ECRIT Working Group                                          James Polk
Internet-Draft                                            Cisco Systems
Expires: March 6th, 2006                                  Andrew Newton
                                                               VeriSign
                                                    September 6th, 2005


            Emergency Context Routing of Internet Technologies
                       Architecture Considerations
              draft-polk-newton-ecrit-arch-considerations-00

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six 
   months and may be updated, replaced, or obsoleted by other documents
   at any time.  It is inappropriate to use Internet-Drafts as 
   reference material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on March 6th, 2006.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

   This document discusses architectural considerations for emergency 
   context routing of Internet technologies.  The purpose of this 
   document is to provide a systemic view of emergency context routing,
   discuss unresolved issues, and explain the relationship of some of 
   the proposals to these issues, while discussing potential directions 
   that might be still be necessary for the working group to 
   investigate.  



Polk & Newton             Expires March 6th, 2006              [Page 1]
Internet-Draft           ECRIT Arch Considerations            Sept 2005


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .  2
     1.1   Division of Labor . . . . . . . . . . . . . . . . . . . .  3
     1.2   Terminology, Acronyms and Definitions . . . . . . . . . .  4
   2.  Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . .  5
   3.  Conversion  . . . . . . . . . . . . . . . . . . . . . . . . .  5
   4.  LCMS Mapping  . . . . . . . . . . . . . . . . . . . . . . . .  6
   5.  Conveyance  . . . . . . . . . . . . . . . . . . . . . . . . .  7
   6.  Universal Emergency Identifiers . . . . . . . . . . . . . . .  7
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  8
     7.1   Security of the LCMS  . . . . . . . . . . . . . . . . . .  8
     7.2   Security of Location Conveyance . . . . . . . . . . . . .  9
     7.3   Security of Bootstrapping . . . . . . . . . . . . . . . . 10
     7.4   Security of Conversion  . . . . . . . . . . . . . . . . . 10
   8.  Data distribution . . . . . . . . . . . . . . . . . . . . . . 11
   9.  Extensibility . . . . . . . . . . . . . . . . . . . . . . . . 11
   10. Conflation  . . . . . . . . . . . . . . . . . . . . . . . . . 12
   11. Rerouting/Transfer  . . . . . . . . . . . . . . . . . . . . . 12
   12. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . 13
   13. References  . . . . . . . . . . . . . . . . . . . . . . . . . 13
     13.1  Normative References  . . . . . . . . . . . . . . . . . . 13
     13.2  Informative References  . . . . . . . . . . . . . . . . . 13
       Author's Address  . . . . . . . . . . . . . . . . . . . . . . 13
   A.  Appendix A.  Additional stuff . . . . . . . . . . . . . . . . 14
       Intellectual Property and Copyright Statements  . . . . . . . 14


1.  Introduction

   The solution to proper emergency call identification, management and
   routing over the Internet involves many components and coordination 
   between them.  This document describes the necessary interaction 
   between these components.  The information given in this document 
   may not be complete, and some of the issues presented in this 
   document may not be resolved by the community.  The intent of this 
   document is to describe a "big picture" view of the process, 
   describe prevailing thoughts on this subject and describe unresolved
   issues in hopes of bringing about consensus on these topics.

   The current architecture of ECRIT is composed of the following:

   Bootstrapping: delivery of configuration and location information to 
      the client.

   Conversion: conversion of location information into forms usable in 
      mapping and conveyance, if necessary.

   LCMS Mapping: conversion of endsystem location information into 
      addresses usable to initiate or progress communication to an 
      emergency call center (a PSAP).


Polk & Newton             Expires March 6th, 2006              [Page 2]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

   Conveyance: delivery of endsystem location information to an 
      emergency call center during the emergency call (used for 
      dispatch).

   There are many unresolved issues regarding these steps and related 
   matters.  The following list is not exhaustive, but includes most of
   the issues brought before the working group (and a few new ones).

   Universal emergency identifier: there needs to be a universal 
      emergency identifier to prevent highly localized usage and 
      confusion by users and systems.

   Security: the security properties necessary for the proper 
      protection of LCMS data are not well understood.

   Data distribution: the distribution of LCMS data closer to the 
      points of queries within the Internet.

   Extensibility: the methods for extensibility in all components of 
      the system must be well understood.

   Conflation: many of the components proposed for use in the routing 
      of emergency calls have other uses and most have not been 
      primarily designed for the emergency call routing case.


1.1 Division of Labor

   As stated above, not all of the components used in the process of 
   routing an emergency call to the correct emergency call center over 
   the Internet have been defined for the exclusive use of this case, 
   and therefore not all of the specification work is being conducted 
   within the scope of the charter of the ECRIT working group.

   Bootstrapping of location information, both geospatial and civic, 
   via DHCP is work in progress in the GEOPRIV working group.  
   Bootstrapping of URI references via DHCP is work in progress in the 
   DHC working group.

   The definition of location objects and the use of schemas to 
   describe location is work in progress in the GEOPRIV working group. 
   The specification of conveyance of location objects via SIP is work 
   in progress in the SIP working group.

   The mapping of location information to URIs is the primary function 
   of the ECRIT working group.  The set of mechanisms and services 
   working in conjunction with each other to conduct this mapping is 
   referred to as the Location Context Mapping System or LCMS by this 
   document for the purposes of clarity.





Polk & Newton             Expires March 6th, 2006              [Page 3]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

1.2 Terminology, Acronyms and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC 2119].

   The following terms and definitions will be used throughout this 
   document:

   Application Service Provider (ASP) - provider of application level 
      services such as a voice over IP service that is completely 
      divorced from the access provider, and may be divorced from the 
      local ISP of an endsystem

   ASP - Application Service Provider

   Emergency Services Gateway (ESGW) - The special IP to circuit-
      switched gateway that front-ends an emergency services Selective 
      Router (which directs all TDM based 911/112 type calls to the 
      appropriate PSAP)

   Emergency Services Routing Proxy (ESRP) - a special instance of a 
      SIP Proxy that understands emergency routing to a PSAP based on 
      the location of the caller

   ESGW - Emergency Services Gateway

   ESRP - Emergency Services Routing Proxy

   IAP - Internet Access Provider

   Internet Access Provider (IAP) - typically the organization that 
      provides Internet or IP access to the client, and could be the 
      same as the ISP in certain circumstances

   Internet Service Provider (ISP) - Provider of advanced services, 
      such as application layer message processing, filtering and 
      routing, and services such as voice/video/instant messaging over 
      IP, and could be the same as the IAP in certain circumstances

   ISP - Internet Service Provider

   Location Context Mapping System û A set of coordinated mechanisms 
      and services that map a physical location (geospatial or civic) 
      to a network address.

   LCMS û Location Context Mapping System

   LIS - Location Information Server

   PSAP - Public Safety Answering Point



Polk & Newton             Expires March 6th, 2006              [Page 4]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

   Location Information Server (LIS) û

   Public Safety Answering Point (PSAP) - the emergency response call 
      center talking the local emergency calls from people in distress.
      This facility can be logical, and can transfer (reroute) any 
      request sent to it to another facility deemed more appropriate to
      receive the request.


2.  Bootstrapping

   Bootstrapping delivers configuration and location information to the
   client.  This is typically done at device or individual application 
   boot times.  Unlike other parts of the architecture, bootstrapping 
   is the only phase of the emergency call routing process that does 
   not have a single solution.  This is due to the many network 
   configuration techniques used by access networks.

   There are three well-known methods of bootstrapping:

  1. Using the DHCP protocol
  2. Using the PPP protocol
  3. Using IEEE 802.1 LLDP-MED

   For location information, there are two types: location information 
   regarding a civic address (e.g. 123 Main St ) and geospatial 
   information (e.g. x, y, z coordinates).

   The set of configuration data types has not been discussed or 
   resolved.  But the following types of configuration information have
   been noted: 1) references to LCMS servers, 2) references to PSAPs, 
   and 3) references to location information servers.

   References to LCMS servers obviate the need for global hierarchies 
   of LCMS data directories (which have proven politically difficult in
   other voice over IP matters) and reduce the coordination to only the
   necessary jurisdictional boundaries.

   References to PSAPs obviate the need for the mapping steps in cases 
   where location is not likely to be a determining factor in emergency
   call routing (e.g. location is fixed and the emergency call center 
   is known).

   References to location information servers enable better separation 
   for knowledge of location from the access network.


3.  Conversion

   Conversion of location information from one format to the other 
   format is conducted for the benefit of the LCMS servers and 
   conveyance of the location information.  There are two aspects to 


Polk & Newton             Expires March 6th, 2006              [Page 5]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

   this conversion: syntactic conversion of the location information 
   from the binary formats used in bootstrapping to the XML format used
   in PIDF-LO, and conversion of the civic location information to 
   geospatial location information or vice versa.

   Syntactic conversion is a necessary function, and it can take two 
   different forms: conversion to the PIDF-LO conveyance format and 
   conversion to a LCMS format if the LCMS interface does not use PIDF-
   LO.

   Conversion of location information from a civic address to 
   geospatial coordinates or from geospatial coordinates to a civic 
   address is much more controversial.  There is no doubt that civic 
   addresses are much easier to consume by humans than geospatial 
   coordinates, however conversion from geospatial coordinates to a 
   civic address can be error prone and in cases involving large areas 
   (e.g. a farm, an outdoor park, etcà) the resulting civic address can
   be of limited utility.  Further, civic coordinates do not address 
   even most of the land of this planet, as civic addresses are to a 
   great degree tied to the existence of a nearby street, which are 
   prevalent in cities, but are scarce to non-existent in rural areas. 
   Therefore, a combination of the two formats will be required 
   regardless of mankind's consumption preference.

4.  LCMS Mapping

   The creation of an LCMS, which will convert location information 
   into references (i.e. URIs) to emergency call centers, is the 
   primary area of work for the ECRIT working group.  There are two 
   times in which this LCMS function can occur successfully: 

   1. before the device attempts contact with a PSAP, and

   2. after the device initiates contact with the PSAP, but before the 
      correct PSAP is determined by the ESRP making the LCMS query.

   Accomplishing mapping of a device's location with the proper PSAP 
   can be done statically or dynamically.  

   Statically - If a site is small enough, for example residential or 
      small business scale, all devices in either of these types of 
      locations can be configured to download, or have downloaded to 
      them, their location information and the SIP or SIPS URI for 
      contacting the appropriate PSAP for that location.  

   Dynamically - for the above types of locations, or for larger 
      locations, the client's location can be used to "look up" the 
      appropriate PSAP SIP or SIPS URI, and have this configuration 
      information downloaded to each client requesting it.  This can 
      also be pushed to all clients regardless of whether they asked 
      for the information or not.  This pushing of the PSAP URI(s) can 
      be at some interval to maintain freshness of the URI(s), as stale


Polk & Newton             Expires March 6th, 2006              [Page 6]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

      URI(s) are a concern to some.

   For the static configuration, for each given endpoint or section of 
   a network, a known PSAP SIP or SIPS URI is downloaded to the 
   client(s) without the clients providing their individual location to
   perform the LCMS function.  In the case of dynamic configuration of 
   a URI, the client provides their location to an LCMS server to do 
   this look-up, with the answer sent to the client for future use.

   A combined approach can be attained in the following scenario:  if 
   the endsystem knows of an authoritative LCMS server regardless of 
   which network or domain the client is connected to, the endsystem 
   can contact this server to get its PSAP SIP/SIPS URI based on its 
   location provided by the local access network.  In this scenario, an
   endsystem can have a trust association established with a particular
   server (or server service) that it contacts as soon as it either 
   learns its location from a local network/domain or somehow 
   determines it has moved while remaining "connected" to that 
   network/domain.

   For the device configuration of a PSAP SIP or SIPS URI, currently 
   only DHCP is being proposed as a solution [ID-DHCP-URI].  

   To date there are three protocol proposals for LCMS: LUMP, ECON, and
   DNS SOS.  LUMP is an XML-based, SOAP solution with emphasis on data 
   distribution.  ECON is an XML-based, IRIS solution with emphasis on 
   lightweight data exchange, and DNS SOS is a DNS-based solution with 
   emphasis on re-using DNS semantics.


5.  Conveyance

   Once the address of the PSAP is known, either through bootstrapping 
   or through LCMS mapping, a call can be initiated with the PSAP.  
   Location information is sent to the PSAP as meta-data of the call 
   using PIDF-LO.  This facet is not part of the ECRIT WG, but cannot 
   be overlooked.  Even if the caller contacts the appropriate PSAP, 
   that PSAP will still require knowledge of where the caller is in 
   order to dispatch emergency responders (i.e. help).  Issues 
   regarding the acquisition of this knowledge are discussed in Section
   7.2.


6.  Universal Emergency Identifiers

   Throughout the world, there are many different numbers in use to 
   signal emergency phone calls.  Some counts have this number as high 
   as 60 unique number sequences worldwide.  This lack of uniformity 
   also leads to collision.  For example, in some areas of the world, 
   the number 0 is used for calling for help, whereas in other parts of
   the world, this would not accomplish its intended emergency meaning.



Polk & Newton             Expires March 6th, 2006              [Page 7]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

   Therefore, one of the ECRIT requirements is for a universal 
   emergency identifier to signal an emergency.  The need for it to be 
   universal (or well-known) is threefold: so that all the components 
   in the emergency call routing process may properly operate upon it, 
   to avoid collision with other purposes (as stated above), and so 
   that clients may localize it's meaning to end users.  The issue is 
   that there is not just one single identifier related to emergency 
   calls, but that there are many identifiers related to emergency 
   calls for various specific types of emergencies. 

   Multiple identifiers lead to confusion and many have overlapping 
   meaning.  For example, the separate identifiers "mountain" and 
   "rescue" could mean the same thing to a user needing to be rescued 
   from a mountainous area. Additionally, some jurisdictions have 
   custom identifiers that are either unused globally or have a limited
   applicability.

   Each LCMS proposal takes a different approach to solving this 
   problem. DNS SOS has the simplest approach, specifying a simple list
   of six identifiers. LUMP specifies a hierarchy of identifiers.  And 
   ECON utilizes a tuple approach consisting of function, area, and 
   target.

   What is not clear, or has not been well defined, is the need for 
   even the simplest of these approaches.  It is not even well 
   understood if end users, in an emergency situation, will be able to 
   rationalize the difference between "emergency" and a simple list of 
   "police", "fire", and "medical".  While some have suggested this is 
   in practice in some parts of the world today, that doesn't 
   necessarily mean this will become universal in usage.  If appears 
   that if there is a single master identifier with more than one sub-
   identifier, that this arrangement should be used where it is 
   understood, and perhaps adopted elsewhere as jurisdictions decide to
   segment this capability based on education within that area.

   What appears obvious to avoid is to have different identifiers for 
   help in different parts of the world moving forward.  If only 
   'sos.police@...' reaches the police in a country where Alice does 
   not live when she sends a SIP INVITE to 'sos@...', ECRIT as a WG has
   not likely accomplished its goal.

   Locales that choose to have sub-identifiers for granularity must 
   have an architected solution for the higher level identifier as 
   well.


7.  Security Considerations

7.1 Security of the LCMS

   It is the goal of the working group to develop a dynamic LCMS 
   protocol that is both secure and responsive, two features that tend 


Polk & Newton             Expires March 6th, 2006              [Page 8]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

   to conflict with each other.  Security for this mapping solution has
   fallen into two broad categories: object signing and channel 
   security.

   Object signing has three benefits: integrity of data during 
   distribution, the potential for utilization in UDP packets, and pre-
   calculation of cryptographic data.  However, in cases where partial 
   matching of the query are to be allowed (i.e. parts of a civic 
   address are to be ignored in the query) or the query cannot be known
   ahead of time (i.e. the whole set of geospatial coordinates is 
   known but not in practical terms), object signing will require "on-
   line" signing which negates advantages in data distribution and 
   cryptographic pre-calculations.

   In addition, the use case regarding the invalidity of a signed 
   object may be no different from that of a validly signed object.  
   Users confronted with an emergency may not be able to appreciate the
   difference in validity, and even if they did, may not alter their 
   course of action (i.e. they continue with the emergency call 
   anyway).

   Channel security requires expensive cryptographic calculations that 
   cannot be computed ahead of time and requires multiple packet 
   exchanges (i.e. roundtrips) to establish.  However, this approach 
   has the benefit of securing all parts of the transaction, and unlike
   object signing, is well used and well understood on the Internet.

   The security properties of each of the three LCMS proposals is as 
   follows:

   LUMP uses both channel security (TLS connections to the query 
       server) and object signing (signed entries in the database).

   DNS SOS uses both channel security (TLS in connections to fetching 
       polygons and other information) and object signing (in DNSSEC 
       for the protection of NAPTR records).

   ECON uses channel security (TLS connections to the query server) as 
       an option setup by the operator of the service and a lightweight
       UDP transfer protocol for scenarios where security is not 
       needed.


7.2 Security of Location Conveyance

   There is a general desire to protect PSAPs from malicious calls.  
   Yet, how this is to be accomplished is not clear or well defined.

   Complicating this issue is the simple fact that many PSAPs will 
   accept a call without location information related to the caller.  
   Additionally, many PSAPs give priority or parity to location 
   information collected by a human operator from a human caller.  Due 


Polk & Newton             Expires March 6th, 2006              [Page 9]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

   to this fact, it has been observed that any security mechanism put 
   into place by ECRIT can simply be routed around by directly 
   contacting a PSAP.

   In cases where a PSAP would wish to disregard calls of unknown 
   provenance, no guidelines have clearly been stated as to how such 
   trust relationships would be erected. 

7.3 Security of Bootstrapping

   Where critical decisions might be based on the value(s) of the 
   bootstrapping process, such as a URI option from [ID-DHC-URI], DHCP 
   authentication in [RFC3118] SHOULD be used to protect the integrity 
   of the DHCP options.

   Since there is no privacy protection for DHCP messages, an
   eavesdropper who can monitor the link between the client and
   destination DHCP server to capture any URIs in transit.

   When implementing a DHC server that will serve clients across an
   uncontrolled network, one should consider the potential security
   risks.

   All that said, if DNS is not secure, and bootstrapping is difficult 
   to secure based on what it takes to accomplish [RFC3118], is 
   securing the mapping service worth the effort and pain to achieve?


7.4 Security of Conversion

   Location is a vital part of emergency messaging.  As discussed 
   earlier, an endsystem will not likely be in control of which format 
   of location it receives from a roamed to network.  For more fixed 
   endsystems, this should not be the case.  If an endsystem does 
   receive location in a format it knows an application on that 
   endsystem does not prefer, the endsystem can contact a server or 
   service, if one is known, to convert this format to the other 
   format.  

   As a non-emergency example, most humans understand street addresses 
   much better than GPS coordinates.  If a roaming device, say using 
   802.11 at a hotspot, acquires its location via DHCP Option 123 [RFC 
   3825], it can determine if an application used by that device 
   prefers the civic format to use instant messaging.  Before the IM 
   application is launched, or as the app is launched, the device can 
   seek a conversion server to perform this format conversion 
   operation.  How does a client learn of a server that can do this?  
   [ID-DHC-URI] provides one means for a device to learn the URL of a 
   server that can do this function, or this can be preconfigured in 
   the device as a trusted source for this conversion.  

   In the emergency case, perhaps the device knows it needs to convert 


Polk & Newton             Expires March 6th, 2006             [Page 10]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

   to the civic format to have an ESRP perform an LCMS query, but the 
   local network gave it a geospatial location only.  If the conversion
   server is preconfigured, this provides the ability to have the two 
   devices, say the phone and the conversion server, establish a trust 
   relationship, perhaps with pre-shared keys.  This reduces the round 
   trip times, making it more efficient.  This also provides a more 
   secure means of communication since both entities 'know' each other.


8.   Data distribution

   There is a desire to locate LCMS data in the LCMS close to the 
   points of query in the Internet for performance reasons.  In 
   addition, some jurisdictions distribute authority for this data upon
   hierarchical lines.  However, the needs for data distribution beyond
   these high-level requirements are not well known.  For instance, the
   known life expectancy of data distributed to caches is not well 
   known, nor are update procedures in the distribution of this data.

   Each of the three LCMS proposals addresses this problem in a 
   different way:

   DNS SOS relies upon the cache machinery of DNS.  The population of 
      DNS caches with location information is accomplished through 
      validation of caller locations (a process during provisioning of 
      a callers location and before any emergency call).  This proposal
      does not address early cache expiration due to limited cache 
      memory, by accepted practices of DNS operations, or by routine 
      maintenance of DNS servers.

   LUMP defines a caching mechanism that identifies objects by hash 
      value in order to accomplish a mesh of caches between nodes.  The
      population of the caches with location information is 
      accomplished through validation of caller locations (a process 
      conducted during provisioning of a callers location and before 
      any emergency call).

   ECON defines no preference for data distribution due to the limited 
      requirements available.  However, it does describe two methods 
      that could be employed: the serialization of data to files for 
      distribution via standard transfer protocols and an on-line, 
      incremental approach capable of distributing entries before their
      activation date.


9.  Extensibility

   Within the ECRIT working group, there appears to be rough consensus 
   on the need for extensible mechanisms, and hence an extensible LCMS 
   protocol capable of extensions in its query interface and resulting 
   output.  This desire for extensibility is born from a general sense 
   that not all the problems of emergency call routing over the 


Polk & Newton             Expires March 6th, 2006             [Page 11]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

   Internet will be fully exposed until deployment of a first 
   generation solution and from a more specific sense of the 
   incompleteness of the civic address schema in PIDF-LO.

   As an example of the more general case, the document [ID-ECRIT-
   JAPAN] describes a numeric address code equivalent to the civic 
   elements <A1> through <A5> in PIDF-LO used in conjunction with 
   geospatial coordinates to conduct emergency call handling in Japan. 
   As an example of the more specific case, PIDF-LO does not contain an
   element to describe street section numbers as used in Taiwan.


10.  Conflation

   As mentioned in the introduction, many of the components used in the
   process of routing emergency calls were not designed primarily for 
   this task and are being developed in working groups that do not have
   emergency call routing explicitly defined in their chartered scope.

   As a general example, conveyance of location information within a 
   call also has applicability to delivery businesses, such as pizza 
   restaurants that need to know the location of the caller for 
   delivery purposes.  In a more technical sense, much of what is known
   about civic addresses worldwide is a result of the study of postal 
   delivery, and therefore schemas used as location input for emergency
   call routing may not be tuned properly.

   Within the ECRIT working group, there are no requirements regarding 
   the resilience of the emergency call routing process as it relates 
   to inputs that have not been designed for this specific purpose.


11. Rerouting/Transfer

   Another facet of the ECRIT WG that has not been addressed is what to 
   do if a PSAP receives an emergency call and the call should not have 
   been sent to that PSAP.  What does the PSAP do next, and can this 
   action be automated?  Does the PSAP have an additional screening 
   capability in some ESRP at the PSAP interior edge to do a final 
   check that the call set-up is to the appropriate PSAP, taking steps 
   not yet defined if this PSAP is not the appropriate one for this 
   particular call set-up?  

   This is more a rerouting function of the call set-up, or of a call 
   transfer function if the call is answered before determining this is
   an inappropriate PSAP.  For example, VPNs will likely cause some 
   emergency calls to go erroneously to the city that that caller's 
   corporate offices are, rather than to where the call is.  This has 
   not been considered to date, yet likely should be - as message 
   reroute should be possible anytime an ESRP misdirects a message 
   towards the wrong PSAP.



Polk & Newton             Expires March 6th, 2006             [Page 12]
Internet-Draft           ECRIT Arch Considerations            Sept 2005


12.  Acknowledgements

   Your name here.... 


13.  References

13.1  Normative References

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
           Requirement Levels", RFC 2119, March 1997

 [RFC3825] J. Polk, J. Schnizlein, M. Linsner, "Dynamic Host
           Configuration Protocol Option for Coordinate-based Location
           Configuration Information", RFC 3825, July 2004

 [RFC3118] Droms, R. and W. Arbaugh, "Authentication for DHCP 
           Messages", RFC 3118, June 2001.


13.2  Informative References

 [ID-DHC-URI] J. Polk, "DHCP URI Option", draft-polk-dhc-uri-00.txt, 
           "work-in-progress", Sept 05

 [ID-ECRIT-JAPAN] H. Arai, M. Kawanishi, draft-arai-ecrit-japan-req-
           01.txt, "work-in-progress", May 2005


Author's Address

   James M. Polk
   3913 Treemont Circle
   Colleyville, Texas  76034
   USA

   Phone: +1-817-271-3552
   Fax:   none
   Email: jmpolk@cisco.com


   Andrew Newton
   21345 Ridgetop Circle
   Dulles, VA 20166

   Phone: +17039483382
   Email: andy@hxr.us
   





Polk & Newton             Expires March 6th, 2006             [Page 13]
Internet-Draft           ECRIT Arch Considerations            Sept 2005

Appendix A.  Additional stuff

   

Intellectual Property Statement

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed 
   to pertain to the implementation or use of the technology described 
   in this document or the extent to which any license under such 
   rights might or might not be available; nor does it represent that 
   it has made any independent effort to identify any such rights.   
   Information on the procedures with respect to rights in RFC 
   documents can be found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any 
   assurances of licenses to be made available, or the result of an 
   attempt made to obtain a general license or permission for the use 
   of such proprietary rights by implementers or users of this 
   specification can be obtained from the IETF on-line IPR repository 
   at http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.


Disclaimer of Validity

   This document and the information contained herein are provided on 
   an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 
   REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE
   INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR 
   IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF 
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


Copyright Statement

   Copyright (C) The Internet Society (2005).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78, and
   except as set forth therein, the authors retain all their rights.


Acknowledgment

   Funding for the RFC Editor function is currently provided by the
   Internet Society.


Polk & Newton           Expires March 6th, 2006               [Page 14]