP", RFC 4015, February 2005.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 September 2009.

 [RFC5827] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
 P. Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827, May 2010.

 [Zha+03] Zhang, M., Karp, B., Floyd, S., and L. Peterson, "RR-TCP:
 A Reordering-Robust TCP with DSACK", Proceedings of the
 11th IEEE International Conference on Network Protocols
 (ICNP’03) pp. 95-106, November 2003.

Appendix A. Changes from previous versions of the draft

 This appendix should be removed by the RFC Editor before publishing
 this document as an RFC.

A.1. Changes from draft-zimmermann-tcpm-reordering-reaction-00

 o Improved the wording throughout the document.

 o Replaced and updated some references.

Zimmermann, et al. Expires November 21, 2014 [Page 28]

Internet-Draft TCP-aNCR May 2014

Authors’ Addresses

 Alexander Zimmermann
 NetApp, Inc.
 Sonnenallee 1
 Kirchheim 85551
 Germany

 Phone: +49 89 900594712
 Email: alexander.zimmermann@netapp.com

 Lennart Schulte
 Aalto University
 Otakaari 5 A
 Espoo 02150
 Finland

 Phone: +358 50 4355233
 Email: lennart.schulte@aalto.fi

 Carsten Wolff
 credativ GmbH
 Hohenzollernstrasse 133
 Moenchengladbach 41061
 Germany

 Phone: +49 2161 4643 182
 Email: carsten.wolff@credativ.de

 Arnd Hannemann
 credativ GmbH
 Hohenzollernstrasse 133
 Moenchengladbach 41061
 Germany

 Phone: +49 2161 4643 134
 Email: arnd.hannemann@credativ.de

Zimmermann, et al. Expires November 21, 2014 [Page 29]

