
ALTO WG W. Roome
Internet−Draft Alcatel−Lucent
Intended status: Standards Track X. Shi
Expires: April 30, 2015 Y. Yang
 Yale University
 October 27, 2014

 ALTO Incremental Updates Using Server−Sent Events (SSE)
 draft−roome−alto−incr−update−sse−00

Abstract

 The goal of Application−Layer Traffic Optimization (ALTO) [RFC7285]
 is to bridge the gap between network and applications by providing
 network related information to non−priviledged, application−level
 clients. This allows applications to make informed decisions, for
 example when selecting a target host from a set of candidates.

 Therefore an ALTO Server provides network and cost maps to its
 clients. However, those maps can be very large, and portions of
 those maps may change frequently (cost maps in particular).

 This draft presents a method to provide incremental updates for these
 maps. The goal is to reduce the load on the ALTO Client and Server
 by transmitting just the updated portions of those maps.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet−Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet−Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet−Drafts. The list of current Internet−
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet−Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet−Drafts as reference
 material or to cite them other than as "work in progress."

Roome, et al. Expires April 30, 2015 [Page 1]

Internet−Draft ALTO Incremental Updates October 2014

 This Internet−Draft will expire on April 30, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license−info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Roome, et al. Expires April 30, 2015 [Page 2]

Internet−Draft ALTO Incremental Updates October 2014

Table of Contents

 1. Introduction . 4
 2. Incremental Update Message Format 4
 2.1. JSON Merge Patch . 4
 2.2. JSON Merge Patch Applied to Network Map Messages 5
 2.3. JSON Merge Patch Applied to Cost Map Messages 7
 3. Server−Sent Events . 8
 3.1. Overview of SSEs . 8
 3.2. ALTO SSE Update Messages 9
 3.3. Keep−Alive Messages 10
 4. Update Stream Service . 10
 4.1. Media Type . 10
 4.2. HTTP Method . 10
 4.3. Accept Input Parameters 10
 4.4. Capabilities . 10
 4.5. Uses . 11
 4.6. Event Order Requirements 11
 4.7. Response . 11
 4.8. Client Actions When Receiving Update Messages 12
 5. Filtered Update Stream Service 13
 5.1. HTTP Method . 13
 5.2. Accept Input Parameters 13
 5.3. Response . 14
 6. IRD Example . 17
 7. Design Decisions and Discussion 18
 7.1. Not Allowing Stream Restart 18
 7.2. Is Incremental Update Useful for Network Maps? 19
 8. Security Considerations 19
 9. IANA Considerations . 19
 10. References . 19
 Authors’ Addresses . 20

Roome, et al. Expires April 30, 2015 [Page 3]

Internet−Draft ALTO Incremental Updates October 2014

1. Introduction

 The Application−Layer Traffic Optimization (ALTO) [RFC7285] protocol
 provides network related information to client applications so that
 clients may make informed decisions. An ALTO Server provides network
 and cost maps, which may be very large and change very frequently.

 Instead of having the clients request for a new complete network map
 or cost map every time, an incremental update from the server is much
 more efficient. The goals are to reduce the load on the ALTO Client
 and Server by efficiently transmitting only the updated portions of
 those maps, and to provide timely updates to clients.

 This draft uses the JSON Merge Patch message format [RFC7386] to
 encode the incremental update messages for network maps and cost
 maps, and uses Server−Sent Events (SSE) as the transport mechanism to
 deliver those updates to clients.

2. Incremental Update Message Format

2.1. JSON Merge Patch

 [RFC7386] defines JSON Merge Patch format and transport, which
 enables applications to update the server resources via the PATCH
 method [RFC5789] of HTTP. This draft adopts the format of the Merge
 Patch messages to encode our incremental updates objects, but uses a
 different transport mechanism.

 The process of applying a Merge Patch is defined by the following
 algorithm, as specified in [RFC7386]:

Roome, et al. Expires April 30, 2015 [Page 4]

Internet−Draft ALTO Incremental Updates October 2014

 define MergePatch(Target, Patch) {
 if Patch is an Object {
 if Target is not an Object {
 Target = {} # Ignore the contents and
 # set it to an empty Object
 }
 for each Name/Value pair in Patch {
 if Value is null {
 if Name exists in Target {
 remove the Name/Value pair from Target
 }
 } else {
 Target[Name] = MergePatch(Target[Name], Value)
 }
 }
 return Target
 } else {
 return Patch
 }
 }

 Note that null as the value of a name/value pair will remove the pair
 with "name" in the original JSON document.

2.2. JSON Merge Patch Applied to Network Map Messages

 Section 11.2.1.6 of [RFC7285] defines the format of a Network Map
 message. Here is a simple example:

Roome, et al. Expires April 30, 2015 [Page 5]

Internet−Draft ALTO Incremental Updates October 2014

 {
 "meta" : {
 "vtag": {
 "resource−id": "my−default−network−map",
 "tag": "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
 }
 },
 "network−map" : {
 "PID1" : {
 "ipv4" : [
 "192.0.2.0/24",
 "198.51.100.0/25"
]
 },
 "PID2" : {
 "ipv4" : ["198.51.100.128/25"]
 },
 "PID3" : {
 "ipv4" : ["0.0.0.0/0"],
 "ipv6" : ["::/0"]
 }
 }
 }

 When applied to that message, the following Merge Patch update
 message adds the ipv6 prefix "2000::/3" to "PID1", deletes "PID2",
 and assigns a new "tag" to the Network Map:

 {
 "meta" : {
 "vtag" : {
 "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
 },
 "network−map": {
 "PID1" : {
 "ipv6" : ["2000::/3"]
 },
 "PID2" : null
 }
 }

 Here is the updated Network Map:

Roome, et al. Expires April 30, 2015 [Page 6]

Internet−Draft ALTO Incremental Updates October 2014

 {
 "meta" : {
 "vtag": {
 "resource−id": "my−default−network−map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
 },
 "network−map" : {
 "PID1" : {
 "ipv4" : [
 "192.0.2.0/24",
 "198.51.100.0/25"
],
 "ipv6" : ["2000::/3"]
 },
 "PID3" : {
 "ipv4" : ["0.0.0.0/0"],
 "ipv6" : ["::/0"]
 }
 }
 }

2.3. JSON Merge Patch Applied to Cost Map Messages

 Section 11.2.3.6 of [RFC7285] defines the format of a Cost Map
 message. Here is a simple example:

 {
 "meta" : {
 "dependent−vtags" : [
 {"resource−id": "my−default−network−map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
],
 "cost−type" : {"cost−mode" : "numerical",
 "cost−metric": "routingcost"
 }
 },
 "cost−map" : {
 "PID1": { "PID1": 1, "PID2": 5, "PID3": 10 },
 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
 "PID3": { "PID1": 20, "PID2": 15 }
 }
 }

 The following Merge Patch message updates that cost map so that (1)
 PID1−>PID2 is 9 instead of 5; (2) PID3−>PID1 is no longer available;
 and (3) PID3−>PID3 is now 1:

Roome, et al. Expires April 30, 2015 [Page 7]

Internet−Draft ALTO Incremental Updates October 2014

 {
 "cost−map" : {
 "PID1" : { "PID2" : 9 },
 "PID3" : { "PID1" : null, "PID3" : 1 }
 }
 }

 Here is the updated Cost Map:

 {
 "meta" : {
 "dependent−vtags" : [
 {"resource−id": "my−default−network−map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
],
 "cost−type" : {"cost−mode" : "numerical",
 "cost−metric": "routingcost"
 }
 },
 "cost−map" : {
 "PID1": { "PID1": 1, "PID2": 9, "PID3": 10 },
 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
 "PID3": { "PID1": 20, "PID3": 1 }
 }
 }

3. Server−Sent Events

3.1. Overview of SSEs

 Server−Sent Events [SSE] enable a server to send new data to a client
 by pushing messages to the client. To summarize the protocol, the
 client establishes an HTTP connection to the server, and keeps the
 connection open. The server continually sends messages. Messages
 are delimited by two new−lines (this is a slight simplification of
 the full specification), and contain three fields: an event type, an
 id, and data. All fields are strings. The data field may contain
 new−lines; the other fields cannot. The event type and id fields are
 optional.

 Here is a sample SSE stream, starting with the client request. The
 server sends three events and then closes the stream.

Roome, et al. Expires April 30, 2015 [Page 8]

Internet−Draft ALTO Incremental Updates October 2014

 GET /stream HTTP/1.1
 Host: example.com
 Accept: text/event−stream

 HTTP/1.1 200 OK
 Connection: keep−alive
 Content−Type: text/event−stream

 event: start
 data: hello there

 event: middle
 data: let’s chat some more ... and more ...

 event: end
 data: good bye

3.2. ALTO SSE Update Messages

 In our events, the data field is a JSON object. There two types of
 data objects. One is a message describing an ALTO resource, such as
 a Network Maps or Cost Map, as defined in [RFC7285]. We will refer
 to these as full−map messages. The other type is a Merge Patch
 message to apply to an ALTO resource.

 Our event types have two sub−fields: the media−type of the JSON
 message in the data field, and the resource−id of the ALTO resource.
 The media−types for ALTO resource messages are defined by [RFC7285],
 and include "application/alto−networkmap+json" for Network Map
 messages and "application/alto−costmap+json" for Cost Map messages.
 The media−type for a Merge Patch message is "application/
 merge−patch+json", and is defined by [RFC7285].

 We do not use the SSE id field.

 Because commas (character code 0x2c) are not allowed in media−type
 names, we encode the event type sub−fields as

 media−type , resource−id

 Here examples of ALTO update events:

Roome, et al. Expires April 30, 2015 [Page 9]

Internet−Draft ALTO Incremental Updates October 2014

 event: application/alto−networkmap+json,my−network−map
 data: { ... full Network Map message ... }

 event: application/alto−costmap+json,my−routingcost−map
 data: { ... full Cost Map message ... }

 event: application/merge−patch+json,my−routingcost−map
 data: { ... Merge Patch update for previous Cost Map ... }

3.3. Keep−Alive Messages

 An SSE event with an empty event type is a keep−alive message. An
 ALTO Server MAY send keep−alive messages as needed. An ALTO Client
 MUST ignore any keep−alive messages.

4. Update Stream Service

 An Update Stream Service returns a stream of SSE messages, as defined
 in Section 3.2.

4.1. Media Type

 The media type of an ALTO Update Stream resource is "text/
 event−stream".

4.2. HTTP Method

 An ALTO Update Stream resource is requested using the HTTP GET
 method.

4.3. Accept Input Parameters

 None.

4.4. Capabilities

 The capabilities are defined by an object of type
 UpdateStreamCapabilities:

 object {
 JSONString events<1..*>;
 } UpdateEventStreamCapabilities;

 The strings in the array are the event types (see Section 3.2) sent
 by this Update Stream.

 If an Update Event Service’s event capability list has an event with

Roome, et al. Expires April 30, 2015 [Page 10]

Internet−Draft ALTO Incremental Updates October 2014

 a media−type of "text/merge−patch+json" for a resource−id, then the
 event capability list MUST also have an full−map event for that
 resource−id. For example, suppose "my−costmap" is the resource−id of
 a Cost Map. Then if the event list has "text/
 merge−patch+json,my−costmap", it MUST also have the event
 "application/alto−costmap+json,my−costmap".

4.5. Uses

 An array with the resource−ids of the resources for which this stream
 sends updates. This array MUST contain the resource−ids of every
 event type in the "events" capability.

4.6. Event Order Requirements

 There are several requirements on the order in which an ALTO Server
 sends SSE Update messages on the event stream:

 o For any given resource−id, the ALTO Server MUST send a full−map
 update event (media−type "application/alto−networkmap+json" or
 "application/alto−costmap+json") before the first Merge Patch
 event (media−type "application/merge−patch+json") for that
 resource−id.

 o The ALTO Server SHOULD send full−map update events for all
 resource−ids covered by this Update Stream resource as soon as
 possible after the client initiates the connection.

 o If the event list contains a resource−id R0 on which resource−id
 R1 depends, when R0 changes, the ALTO Server MUST send the update
 for R0 before sending the update for R1. For example, suppose the
 event list includes a Network Map resource and its dependent Cost
 Map resources. When the Network Map changes, the ALTO Server MUST
 send an update event for that Network Map before sending the
 update events for the dependent Cost Maps.

 o If the event list contains a resource−id R0 on which resource−id
 R1 depends, the ALTO Server SHOULD send an update for R1 as soon
 as possible after sending the update for R0. For example, when a
 Network Map changes, the ALTO Server SHOULD send update events for
 all dependent Cost Maps as soon as possible after the update event
 for the Network Map.

4.7. Response

 Here is an example of a client’s request and the server’s immediate
 response, using the Update Stream resource "my−routingcost−update−
 stream" defined in the IRD in Section 6. This assumes the Update

Roome, et al. Expires April 30, 2015 [Page 11]

Internet−Draft ALTO Incremental Updates October 2014

 Stream service sends updates for a Network Map with resource−id "my−
 network−map" and an associated Cost Map with resource−id "my−
 routingcost−map":

 GET /updates/routingcost HTTP/1.1
 Host: alto.example.com
 Accept: text/event−stream

 HTTP/1.1 200 OK
 Connection: keep−alive
 Content−Type: text/event−stream

 event: application/alto−networkmap+json,my−network−map
 data: { ... full Network Map message ... }

 event: application/alto−costmap+json,my−routingcost−map
 data: { ... full Cost Map message ... }

 After sending those two events immediately, the ALTO Server will send
 additional events as the maps change. For example, the following
 represents a small change to the Cost Map:

 event: {"resource−id":"my−routingcost−map",
 "media−type":"application/merge−patch+json"}
 data: {"cost−map": {"PID1" : {"PID2" : 9}}}

 If a major change to the Network Map occurs, the ALTO Server MAY
 choose to send full Network and Cost Map messages rather than Merge
 Patch messages:

 event: application/alto−networkmap+json,my−network−map
 data: { ... full Network Map message ... }

 event: application/alto−costmap+json,my−routingcost−map
 data: { ... full Cost Map message ... }

4.8. Client Actions When Receiving Update Messages

 In general, when a client receives a full−map update message for a
 resource, the client should replace the current version with the new
 version. When a client receives a Merge Patch update message for a
 resource, the client should apply those patches to the current
 version of the resource.

 However, because resources can depend on other resources (e.g., Cost
 Maps depend on Network Maps), an ALTO Client MUST NOT use a dependent
 resource when the resource on which it depends changes. There are at
 least two ways a client may do that. We will illustrate these

Roome, et al. Expires April 30, 2015 [Page 12]

Internet−Draft ALTO Incremental Updates October 2014

 techniques by referring to Network and Cost Map messages, although
 these techniques apply to any dependent resources.

 One approach is for the ALTO Client to save the Network Map update
 message in a buffer, and continue to use the previous Network Map,
 and the associated Cost Maps, until the client receives the update
 messages for all dependent Cost Maps. The client then applies all
 Network and Cost Map updates atomically.

 Alternatively, the client MAY update the Network Map immediately. In
 this case, the client MUST mark each dependent Cost Map as
 temporarily invalid, and MUST NOT use that map until the client
 receives a Cost Map update message with the new Network Map version
 tag. Note that the client MUST NOT delete the Cost Maps, because the
 server may send Merge Patch update messages.

 The ALTO Server SHOULD send updates to dependent resources in a
 timely fashion. However, if the client does not receive the expected
 updates, the client MUST close the Update Stream connection, discard
 the dependent resources, and reestablish the Update Stream. If the
 client uses the Filtered Update Stream service, the client MAY retain
 the version tag of the last version of any tagged resources, and give
 those version tags when requesting the new Update Stream. In this
 case, if a version is still current, the ALTO Server will not re−send
 that resource.

 Although not as efficient as possible, this recovery method is simple
 and reliable.

5. Filtered Update Stream Service

 The Filtered Update Stream service is similar to the Update Stream
 service, except that the client can select the types of update
 events. Specifically, except as noted below, the Filtered Update
 Stream service is identical to the Update Stream service (Section 4).

5.1. HTTP Method

 A Filtered ALTO Update Stream resource is requested using the HTTP
 POST method.

5.2. Accept Input Parameters

 An ALTO Client supplies filtering parameters by specifying media type
 "application/alto−updatestreamfilter+json" with HTTP POST body
 containing a JSON object of type ReqFilteredUpdateStream, where:

Roome, et al. Expires April 30, 2015 [Page 13]

Internet−Draft ALTO Incremental Updates October 2014

 object {
 [UpdateEventType events<1..*>;]
 [VersionTag vtags<1..*>;]
 [ResourceInputs inputs<1..*>;]
 } ReqFilteredUpdateStream;

 object−map {
 ResourceID −> JSONObject;
 } ResourceInputs;

 The "events" field gives the types of the events the ALTO Client
 wishes to receive. These events MUST be a subset of the "events"
 capability of this resource. If the "events" list is omitted, the
 ALTO Server MUST send all event types in the "events" capability of
 this resource.

 The "vtags" field gives the version tags, as defined in Section 10.3
 of [RFC7285], for any resources which the client already has. If
 those versions are still current, the server SHOULD NOT send the full
 version of that resource at startup.

 The "inputs" field gives the client input needed for any POST−mode
 resources requested by the client. The value is a JSON object; the
 key is the resource−id of the POST−mode resource, and the value is
 the JSON object that it requires as "accepts" input.

 If a client requests Merge Patch update events for a given
 resource−id, the client MUST also request the corresponding full map
 update events for that resource−id.

 If a client requests the full−map update event for given resource−id,
 but does not request the Merge Patch update event for that
 resource−id, then the ALTO Server MUST send full−map update events
 whenever the map changes. For Network Map resources, the ALTO Server
 SHOULD send the full map as soon as it would have sent the Merge
 Patch event. For Cost Map and other resources, the ALTO Server MAY
 delay sending the full−map until more changes are available.

5.3. Response

 Here is an example of a client’s request and the server’s immediate
 response, using the Filtered Update Stream resource "my−allresources−
 update−stream" defined in the IRD in Section 6. The client requests
 updates for the Network Map and the "routingcost" Cost Map, but does
 not want updates for the "hopcount" Cost Map. The "vtags" field gives
 the client’s version of the Network Map. Because that version is
 still current, the server does not send the full Network Map update
 event at the beginning of the stream:

Roome, et al. Expires April 30, 2015 [Page 14]

Internet−Draft ALTO Incremental Updates October 2014

 POST /updates/allresources HTTP/1.1
 Host: alto.example.com
 Accept: text/event−stream
 Content−Type: application/alto−updatestreamfilter+json
 Content−Length: ###

 { "events": [
 "application/alto−networkmap+json,my−network−map",
 "application/alto−costmap+json,my−routingcost−map",
 "application/merge−patch+json,my−routingcost−map"
],
 "vtags": [
 "resource−id": "my−network−map", "tag": "314159265359"}
]
 }

 HTTP/1.1 200 OK
 Connection: keep−alive
 Content−Type: text/event−stream

 event: application/alto−costmap+json,my−routingcost−map
 data: { ... full Cost Map message ... }

 After that, the ALTO Server sends updates for the Network Map and
 "routingcost" Cost Map as they become available.

 As another example, here is how a client can request updates for the
 property "priv:ietf−bandwidth" for a set of endpoints. The ALTO
 Server immediately sends a full−map message with the property values
 for all endpoints. After that, the server sends update events for
 the individual endpoints as their property values change.

Roome, et al. Expires April 30, 2015 [Page 15]

Internet−Draft ALTO Incremental Updates October 2014

 POST /updates/allresources HTTP/1.1
 Host: alto.example.com
 Accept: text/event−stream
 Content−Type: application/alto−updatestreamfilter+json
 Content−Length: ###

 { "events": [
 "application/alto−endpointprop+json,my−properties",
 "application/merge−patch+json,my−properties"
],
 "inputs": {
 "my−properties": {
 "properties" : ["priv:ietf−bandwidth"],
 "endpoints" : [
 "ipv4:1.0.0.1",
 "ipv4:1.0.0.2",
 "ipv4:1.0.0.3"
]
 }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep−alive
 Content−Type: text/event−stream

 event: application/alto−endpointprop+json,my−properties
 data: { "endpoint−properties": {
 data: "ipv4:1.0.0.1" : { "priv:ietf−bandwidth": "13" },
 data: "ipv4:1.0.0.2" : { "priv:ietf−bandwidth": "42" },
 data: "ipv4:1.0.0.3" : { "priv:ietf−bandwidth": "27" }
 data: } }

 event: text/merge−patch+json,my−properties
 data: { "endpoint−properties":
 data: {"ipv4:1.0.0.1" : {"priv:ietf−bandwidth": "3"}}
 data: }

 event: text/merge−patch+json,my−properties
 data: { "endpoint−properties":
 data: {"ipv4:1.0.0.3" : {"priv:ietf−bandwidth": "38"}}
 data: }

Roome, et al. Expires April 30, 2015 [Page 16]

Internet−Draft ALTO Incremental Updates October 2014

6. IRD Example

 Here is an example of an IRD that offers both regular and Filtered
 Update Stream services. The unfiltered Update Stream provides
 updates for the Network Map and "routingcost" Cost Map. The Filtered
 Update Stream provides update to both those maps, plus the "hopcount"
 Cost Map and the Endpoint Properties service.

 "my−network−map": {
 "uri": "http://alto.example.com/networkmap",
 "media−type": "application/alto−networkmap+json",
 },
 "my−routingcost−map": {
 "uri": "http://alto.example.com/costmap",
 "media−type": "application/alto−costmap+json",
 "uses": ["my−networkmap+json"],
 "capabilities": {
 "cost−type−names": ["num−routingcost"]
 }
 },
 "my−hopcount−map": {
 "uri": "http://alto.example.com/costmap",
 "media−type": "application/alto−costmap+json",
 "uses": ["my−networkmap+json"],
 "capabilities": {
 "cost−type−names": ["num−hopcount"]
 }
 },
 "my−properties": {
 "uri": "http://alto.example.com/properties",
 "media−type": "application/alto−endpointprops+json",
 "accepts": "application/alto−endpointpropparams+json",
 "capabilities": {
 "prop−types": ["priv:ietf−bandwidth"]
 }
 },
 "my−routingcost−update−stream": {
 "uri": "http://alto.example.com/updates/routingcost",
 "media−type": "text/event−stream",
 "uses": ["my−network−map", "my−routingcost−map"],
 "capabilities": {
 "events": [
 "application/alto−networkmap+json,my−network−map",
 "application/alto−costmap+json,my−routingcost−map",
 "application/merge−patch+json,my−routingcost−map"
]
 }
 },

Roome, et al. Expires April 30, 2015 [Page 17]

Internet−Draft ALTO Incremental Updates October 2014

 "my−allresources−update−stream": {
 "uri": "http://alto.example.com/updates/allresources",
 "media−type": "text/event−stream",
 "uses": [
 "my−network−map",
 "my−routingcost−map",
 "my−hopcount−map",
 "my−properties"
],
 "accepts": "application/alto−updatestreamfilter+json",
 "capabilities": {
 "events": [
 "application/alto−networkmap+json,my−network−map",
 "application/alto−costmap+json,my−routingcost−map",
 "application/merge−patch+json,my−routingcost−map"
 "application/alto−costmap+json,my−hopcount−map",
 "application/merge−patch+json,my−hopcount−map"
 "application/alto−endpointprops+json,my−properties",
 "application/merge−patch+json,my−properties"
]
 }
 }

7. Design Decisions and Discussion

7.1. Not Allowing Stream Restart

 If an update stream is closed accidentally, when the client
 reconnects, the server must resend the full maps. This is clearly
 inefficient. To avoid that inefficiency, the SSE specification
 allows a server to assign an id to each event. When a client
 reconnects, the client can present the id of the last successfully
 received event, and the server restarts with the next event.

 However, that mechanism adds a lot of complication. The server would
 have to save SSE messages in a buffer, in case clients reconnect.
 But that mechanism will never be perfect: if the client waits too
 long to reconnect, or if the client’s last id is bogus, then the
 server will have to resend the complete maps anyway.

 In short, using event ids to avoid resending the full map adds a lot
 of complication to avoid a situation which is hopefully very rare.
 Hence we decided to keep it simple.

 The Filtered Update Stream service does allow the client to specify
 the vtag of the last received Network Map, and if that is still
 current, the server can avoid retransmitting the Network Map.

Roome, et al. Expires April 30, 2015 [Page 18]

Internet−Draft ALTO Incremental Updates October 2014

7.2. Is Incremental Update Useful for Network Maps?

 It is not clear whether incremental update (that is, Merge Patch
 update) is useful for Network Maps. For minor changes, such as
 moving a prefix from one PID to another, it might be useful. But
 more involved changes to the Network Map are likely to be "flag
 days": they represent a completely new Network Map, rather than a
 simple, well−defined change.

 This is not to say that Network Map updates are not useful. Clearly
 Network Maps will change, and update events are necessary to inform
 clients of the new map. But we expect most Network Map updates will
 be full updates with full Network Map message, rather than
 incremental Merge Patch updates.

 Note that while we allow a server to use Merge Patch on Network Maps,
 we do not require the server to do so.

8. Security Considerations

 Allowing persistent update stream connections does enable a new class
 of Denial−of−Service attacks. An ALTO Server MAY choose to limit the
 number of active streams, and reject new requests when that threshold
 is reached. In this case the server should return the HTTP status
 "503 Service Unavailable".

 Alternatively an ALTO Server MAY return the HTTP status "307
 Temporary Redirect" to redirect the client to another ALTO Server
 which can better handle a large number of update streams.

 This extension does not introduce any privacy issues not already
 present in the ALTO protocol.

9. IANA Considerations

 This draft defines a new media−type, "application/
 alto−updatestreamfilter+json", as described in Section 5.2. That
 type must be registered with IANA.

 All other media−types used in this document have already been
 registered, either for ALTO or JSON Merge Patch.

10. References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

Roome, et al. Expires April 30, 2015 [Page 19]

Internet−Draft ALTO Incremental Updates October 2014

 Requirement Levels", RFC 2119, BCP 14, March 1997.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, March 2010.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7285] Almi, R., Penno, R., Yang, Y., Kiesel, S., Previdi, S.,
 Roome, W., Shalunov, S., and R. Woundy, "Application−Layer
 Traffic Optimization (ALTO) Protocol", RFC 7285,
 September 2014.

 [RFC7386] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7386,
 October 2014.

 [SSE] Hickson, I., "Server−Sent Events (W3C)", December 2012.

Authors’ Addresses

 Wendy Roome
 Alcatel−Lucent/Bell Labs
 600 Mountain Ave, Rm 3B−324
 Murray Hill, NJ 07974
 USA

 Phone: +1−908−582−7974
 Email: w.roome@alcatel−lucent.com

 Xiao Shi
 Yale University
 51 Prospect Street
 New Haven, CT 06511
 USA

 Email: xiao.shi@yale.edu

 Y. Richard Yang
 Yale University
 51 Prospect St
 New Haven CT
 USA

 Email: yang.r.yang@gmail.com

Roome, et al. Expires April 30, 2015 [Page 20]

