
ALTO W. Roome
Internet−Draft Alcatel−Lucent
Intended status: Standards Track N. Schwan
Expires: January 3, 2015 Thales Deutschland
 July 2, 2014

 ALTO Incremental Updates
 draft−roome−alto−incr−updates−01

Abstract

 The goal of Application−Layer Traffic Optimization (ALTO) is to
 bridge the gap between network and applications by provisioning
 network related information. This allows applications to make
 informed decisions, for example when selecting a target host from a
 set of candidates.

 Therefore an ALTO server provides network and cost maps to its
 clients. However, those maps can be very large, and portions of
 those maps may change frequently (the cost map in particular).

 This draft presents a method to provide incremental updates for these
 maps. The goal is to reduce the load on the ALTO client and server
 by transmitting just the updated portions of those maps.

Roome & Schwan Expires January 3, 2015 [Page 1]

Internet−Draft ALTO Incremental Updates July 2014

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet−Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet−Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet−Drafts. The list of current Internet−
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet−Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet−Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet−Draft will expire on January 3, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license−info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Roome & Schwan Expires January 3, 2015 [Page 2]

Internet−Draft ALTO Incremental Updates July 2014

Table of Contents

 1. Introduction . 4
 2. Issues With Incremental Update 6
 2.1. Communication Mechanism 6
 2.2. Polling Frequency . 6
 2.3. Version Specification 6
 2.4. Message Format . 6
 3. Incremental Update Extensions 8
 3.1. Date and Expires HTTP Headers 8
 3.2. Extensions to Cost Map Service 8
 3.3. Filtered Cost Map Service 9
 3.4. Incremental Network Map Update Service 9
 3.4.1. Media Type . 9
 3.4.2. HTTP Method . 9
 3.4.3. Accept Input Parameters 9
 3.4.4. Capabilities . 10
 3.4.5. Uses . 10
 3.4.6. Response . 10
 3.4.7. Information Resource Directory Example 11
 3.4.8. Request And Response Example 12
 3.4.9. Comments . 13
 3.5. Incremental Cost Map Update Service 13
 3.5.1. Media Type . 13
 3.5.2. HTTP Method . 13
 3.5.3. Accept Input Parameters 13
 3.5.4. Capabilities . 13
 3.5.5. Uses . 13
 3.5.6. Response . 14
 3.5.7. Information Resource Directory Example 14
 3.5.8. Request And Response Example 15
 3.5.9. Comments . 16
 4. Impact On Existing ALTO Clients 17
 5. Server Update Model . 18
 6. Alternatives . 20
 6.1. HTTP Conditional Retrieval 20
 6.2. JSON Patch . 20
 6.3. Persistant HTTP Connection 22
 6.4. Web Sockets . 22
 7. IANA Considerations . 23
 8. Security Considerations 24
 9. Conclusion . 25
 10. References . 26
 Appendix A. Acknowledgments 27
 Authors’ Addresses . 28

Roome & Schwan Expires January 3, 2015 [Page 3]

Internet−Draft ALTO Incremental Updates July 2014

1. Introduction

 The goal of Application−Layer Traffic Optimization (ALTO) is to
 bridge the gap between network and applications by provisioning
 network related information. This allows applications to make
 informed decisions, for example when selecting a target host from a
 set of candidates. Typical applications are file sharing, real−time
 communication and live streaming peer−to−peer networks [RFC5693] as
 well as Content Distribution Networks
 [I−D.jenkins−alto−cdn−use−cases].

 The ALTO protocol [RFC7285] is a client−server protocol based on the
 HyperText Transfer Protocol (HTTP) and encoded in JavaScript Object
 Notation (JSON). An ALTO server provides several services, two of
 which are relavent to this draft.

 The ALTO Network Map Service makes the large space of endpoint
 addresses manageable by partitioning them into a small set of
 equivalence classes, called Provider−defined Identifiers, or PIDs.
 Each PID is defined by a set of endpoint address prefixes, or CIDRs
 [RFC4632]. The ALTO Server defines PIDs it sees fit. Some servers
 might define a fine−grained Network Map with thousands of PIDs, while
 others might define a course−grained Map with tens of PIDs. The only
 requirement is that the network costs for all endpoints in a PID are
 similar.

 The ALTO Cost Map Service presents the unidirectional network cost
 between each pair of PIDs. Costs are numeric and non−negative, but
 an ALTO Server may omit unknown costs. Essentially a Cost Map is a
 (possibly) sparse NxN matrix, where N is the number of PIDs in the
 Network Map.

 The size of these maps depends primarily on the number of PIDs the
 ALTO Server choses to define. Because they go with the square of the
 number of PIDs, Cost Maps in particular can become very large. As an
 example, a Network Map with 5,000 PIDs, each with 10 CIDRs, is
 roughly 1.25 megabytes. A fully specified Cost Map for 5,000 PIDs
 takes up to 417 megabytes.

 These maps may change at any time. Although not a protocol
 requirement, we expect that for many ALTO Servers, the Cost Map will
 change much more frequently than the Network Map. For example, the
 Cost Map might change every few minutes, as opposed to hours, if not
 days, between changes to the Network Map. However, we expect that
 only a small portion of these maps will change at any given time.

 Thus with the base ALTO protocol, if a client wishes to maintain an
 up−to−date copy of the Network and Cost Maps, it must fetch a large

Roome & Schwan Expires January 3, 2015 [Page 4]

Internet−Draft ALTO Incremental Updates July 2014

 amount of data very frequently, even though only a small fraction of
 that data will have changed. This puts additional load on the ALTO
 Server, the ALTO Client and the network. This draft presents an
 extension to the ALTO protocol to allow a client to fetch just the
 updated portion of those maps.

 Comments and discussions about this memo should be directed to the
 ALTO working group: alto@ietf.org.

Roome & Schwan Expires January 3, 2015 [Page 5]

Internet−Draft ALTO Incremental Updates July 2014

2. Issues With Incremental Update

 There are several issues involved with incremental updates:

2.1. Communication Mechanism

 How does the server send incremental updates to the client? The two
 basic approaches are "server−push", where the server sends updates to
 the client when they become available, versus "client−pull", where
 the client periodically asks the server to send any changes.

 In general, "server−push" is more efficient than "client−pull".
 However, ALTO is based on HTTP ([RFC2616]), and HTTP is a "client−
 pull" protocol. While there are push−like extentions to HTTP, they
 are not as widely supported as the basic HTTP protocol. Hence we
 will focus on solutions in which the client periodically polls the
 server via simple HTTP requests.

2.2. Polling Frequency

 If we use a polling method, how often should a client check the
 server for updates? The simplest solution is to use the HTTP Expires
 header ([RFC2616]). The full Network Map and Cost Map services
 return that header in the response, as a guideline for the client as
 to when to check for updates.

 An alternative would be to add an "expires" field to the "meta"
 section of the response message, so the expiration date stays with
 the message body instead of being in the HTTP headers.

2.3. Version Specification

 How does a client tell the server what version the client has?
 Rather than inventing a new mechanism for that, we propose extending
 the ALTO protocol’s "version tag" concept. The base protocol
 requires an ALTO Server to assign a unique id ("tag") to the Network
 Map, and update the tag every time the Network Map changes. We will
 extend that concept to Cost Maps as well.

2.4. Message Format

 The final question is how to represent an incremental update.
 Fortunately the ALTO Cost Map response message works very nicely to
 describe incremental updates; the client can update the cost pairs in
 the message, and leave the other data as is.

 JSON Patch ([RFC6902]) can also represent incremental changes.
 However, as described in Section 6.2, we believe the existing ALTO

Roome & Schwan Expires January 3, 2015 [Page 6]

Internet−Draft ALTO Incremental Updates July 2014

 Cost Map message is more appropriate.

 However, the ALTO Network Map response message does not work as well
 for incremental updates, especially if PIDs have hundreds of prefixes
 and typical updates involve moving a few prefixes from one PID to
 another. Accordingly we will define a new message for Network Map
 Updates. This provides a compact represenation of the expected
 update actions: moving prefixes between PIDs, deleting unused
 prefixes, and adding or deleting PIDs.

Roome & Schwan Expires January 3, 2015 [Page 7]

Internet−Draft ALTO Incremental Updates July 2014

3. Incremental Update Extensions

 Incremental update involves two new services, plus extensions to the
 base protocol’s Network Map and Cost Map services.

3.1. Date and Expires HTTP Headers

 If an ALTO Server supports incremental update for a Network Map or
 Cost Map Service, the server SHOULD return the HTTP Date and Expires
 headers with the responses for those services. The client SHOULD
 request an update no sooner than the date in the Expires header. If
 omitted, the client would add a reasonable guess to the date in the
 Date header, or if ommitted, to the current time.

3.2. Extensions to Cost Map Service

 If an ALTO Server supports incremental update for a Cost Map Service,
 the server MUST assign a "version tag" ("vtag") to each version of
 the Cost Map. As with Network Map vtags, the server MUST change the
 tag whenever any cost in the map changes. The ALTO Server puts the
 tag in the "meta" section of the response message, just as it does
 for a Network Map response.

 When the Network Map changes −− that is, when the ALTO Server assigns
 a new tag to the Network Map −− the ALTO Server MUST assign a new tag
 to the Cost Map, even if no costs change.

 Here is an example Cost Map response:

 HTTP/1.1 200 OK
 Date: TBA
 Expires: TBA
 Content−Length: TBA
 Content−Type: application/alto−costmap+json

 {
 "meta": {
 "vtag":
 {"resource−id": "numerical−routing−cost−map",
 "tag": "3141592653"},
 "dependent−vtags" : [
 {"resource−id": "my−default−network−map",
 "tag": "1266506139"}
],
 "cost−type" : {"cost−mode": "numerical",
 "cost−metric": "routingcost"}
 },
 "cost−map": { }

Roome & Schwan Expires January 3, 2015 [Page 8]

Internet−Draft ALTO Incremental Updates July 2014

 }

 This addition is only required for Cost Map resources for which the
 ALTO Server chooses to offer incremental updates.

3.3. Filtered Cost Map Service

 The Filtered Cost Map Service MUST NOT return the Cost Map vtag (it
 does return the Network Map vtag, of course). If the client
 maintains a copy of the Full Cost Map, the client MUST NOT save the
 Filtered Cost Map costs in that table. That is, even if the ALTO
 Server provides an Incremental Cost Map Update Service, the Filtered
 Cost Map Service works exactly as described in [RFC7285].

 The reason is that Full and Filtered Cost Map Services may return
 inconsistent costs. For example, the costs returned by the Filtered
 Cost Map Service may be more up−to−date than the costs returned by
 the Full Cost Map Service (see Section 5). This inconsistency is
 inherent in the base ALTO protocol, because an ALTO Server may update
 costs at any time. We do not believe this inconsistency will be a
 problem, because we do not expect clients will use both the Full and
 Filtered Cost Map Services. Specifically, some clients, especially
 high−volume clients, will fetch and save the Full Cost Map, and use
 that to calculate costs as needed. These clients will use the
 incremental update service to get changes to the full Cost Map. Other
 clients will use the Filtered Cost Map Service whenever they need to
 evaluate costs. These clients will not bother to fetch or save the
 Full Cost Map.

3.4. Incremental Network Map Update Service

 This new service returns the changes between the current Network Map
 and a version previously retrieved by the client.

3.4.1. Media Type

 The media type is the new type "application/
 alto−networkmapupdate+json".

3.4.2. HTTP Method

 An Incremental Network Map Update is requested using the HTTP POST
 method.

3.4.3. Accept Input Parameters

 An ALTO Client supplies the vtag of the previous version by
 specifying media type "application/alto−vtag+json" with an HTTP POST

Roome & Schwan Expires January 3, 2015 [Page 9]

Internet−Draft ALTO Incremental Updates July 2014

 body containing a JSON object of type VersionTag, as defined in
 Section 10.3 of [RFC7285]:

 object {
 ResourceID resource−id;
 JSONString tag;
 } VersionTag;

3.4.4. Capabilities

 None.

3.4.5. Uses

 The Resource ID of the Network Map for which this resource supplies
 incremental updates.

3.4.6. Response

 The "meta" field of an Incremental Network Map Update response MUST
 include the "vtag" key with the latest version of the Network Map.
 The "resource−id" is for the Full Network Map Service, not the
 Incremental Update Service. In other words, the Incremental Update
 Service returns the same "vtag" that the Full Network Map Service
 would return.

 The "meta" field MUST include a "dependent−vtags" key with the
 "resource−id" of the Full Network Map Service and the "tag" of the
 client’s current version. Thus the body of the response contains the
 changes from the "dependent−vtags" version to the "vtag" version.

 The body of the response includes three data members: "network−map−
 add", "network−map−delete" and "network−map−delete−pids". These
 members MAY be empty JSON objects. A JSON Server MAY omit any data
 member that would otherwise be empty.

 The "network−map−add" member is a NetworkMapData object, as defined
 in Section 11.2.1.6 of the ALTO protocol. The syntax is identical to
 that of the "network−map" member in a Network Map Service response
 message, but the semantics are different: the client MUST add the
 prefixes listed in the "network−map−add" object for a PID to the
 prefixes previously defined for that PID. If any prefix had been in
 another PID, the client MUST remove that prefix from the former PID.
 If a PID was not defined in the previous version, the client MUST add
 that PID to its list of PIDs.

 The "network−map−delete" member is an EndpointAddressGroup object, as
 defined in Section 10.4.5 of the ALTO protocol. The client MUST

Roome & Schwan Expires January 3, 2015 [Page 10]

Internet−Draft ALTO Incremental Updates July 2014

 delete the prefixes listed in this member from whatever PID they had
 been in before. The client MUST ignore any prefix that was not
 previously in some PID.

 The "network−map−delete−pids" member is an array of PID names. The
 client MUST delete all PIDs in that list, and remove all prefixes in
 those PIDs, unless "network−map−add" assigns those prefixes to
 another PID. The client MUST ignore any PID name that did not exist
 in the previous version.

 An ALTO Server MUST ensure that the update actions implicit in these
 three members do not conflict, so an ALTO Client MAY apply those
 updates in any order. Specifically, the same prefix MUST NOT appear
 in both the "network−map−add" and "network−map−delete" lists, and the
 same PID MUST NOT appear in both the "network−map−add" and "network−
 map−delete−pids" lists.

 If there have been no changes since the version specified by the
 client’s tag, the data members MUST be empty or omitted. In this
 case, the "tag" in "vtag" MUST be the same as the tag supplied by the
 client.

 If the client’s tag is invalid, or if it is so old that the ALTO
 Server is unable to provide incremental updates relative to that
 version, or if there have been so many changes that the ALTO Server
 is unwilling to provide incremental updates relative to that version,
 the ALTO Server MUST return an E_INVALID_FIELD_VALUE error response.
 In this case, the client SHOULD use the Full Network Map Service to
 retrieve the latest version.

 The Incremental Cost Map Update response SHOULD include the HTTP Date
 and Expires headers, as a hint to the client as to when to request
 another incremental update.

3.4.7. Information Resource Directory Example

 This is an example of the Information Resource Directory (IRD) entry
 for an Incremental Network Map Update Service resource for a Full
 Network Map Service with Resource ID "my−default−network−map":

Roome & Schwan Expires January 3, 2015 [Page 11]

Internet−Draft ALTO Incremental Updates July 2014

 {
 "meta" : { },
 "resources" : {
 "my−default−network−map" : {
 ...
 },
 "my−default−network−map−update" : {
 "uri" : "http://alto.example.com/networkmap−update",
 "media−type" : "application/alto−networkmapupdate+json",
 "accepts" : "application/alto−vtag+json",
 "uses" : ["my−default−network−map"]
 },
 ...
 }

3.4.8. Request And Response Example

 In this example, the Incremental Network Map Update Service adds a
 prefix to PID1, deletes another prefix from whatever PID it had been
 in, and deletes PID2 altogether.

POST /networkmap/incremental HTTP/1.1
Host: custom.alto.example.com
Content−Length: TBA
Content−Type: application/alto−vtag+json
Accept: application/alto−networkmapupdate+json,application/alto−error+json

{"vtag": {"resource−id": "NETWORK−MAP−ID", "tag": "OLD−TAG"}}

HTTP/1.1 200 OK
Date: TBA
Expires: TBA
Content−Length: TBA
Content−Type: application/alto−networkmapupdate+json

{
 "meta": {
 "vtag":
 {"resource−id": "NETWORK−MAP−ID", "tag": "NEW−TAG"},
 "dependent−vtags":
 [{"resource−id": "NETWORK−MAP−ID", tag: "OLD−TAG"}]
 },
 "network−map−add": { "PID1": {"ipv4": ["192.0.2.0/24"]} },
 "network−map−delete": { "ipv4": [192.0.3.0/24] },
 "network−map−delete−pids": ["PID2"]
}

Roome & Schwan Expires January 3, 2015 [Page 12]

Internet−Draft ALTO Incremental Updates July 2014

3.4.9. Comments

 A client can discover the Incremental Update Service for a given
 Network Map by looking for a resource that uses the desired Network
 Map resource, returns the media type "application/
 alto−networkmapupdate+json", and accepts the media type "application/
 alto−vtag+json".

3.5. Incremental Cost Map Update Service

 This new service returns the changes between the current Cost Map and
 a version previously retrieved by the client.

3.5.1. Media Type

 The media type is "application/alto−costmap+json", the same as for a
 Full or Filtered Cost Map.

3.5.2. HTTP Method

 An Incremental Cost Map Update is requested using the HTTP POST
 method.

3.5.3. Accept Input Parameters

 An ALTO Client supplies the vtag of the previous version by
 specifying media type "application/alto−vtag+json" with an HTTP POST
 body containing a JSON object of type VersionTag, as defined in
 Section 10.3 of [RFC7285]:

 object {
 ResourceID resource−id;
 JSONString tag;
 } VersionTag;

3.5.4. Capabilities

 There are no explicit capabilities for this service. This service
 uses the cost metric and cost mode of the Full Cost Map Service for
 which this service provides incremental updates.

3.5.5. Uses

 The Resource ID of the Cost Map for which this resource supplies
 incremental updates. An Incremental Cost Map Update resource MUST
 NOT list a Network Map resource. The Network Map is implicit in the
 "uses" list of the Cost Map resource.

Roome & Schwan Expires January 3, 2015 [Page 13]

Internet−Draft ALTO Incremental Updates July 2014

3.5.6. Response

 The "meta" field of an Incremental Cost Map Update response MUST
 include the "vtag" key with the latest version of the Cost Map. The
 "resource−id" is for the Full Cost Map Service, not the Incremental
 Update Service; the Incremental Update Service returns the same
 "vtag" that the Full Cost Map Service would return.

 The "meta" field MUST also include a "dependent−vtags" key with the
 vtag of the client’s version of the Cost Map, to indicate that the
 body of the response contains the changes from the "dependent−vtags"
 version to the "vtag" version.

 "dependent−vtags" must also include the vtag of the version of the
 Network Map resource that defines the PIDs in this Cost Map.

 The body of the response has the cost points that changed between the
 old version and the current version. Costs not mentioned in the body
 keep the same values as before. If the cost for that source/
 destination pair is no longer known the ALTO Server MUST specify the
 cost as "null" (a reserved token in JSON).

 An ALTO Client MUST delete all cost points with the value "null",
 replace (or add) the other cost points in the response, and leave
 unchanged any cost points defined in the previous version.

 If the version supplied by the client is still current, the "network−
 map" body will be empty, and the "tag" in "vtag" will be the same as
 the tag supplied by the client.

 If the client’s tag is invalid, or if it is so old that the ALTO
 Server is unable to provide incremental updates relative to that
 version, or if there have been so many changes that the ALTO Server
 is unwilling to provide incremental updates relative to that version,
 the ALTO Server MUST return an E_INVALID_FIELD_VALUE error response.
 The client MUST use the Full Cost Map Service to retrieve the latest
 version.

 As with the Full Cost Map service, the Incremental Cost Map Update
 response SHOULD include the HTTP Date and Expires headers, as a hint
 to the client as to when to request another incremental update.

3.5.7. Information Resource Directory Example

 This is an example of the Information Resource Directory (IRD) entry
 for an Incremental Cost Map Update Service resource for a Full Cost
 Map Service with Resource ID "numerical−routing−cost−map":

Roome & Schwan Expires January 3, 2015 [Page 14]

Internet−Draft ALTO Incremental Updates July 2014

 {
 "meta" : { },
 "resources" : {

 "numerical−routing−cost−map" : {
 ...
 },
 "numerical−routing−cost−map−update" : {
 "uri" : "http://alto.example.com/costmap/num/routingcost−update",
 "media−type" : "application/alto−costmap+json",
 "accepts" : "application/alto−vtag+json",
 "uses" : ["numerical−routing−cost−map"]
 },
 ...
 }

3.5.8. Request And Response Example

 In this example, the Incremental Cost Map Update Service reports that
 the cost from PID1 to PID2 is 10, and the cost from PID1 to PID99 is
 no longer available. All other costs remain the same as before.

Roome & Schwan Expires January 3, 2015 [Page 15]

Internet−Draft ALTO Incremental Updates July 2014

 POST /costmap/num/routingcost/incremental HTTP/1.1
 Host: custom.alto.example.com
 Content−Length: TBA
 Content−Type: application/alto−vtag+json
 Accept: application/alto−costmap+json,application/alto−error+json

 {"vtag": {"resource−id": "COST−MAP−ID", "tag": "OLD−CM−TAG"}}

 HTTP/1.1 200 OK
 Date: TBA
 Expires: TBA
 Content−Length: TBA
 Content−Type: application/alto−costmap+json

 {
 "meta": {
 "vtag":
 {"resource−id": "COST−MAP−ID", "tag": "NEW−CM−TAG"},
 "dependent−vtags": [
 {"resource−id": "COST−MAP−D", tag: "OLD−CM−TAG"},
 {"resource−id": "NETWORK−MAP−ID", tag: "OLD−NM−TAG"}
]
 },
 "cost−map": {
 "PID1": {"PID2": 10, "PID99": null}
 }
 }

3.5.9. Comments

 A client can discover the Incremental Update Service for a given Cost
 Map by looking for a resource that uses the desired Cost Map
 resource, returns the media type "application/alto−costmap+json", and
 accepts the media type "application/alto−vtag+json".

 The ALTO protocol says that a cost must be non−negative, so it is
 tempting to use the value −1, instead of "null", to indicate a cost
 that is no longer available. However, that would preclude future
 ALTO extensions from allowing negative costs. It is also tempting to
 use "NaN", for "Not a Number". Unfortunately, the JSON specification
 does not allow NaN as a numerical value.

 The Incremental Cost Map Update Service is independent of the
 Incremental Network Map Update Service. An ALTO Server can implement
 one without the other.

Roome & Schwan Expires January 3, 2015 [Page 16]

Internet−Draft ALTO Incremental Updates July 2014

4. Impact On Existing ALTO Clients

 The incremental update services do not affect clients who are not
 aware of this extension. According to the ALTO protocol, clients
 must ignore fields that are not defined in the base protocol, so
 existing clients should ignore the new version tag in the Cost Map
 response. Similarly, clients who are not aware of the new
 incremental update services will simply ignore those resources in the
 Information Resource Directory, and will never use those URIs.

Roome & Schwan Expires January 3, 2015 [Page 17]

Internet−Draft ALTO Incremental Updates July 2014

5. Server Update Model

 While this extension does not dictate how an ALTO Server would
 implement incremental updates, it is useful to outline one possible
 strategy.

 First we will consider cost map updates. We start by assuming
 updates arrive individually rather than en masse. That is, if there
 are 1,000 PIDs, cost updates trickle in a few at a time, rather than
 all 1,000,000 costs arriving in one batch.

 The server keeps two copies of the Cost Map: a "frozen" version and a
 "latest" version. The server also keeps a "change log" with the
 differences. The frozen version has a tag, the latest version does
 not. The Full Cost Map Service uses the frozen map, while the
 Filtered Cost Map Service uses the latest map.

 As cost updates arrive, the server immediately applies them to the
 latest version, and saves the updated cost points in the change log.
 When the change log becomes large enough, the server applies all the
 logged updates to the frozen version, and assigns it a new tag.

 Thus the frozen version of the Cost Map is updated in well defined
 steps. Each step has a tag as the version id, and the change logs
 contain the incremental changes between each version.

 The server keeps the old change logs in a FIFO list indexed by the
 Cost Map version tags. That is, if tags are "1", "2", etc, then the
 change log for version "1" has the changes from "1" to "2", the
 change log for version "2" has the changes from "2" to "3", etc.
 When these logs take up too much space, the server deletes the oldest
 change logs. When a client requests an incremental update, the
 server finds the change log for the client’s tag, and returns all
 cost updates in that log and all subsequent logs. If the server
 cannot find the client’s tag in the change log table, the server
 returns an "invalid field" error code, and the client must retrieve
 the full Cost Map to get the updated costs. This covers the error
 cases of the tag being totally invalid as well as being too old.

 We divide network map updates into two categories. Minor updates
 move some prefixes from one PID to another, perhaps to reflect
 temporary rerouting, but do not change the PID names. Major updates
 change PID names, add or delete PIDs, etc.

 An ALTO Server can handle minor updates by keeping change logs with
 the prefixes for the updated PIDs, as described above for cost maps.
 When a client requests an incremental update, logically concatenate
 the logs from the client’s tag to the current version.

Roome & Schwan Expires January 3, 2015 [Page 18]

Internet−Draft ALTO Incremental Updates July 2014

 For major network map changes, the server could just refuse to
 provide incremental updates. That is, when there is a major network
 map change, the server would simply discard all the old change logs.

 Finally, note that the Incremental Network Map Update Service is
 independent of the Incremental Cost Map Update Service. An ALTO
 Server may choose to provide Incremental Cost Map Updates without
 providing Incremental Network Map Updates.

Roome & Schwan Expires January 3, 2015 [Page 19]

Internet−Draft ALTO Incremental Updates July 2014

6. Alternatives

 This section presents several alternative approaches, and explains
 why we do not think they are appropriate.

6.1. HTTP Conditional Retrieval

 The HTTP Protocol ([RFC2616]) defines several conditional−retrieval
 mechanisms, such as the If−Modified−Since and If−None−Match headers.
 These allow a client to retrieve a new version of a map only if the
 resource has changed since the client’s last access.

 However, these mechanisms do not allow incremental update. If only a
 few costs changed, the server would still have to send the entire
 map. Because we expect that parts of the maps will change
 frequently, we do not think these approaches are satisfactory.

6.2. JSON Patch

 A more promising alternative is JSON Patch ([RFC6902]). This is a
 standardized method of describing the changes between two versions of
 a JSON data structure. As such, it is ideally suited for incremental
 update. When a client requests an incremental update from the
 server, the server would return a JSON Patch description of the
 changes. Presumably JSON libraries will provide procedures to apply
 a patch to an previously retrieved JSON data structure, and to create
 a patch describing the differences between two versions of a JSON
 data structure. Clients can use the former methods to apply patches,
 and servers can use the latter to create them, so little additional
 programming is required.

 Despite those advantages, we do not believe JSON Patch is a good
 solution for incremental update for ALTO. First, note that JSON
 Patch does not solve the "what version?" problem. We still need to
 assign version tags to cost maps, and we would still need new
 services similar to our Incremental Network and Cost Map Update
 Services. The difference would be that the body of the responses
 would have JSON Patch data instead of the Network and Cost Map
 structures.

 Second, note that the Network and Cost Map response messages defined
 in [RFC7285] are, for all practical purposes, "patch" structures.
 All that is needed is the semantics that they represent changes to an
 existing map, rather than a completely new map. It is true that JSON
 Patch can represent a wider class of changes, but it is not clear
 that power is necessary for the incremental changes that an ALTO
 Server will make.

Roome & Schwan Expires January 3, 2015 [Page 20]

Internet−Draft ALTO Incremental Updates July 2014

 Next, JSON Patch is less efficient than our proposal. For example,
 suppose the cost for SRC−PID to DEST−PID changes to 123. Our
 proposal represents that as:

 {"SRC−PID": {"DEST−PID": 123}}

 JSON Patch represents that change as:

 {"replace": "cost−map.SRC−PID.DEST−PID", "value": 123}

 Finally, we have serious doubts as to whether JSON Patch can handle
 maps of the size we expect. To see the problem, realize that
 incremental updates are only important for large maps. For small
 maps, a client can just retrieve the full version.

 For a client to take advantage of an "apply patch" method in a JSON
 library, the client would almost certainly have to store the Cost Map
 using a Document Object Model (DOM) representation provided by that
 library. A DOM representation of a Cost Map with (say) 1,000 PIDs
 requires 1,000 associative tables, each of which has 1,000 entries.
 That takes a considerable amount of space.

 There are far more efficient ways to represent an ALTO Cost Map. For
 example, an implicit assumption is that costs change more frequently
 than network maps. So a client can sort the PID names, assign them
 numbers from 0 to N−1, and then store the costs in (possibly sparse)
 numerically−indexed NxN matrix instead of a string−based lookup
 table. Furthermore, a general JSON library would store numerical
 values as double precision. It is difficult to believe that any ALTO
 Server can provide costs that are accurate enough to require double
 precision. A single precision, numerically−indexed matrix is much
 smaller than a double precision string−indexed DOM representation,
 and can be searched much faster.

 Therefore if we used JSON Patch, a client might be forced to use a
 very inefficient representation of a Cost Map.

 JSON Patch causes similar problems for an ALTO Server. To take full
 advantage of JSON Patch, a server would have to present two DOM
 versions of the Cost Map to a "calculate patch" method. Those
 representations would take a lot of space. Furthermore, calculating
 the difference between two DOMs of that size will tax most computers.
 And finally, as we outlined above, we expect the ALTO Server will
 know the difference anyway.

 To summarize, we believe that for ALTO incremental update, JSON Patch
 is an overly general approach that would be far too expensive to use
 for networks with a large number of PIDs.

Roome & Schwan Expires January 3, 2015 [Page 21]

Internet−Draft ALTO Incremental Updates July 2014

6.3. Persistant HTTP Connection

 Another alternative is for a client to create a persistant HTTP
 connection (e.g., "Keep−Alive") to the ALTO Server’s Filtered Cost
 Map Service, and send repeated search requests on that connection.
 This isn’t an incremental update service as such. But it avoids the
 overhead of setting up a TCP connection for each request, and hence
 allows a client to query the ALTO server more efficiently.

6.4. Web Sockets

 Web Sockets [RFC6455] are an alternative to the client−pull model.
 Web Sockets are a standard mechanism to establish a persistent bi−
 directional stream of messages between a client and a server. Web
 Sockets are not HTTP, but the initial message looks enough like HTTP
 that Web Socket aware server can upgrade the connection to a Web
 Socket stream, while older web servers will just recognize the HTTP
 and will return a default page.

 While there are several ways to use Web Sockets for incremental
 update in ALTO, the simplest would be to define a "Continous Update
 Service". A client would use this service instead of the Full
 Network Map and Full Cost Map Services. A client would establish a
 Web Socket connection. The server would immediately respond with a
 full network map, followed a full cost map. After that initial
 setup, the server would continue to send cost map and network map
 changes as they become available.

 This has the advantage of providing almost immediate updates to
 clients, and it removes the need for version tags on cost maps. But
 it has the disadvantage of being a different protocol. Both the
 client and server must support Web Sockets. That shouldn’t be a
 problem for most ALTO Servers. But ALTO Clients are likely to be in
 small, embedded systems, and might have very minimal HTTP support
 (Web Sockets were originally intended for browser−based applications
 like stock tickers and interactive games). Web Sockets also require
 cooperation from any proxy servers along the way. And finally, Web
 Sockets require maintaining a persistant connection between the
 client and server, as well as through any proxy server along the way,
 which could lead to scaling problems.

Roome & Schwan Expires January 3, 2015 [Page 22]

Internet−Draft ALTO Incremental Updates July 2014

7. IANA Considerations

 The Incremental Update service as proposed introduces a new MIME
 types "application/alto−vtag+json" and "application/
 alto−networkmapupdate+json", which need to be registered.

Roome & Schwan Expires January 3, 2015 [Page 23]

Internet−Draft ALTO Incremental Updates July 2014

8. Security Considerations

 This extension does not introduce any security issues that are not
 present in the base ALTO protocol.

Roome & Schwan Expires January 3, 2015 [Page 24]

Internet−Draft ALTO Incremental Updates July 2014

9. Conclusion

 This document describes different options that can be applied to
 support incremental updates of ALTO Network and Cost maps. In
 particular it comprises option for client and server to synchronize
 themselves about their current map state, and further includes
 options on how to encode partial updates. Finally it proposes an new
 incremental update service and evaluates different options
 numerically.

Roome & Schwan Expires January 3, 2015 [Page 25]

Internet−Draft ALTO Incremental Updates July 2014

10. References

 [I−D.jenkins−alto−cdn−use−cases]
 Niven−Jenkins, B., Watson, G., Bitar, N., Medved, J., and
 S. Previdi, "Use Cases for ALTO within CDNs",
 draft−jenkins−alto−cdn−use−cases−01 (work in progress),
 June 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, BCP 14, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Burners−Lee, "Hypertext
 Transfer Protocol −− HTTP/1.1", RFC 2616, June 1999.

 [RFC4632] Fuller, V. and T. Li, ""Classless Inter−domain Routing
 (CIDR): The Internet Address Assignment and Aggregation
 Plan", RFC 4632, BCP 122, August 2006.

 [RFC5693] Seedorf, J. and E. Burger, "Application−Layer Traffic
 Optimization (ALTO) Problem Statement", RFC 5693,
 October 2009.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, December 2011.

 [RFC6902] Bryan, P. and M. Nottingham, "JavaScript Object Notation
 (JSON) Patch", RFC 6902, April 2013.

 [RFC7285] Alimi, R., Penno, R., and Y. Yang, "Application−Layer
 Traffic Optimization (ALTO) Protocol",
 draft−ietf−alto−protocol−27 (work in progress), June 2014.

Roome & Schwan Expires January 3, 2015 [Page 26]

Internet−Draft ALTO Incremental Updates July 2014

Appendix A. Acknowledgments

 The authors would like to thank Vijay Gurbani for his valuable input
 and excellent feedback to this document.

 Nico Schwan is partially supported by the ENVISION project
 (http://www.envision−project.org), a research project supported by
 the European Commission under its 7th Framework Program (contract no.
 248565). The views and conclusions contained herein are those of the
 authors and should not be interpreted as necessarily representing the
 official policies or endorsements, either expressed or implied, of
 the ENVISION project or the European Commission.

Roome & Schwan Expires January 3, 2015 [Page 27]

Internet−Draft ALTO Incremental Updates July 2014

Authors’ Addresses

 Wendy Roome
 Alcatel−Lucent/Bell Labs
 600 Mountain Ave, Rm 3B−324
 Murray Hill, NJ 07974
 USA

 Phone: +1−908−582−7974
 Email: w.roome@alcatel−lucent.com

 Nico Schwan
 Thales Deutschland
 Lorenzstrasse 10
 Stuttgart 70435
 Germany

 Email: nico.schwan@thalesgroup.com

Roome & Schwan Expires January 3, 2015 [Page 28]

