
MPTCP Working Group C. Paasch
Internet-Draft A. Biswas
Intended status: Experimental D. Haas
Expires: March 6, 2016 Apple, Inc.
 September 3, 2015

 Making Multipath TCP robust for stateless webservers
 draft-paasch-mptcp-syncookies-01

Abstract

 This document proposes a modification of the MPTCP handshake that
 allows it to work efficiently with stateless servers. We first
 identify the issues around stateless connection establishment using
 SYN-cookies. Further, we suggest an extension to Multipath TCP to
 overcome these issues and discuss alternatives.

 As a side-effect, the proposed modification to the handshake opens
 the door to reduce the size of the MP_CAPABLE option in the SYN.
 This reduces the growing pressure on the TCP-option space in the SYN-
 segment, giving space for future extensions to TCP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 6, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Paasch, et al. Expires March 6, 2016 [Page 1]

Internet-Draft Multipath TCP deployment September 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Problem statement . 3
 3. Proposal . 4
 3.1. Loss of the third ACK 4
 3.1.1. Negotiation . 7
 3.1.2. DATA_FIN . 7
 3.1.3. Middlebox considerations 7
 3.2. Loss of the first data segment 8
 4. Alternative solutions . 9
 5. IANA Considerations . 10
 6. Security Considerations 10
 7. Acknowledgments . 10
 8. References . 10
 8.1. Normative References 10
 8.2. Informative References 10
 Authors’ Addresses . 11

1. Introduction

 During the establishment of a TCP connection, a server must create
 state upon the reception of the SYN [RFC0793]. Specifically, it
 needs to generate an initial sequence number, and reply to the
 options indicated in the SYN. The server typically maintains in-
 memory state for the embryonic connection, including state about what
 options were negotiated, such as window scale factor [RFC7323] and
 the maximum segment size. It also maintains state about whether SACK
 [RFC2018] and TCP Timestamps were negotiated during the 3-way
 handshake.

 Attackers exploit this state creation on the server through the SYN-
 flooding attack. Indeed, an attacker only needs to emit SYN segments
 with different 4-tuples (source and destination IP addresses and port
 numbers) in order to make the server create the state and thus
 consume its memory, while the attacker itself does not need to
 maintain any state for such an attack [RFC4987].

 A common mitigation of this attack is to use a mechanism called SYN-
 cookies. SYN-cookies rely on the fact that a TCP-connection echoes
 back certain information that the server puts in the SYN/ACK during

Paasch, et al. Expires March 6, 2016 [Page 2]

Internet-Draft Multipath TCP deployment September 2015

 the three-way handshake. Notably, the sequence-number is echoed back
 in the acknowledgment field as well as the TCP timestamp value inside
 the timestamp option. When generating the SYN/ACK, the server
 generates these fields in a verifiable fashion. Typically, servers
 use the 4-tuple, the client’s sequence number plus a local secret
 (which changes over time) to generate the initial sequence number by
 applying a hashing function to the aforementioned fields. Further,
 setting certain bits either in the sequence number or the TCP
 timestamp value allows to encode for example whether SACK has been
 negotiated and what window-scaling has been received [M08]. Upon the
 reception of the third ACK, the server can thus verify whether the
 acknowledgment number is indeed the reply to a SYN/ACK it has
 generated (using the 4-tuple and the local secret). Further, it can
 decode from the timestamp echo reply the required information
 concerning SACK, window scaling and MSS-size.

 In case the third ACK is lost during the 3-way handshake of TCP,
 stateless servers only work if it’s the client who initiates the
 communication by sending data to the server - which is commonly the
 case in today’s application-layer protocols. As the data segment
 includes the acknowledgement number for the original SYN/ACK as well
 as the TCP timestamp value, the server is able to reconstruct the
 connection state even if the third ACK is lost in the network. If
 the very first data segment is also lost, then the server is unable
 to reconstruct the connection state and will respond to subsequent
 data sent by the client with a TCP Reset.

 Multipath TCP (MPTCP [RFC6824]) is unable to reconstruct the MPTCP
 level connection state if the third ack is lost in the network (as
 explained in the following section). If the first data segment from
 the client reaches the server, the server can reconstruct the TCP
 state but not the MPTCP state. Such a server can fallback to regular
 TCP upon the loss of the third ACK. MPTCP is also prone to the same
 problem as regular TCP if the first data segment is also lost.

 In the following section a more detailed assessment of the issues
 with MPTCP and TCP SYN-cookies is presented. Section 3 then shows
 how these issues might get solved.

2. Problem statement

 Multipath TCP adds additional state to the 3-way handshake. Notably,
 the keys must be stored in the state so that later on new subflows
 can be established as well as the initial data sequence number is
 known to both hosts. In order to support stateless servers,
 Multipath TCP echoes the keys in the third ACK. A stateless server
 thus can generate its own key in a verifiable fashion (similar to the
 initial sequence number), and is able to learn the client’s key

Paasch, et al. Expires March 6, 2016 [Page 3]

Internet-Draft Multipath TCP deployment September 2015

 through the echo in the third ACK. The generation of the key is
 implementation-specific. An example of such a key-generation would
 be: Key_Server = Hash(5-tuple, server’s subflow sequence number,
 local_secret). The reliance on the third ACK however implies that if
 this segment gets lost, then the server cannot reconstruct the state
 associated to the MPTCP connection. Indeed, a Multipath TCP
 connection is forced to fallback to regular TCP in case the third ACK
 gets lost or has been reordered with the first data segment of the
 client, because it cannot infer the client’s key from the connection
 and thus won’t be able to generate a valid HMAC to establish new
 subflows nor does it know the initial data sequence number. In the
 remainder of this document we refer to the aforementioned issue as
 "Loss of the third ACK".

 Stateless servers also are unable to recover connection state when
 the third ack and the first data segment are lost. This issue,
 outlined hereafter, happens even when regular TCP is being used. In
 case the client is sending multiple segments when initiating the
 connection, it might be that the third ack as well as the first data
 segment get lost. Thus, the server only receives the second data
 segment and will try to reconstruct the state based on this segment’s
 4-tuple, sequence number and timestamp value. However, as this
 segment’s sequence number has already gone beyond the client’s
 initial sequence number, it will not be able to regenerate the
 appropriate SYN-cookie and thus the verification will fail. The
 server effectively cannot infer that the sequence number in the
 segment has gone beyond TCP’s initial sequence number. This will
 make the server send a TCP reset as it appears to the server that it
 received a segment for which no SYN cookie was ever generated.

3. Proposal

 This section shows how the above problems might be solved in
 Multipath TCP.

3.1. Loss of the third ACK

 In order to make Multipath TCP robust against the loss of the third
 ACK when SYN-cookies are being deployed on servers, we must make sure
 that the state-information relevant to Multipath TCP reaches the
 server in a reliable way. As the client is initiating the data
 transfer to the server, and this data is being delivered reliably,
 the state-information could be delivered together with this data and
 thus is implicitly reliably sent to the server - when the data
 reaches the server, the state-information reaches the server as well.

 We achieve this by adding another variant to the MP_CAPABLE option,
 differentiated by the length of it (we call this option

Paasch, et al. Expires March 6, 2016 [Page 4]

Internet-Draft Multipath TCP deployment September 2015

 MP_CAPABLE_ACK in the remainder of this document). It is solely sent
 on the very first data segment from the client to the server. This
 option serves the dual purpose of conveying the client’s and server’s
 key as well as the DSS mapping which would otherwise have been sent
 in a DSS option on the first data segment. The MP_CAPABLE_ACK option
 (shown in Figure 1) contains the same set of bits A to H as well as
 the version number, like the MP_CAPABLE option. The server behaves
 in a stateless manner and thus has generated it’s own key in a
 verifiable fashion (e.g., as a hash of the 4-tuple, sequence number
 and a local secret - similar to what is done for the TCP-sequence
 number in case of SYN-cookies [RFC4987]). It is thus able to verify
 whether it is indeed the originator of the key echoed back in the
 MP_CAPABLE_ACK option.

 Further, the option includes the data-level length as well as the
 checksum (in case it has been negotiated during the 3-way handshake).
 This allows the server to reconstruct the mapping and deliver the
 data to the application. It must be noted that the information
 inside the MP_CAPABLE_ACK is less explicit than a DSS option.
 Notably, the data-sequence number, data acknowledgment as well as the
 relative subflow-sequence number are not part of the MP_CAPABLE_ACK.
 Nevertheless, the server is able to reconstruct the mapping because
 the MP_CAPABLE_ACK is guaranteed to only be sent on the very first
 data segment. Thus, implicitly the relative subflow-sequence number
 equals 1 as well as the data-sequence number, which is equal to the
 initial data-sequence number.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----------------------+
 | Kind | Length=24 |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-----------------------+
 | Sender’s Key (64 bits) |
 | |
 +---------------+---------------+-------+-----------------------+
 | Receiver’s Key (64 bits) |
 | |
 +---+
 | Data-Level Length (2 octets) | Checksum (2 octets, optional) |
 +---+

 Format of the MP_CAPABLE_ACK option.

 Figure 1

 Making the MP_CAPABLE in the third ACK reliable opens the door for
 another improvement in MPTCP. In fact, the client doesn’t need to
 send its own key in the SYN anymore (it will send it reliably in the

Paasch, et al. Expires March 6, 2016 [Page 5]

Internet-Draft Multipath TCP deployment September 2015

 third ACK). Thus, the MP_CAPABLE option in the SYN segment can avoid
 adding the key, reducing the option-space requirement of the
 MP_CAPABLE down to 4 bytes. This is a major improvement, as the
 option-space in the SYN segment is very limited and allows a TCP
 connection to negotiate future extensions in the SYN. Thus, the
 MP_CAPABLE handshake suggested within this document is as follows:

 Host A Host B
 ------ ------
 SYN + MP_CAPABLE (4 bytes)
 -->
 SYN/ACK + MP_CAPABLE (Key_B, 12 bytes)
 <--
 ACK + MP_CAPABLE (Key_A, Key_B, 20 bytes)
 -->

 DATA + MP_CAPABLE_ACK (Key_A, Key_B, Length, Csum, 24 bytes)
 -->

 The modified MPTCP-handshake only consumes 4 bytes in the SYN.

 Figure 2

 It must be said that if TCP Fastopen [RFC7413] is being used in
 combination with Multipath TCP [I-D.barre-mptcp-tfo], the server is
 allowed to send data right after the SYN/ACK, without the need to
 wait for the third ACK. The server sending this data cannot include
 a DATA_ACK option inside the DSS option. This is not an issue as the
 DATA_ACK is optional in the DSS option. However, the client
 receiving this data will have to acknowledge it with a DATA_ACK. If
 the client has no data to send itself, this DATA_ACK must also
 include the MP_CAPABLE option. This is necessary, because it must be
 made sure that the server receives the MP_CAPABLE option. The client
 has to combine DATA_ACK with MP_CAPABLE option until he receives a
 DATA_ACK from the server, which confirms that the server correctly
 received the keys from the client inside the MP_CAPABLE option.
 Thus, after reception of the MP_CAPABLE, the server is required to
 reply with a DATA_ACK, to signal to the client that it successfully
 created the MPTCP-state. Combining the MP_CAPABLE with the DATA_ACK
 will require 20 + 8 bytes, which still leaves 12 bytes for the TCP
 timestamp option. This mechanism of sending the MP_CAPABLE with a
 DATA_ACK until the server acknowledges it, introduces additional
 complexity to the handshake. However, we consider the gain of
 reducing the MP_CAPABLE option in the SYN-segment as significant
 enough, that it is worth to accept this added complexity.

 Further, as the MP_CAPABLE_ACK option is combined with data, a client
 can piggyback data on the 3rd ACK using the MP_CAPABLE_ACK option

Paasch, et al. Expires March 6, 2016 [Page 6]

Internet-Draft Multipath TCP deployment September 2015

 instead of the MP_CAPABLE option on this ACK. The reliability of the
 MP_CAPABLE_ACK ensures that the server can still reconstruct the
 state.

3.1.1. Negotiation

 We require a way for the hosts to negotiate support for the suggested
 handshake. As we modify the size of the MP_CAPABLE, our proposal
 relies on a new version of MPTCP. The client requests this new
 version of MPTCP during the MP_CAPABLE exchange (it remains to be
 defined by the IETF which version of MPTCP includes the
 MP_CAPABLE_ACK option). If the server supports this version, it
 replies with a SYN/ACK including the MP_CAPABLE and indicating this
 same version.

3.1.2. DATA_FIN

 As the MP_CAPABLE_ACK option includes the same bitfields as the
 regular MP_CAPABLE, there is no space to indicate a DATA_FIN as is
 done in the DSS option. This implies that a client cannot send a
 DATA_FIN together with the first segment of data. Thus, if the
 server requests the usage of MP_CAPABLE_ACK through the C-bit, the
 client must send a separate segment with the DSS-option, setting the
 DATA_FIN-flag to 1, after it has sent the data-segment that includes
 the MP_CAPABLE_ACK option.

3.1.3. Middlebox considerations

 Multipath TCP has been designed with middleboxes in mind and so the
 MP_CAPABLE_ACK option must also be able to go through middleboxes.
 The following middlebox behaviors have been considered and
 MP_CAPABLE_ACK acts accordingly across these middleboxes:

 o Removing MP_CAPABLE_ACK-option: If a middlebox strips the
 MP_CAPABLE_ACK option out of the data segment, the server receives
 data without a corresponding mapping. As defined in Section 3.6
 of [RFC6824], the server must then do a seamless fallback to
 regular TCP.

 o Coalescing segments: A middlebox might coalesce the first and
 second data segment into one single segment. While doing so, it
 might remove one of the options (either MP_CAPABLE_ACK or the DSS-
 option of the second segment because of the limited 40 bytes TCP
 option space). If the DSS-option is not included in the segment,
 the second half of the payload is not covered by a mapping. Thus,
 the server will do a seamless fallback to regular TCP as defined
 by [RFC6824]. However, if the MP_CAPABLE_ACK option is not
 present, then the DSS-option provides an offset of the TCP

Paasch, et al. Expires March 6, 2016 [Page 7]

Internet-Draft Multipath TCP deployment September 2015

 sequence number. As the server behaves statelessly it can only
 assume that the present mapping belongs to the first byte of the
 payload (similar to what is explained in detail in Section 3.2.
 As this however is not true, it will calculate an incorrect
 initial TCP sequence number and thus reply with a TCP-reset as the
 SYN-cookie is invalid. As such kind of middleboxes are very rare
 we consider this behavior as acceptable.

 o Splitting segments: A TCP segmentation offload engine (TSO) might
 split the first segment in smaller segments and copy the
 MP_CAPABLE_ACK option on each of these segments. Thanks to the
 data-length value included in the MP_CAPABLE_ACK option, the
 server is able to detect this and correctly reconstructs the
 mapping. In case the first of these splitted segments gets lost,
 the server finds itself in a situation similar to the one
 described in Section 2. The TCP sequence number doesn’t allow
 anymore to verify the SYN-cookie and thus a TCP reset is sent.
 This behavior is the same as for regular TCP.

 o Payload modifying middlebox: In case the middlebox modifies the
 payload, the DSS-checksum included in the MP_CAPABLE_ACK option
 allows to detect this and will trigger a fallback to regular TCP
 as defined in [RFC6824].

3.2. Loss of the first data segment

 Section 2 described the issue of losing the first data segment of a
 connection while TCP SYN-cookies are in use. The following outlines
 how Multipath TCP actually allows to fix this particular issue.

 Consider the packet-flow of Figure 3. Upon reception of the second
 data segment, the included data sequence mapping allows the server to
 actually detect that this is not the first segment of a TCP
 connection. Indeed, the relative subflow sequence number inside the
 DSS-mapping is actually 100, indicating that this segment is already
 further ahead in the TCP stream. This allows the server to actually
 reconstruct the initial sequence number based on the sequence number
 in the TCP-header ((X+100) - 100) that has been provided by the
 client and verify whether its SYN-cookie is correct. Thus, no TCP-
 reset is being sent - in contrast to regular TCP, where the server
 cannot verify the SYN-cookie. The server knows that the received
 segment is not the first one of the data stream and thus it can store
 it temporarily in the out-of-order queue of the connection. It must
 be noted that the server is not yet able to fully reconstruct the
 MPTCP state. In order to do this it still must await the
 MP_CAPABLE_ACK option that is provided in the first data segment.

Paasch, et al. Expires March 6, 2016 [Page 8]

Internet-Draft Multipath TCP deployment September 2015

 The server responds to the out-of-order data with a duplicate ACK.
 The duplicate ACK may also have SACK data if SACK was negotiated.
 However, if this duplicate ACK does not have an MPTCP level Data ACK,
 the client may interpret this as a fallback to TCP. This is because
 the client cannot determine if an option stripping middlebox removed
 the MPTCP option on TCP segments after connection establishment. So
 even though the server has not fully recreated the MPTCP state at
 this point, it should respond with a Data ACK set to the Data
 Sequence Number Y-100. The client’s TCP implementation may
 retransmit the first data segment after a TCP retransmit timeout or
 it may do so as part of an Early Retransmit that can be triggered by
 an ACK arriving from the server.

 Host A Host B
 ------ ------
 SYN + MP_CAPABLE
 -->
 SYN/ACK + MP_CAPABLE
 <--
 ACK + MP_CAPABLE
 -----------------------------------X

 DATA (TCP-seq = X) + MP_CAPABLE_ACK
 -----------------------------------X
 DATA (TCP-seq = X+100) + DSS (DSN = Y, subseq = 100)
 --->

 DATA_ACK (Y - 100)
 <---

 Multipath TCP’s DSS option allows to handle the loss of the first
 data segment as the host can infer the initial sequence number.

 Figure 3

4. Alternative solutions

 An alternative solution to creating the MP_CAPABLE_ACK option would
 have been to emit the MP_CAPABLE-option together with the DSS-option
 on the first data segment. However, as the MP_CAPABLE option is 20
 bytes long and the DSS-option (using 4-byte sequence numbers)
 consumes 16 bytes, a total of 36 bytes of the TCP option space would
 be consumed by this approach. This option has been dismissed as it
 would prevent any other TCP option in the first data segment, a
 constraint that would severely limit TCP’s extensibility in the
 future.

Paasch, et al. Expires March 6, 2016 [Page 9]

Internet-Draft Multipath TCP deployment September 2015

5. IANA Considerations

 Our proposal requires the change of the MPTCP-version number.

6. Security Considerations

 Sending the keys in a reliable way after the three-way handshake
 implies that there is a larger window during which an on-path
 attacker might modify the keys that are being sent in the
 MP_CAPABLE_ACK. However, we do not think that this can actually be
 considered as a security issue. If an attacker modifies the keys,
 the outcome will be that the client and the server won’t agree
 anymore on the data-sequence numbers. The data-flow will thus stall.
 Considering that the attacker has to be an active on-path attacker to
 launch this attack, he has already other means of interfering with
 the connection. Thus, this attack is considered as irrelevant.

7. Acknowledgments

 We would like to thank Olivier Bonaventure and Alan Ford for their
 comments and suggestions on this draft.

8. References

8.1. Normative References

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

8.2. Informative References

 [I-D.barre-mptcp-tfo]
 Barre, S., Detal, G., and O. Bonaventure, "TFO support for
 Multipath TCP", draft-barre-mptcp-tfo-01 (work in
 progress), January 2015.

 [M08] McManus, P., "Improving syncookies", 2008,
 <http://lwn.net/Articles/277146/>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

Paasch, et al. Expires March 6, 2016 [Page 10]

Internet-Draft Multipath TCP deployment September 2015

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance", RFC
 7323, September 2014.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, December 2014.

Authors’ Addresses

 Christoph Paasch
 Apple, Inc.
 Cupertino
 US

 Email: cpaasch@apple.com

 Anumita Biswas
 Apple, Inc.
 Cupertino
 US

 Email: anumita_biswas@apple.com

 Darren Haas
 Apple, Inc.
 Cupertino
 US

 Email: dhaas@apple.com

Paasch, et al. Expires March 6, 2016 [Page 11]

