
Internet Engineering Task Force Y. Oiwa

Internet-Draft H. Watanabe

Intended status: Standards Track H. Takagi

Expires: April 28, 2011 RCIS, AIST

 Y. Ioku

 Yahoo! Japan

 T. Hayashi

 Lepidum

 October 25, 2010

Mutual Authentication Protocol for HTTP
draft-oiwa-http-mutualauth-08

Abstract

This document specifies a mutual authentication method for the Hyper-text Transport Protocol
(HTTP). This method provides a true mutual authentication between an HTTP client and an HTTP
server using password-based authentication. Unlike the Basic and Digest authentication methods, the
Mutual authentication method specified in this document assures the user that the server truly knows
the user’s encrypted password. This prevents common phishing attacks: a phishing attacker controlling
a fake website cannot convince a user that he authenticated to the genuine website. Furthermore, even
when a user authenticates to an illegitimate server, the server cannot gain any information about the
user’s password. The Mutual authentication method is designed as an extension to the HTTP protocol,
and is intended to replace the existing authentication methods used in HTTP (the Basic method, Digest
method, and authentication using HTML forms).

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other
groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is
at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as “work in progress.”

This Internet-Draft will expire on April 28, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

- 1 -

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights and restrictions with respect to
this document. Code Components extracted from this document must include Simplified BSD License
text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction
 1.1. Terminology
 1.2. Document Structure Overview
2. Protocol Overview
 2.1. Messages
 2.2. Typical Flows of the protocol
 2.3. Alternative flows
3. Message Syntax
 3.1. Tokens and Extensive-tokens
 3.2. Numbers
 3.3. Strings
4. Messages
 4.1. 401-B0
 4.2. 401-B0-stale
 4.3. req-A1
 4.4. 401-B1
 4.5. req-A3
 4.6. 200-B4
 4.7. 200-Optional-B0
5. Authentication Realms
 5.1. Resolving ambiguities
6. Session Management
7. Validation Methods
8. Decision procedure for client
9. Decision procedure for the server
10. Authentication-Control header
 10.1. Location-when-unauthenticated field
 10.2. Location-when-logout field
 10.3. Logout-timeout
11. Authentication Algorithms
 11.1. Support functions and notations
 11.2. Common functions for both settings
 11.3. Functions for discrete-logarithm settings
 11.4. Functions for elliptic-curve settings
12. Methods to extend this protocol
13. IANA Considerations
14. Security Considerations
 14.1. Security Properties
 14.2. Denial-of-service attacks to servers
 14.3. Implementation Considerations
 14.4. Usage Considerations

- 2 -

15. Notice on intellectual properties
16. References
 16.1. Normative References
 16.2. Informative References
Appendix A. (Informative) Generic syntax of headers
Appendix B. (Informative) Group parameters for discrete-logarithm based algorithms
Appendix C. (Informative) Derived numerical values
Appendix D. (Informative) Draft Remarks from Authors
Appendix E. (Informative) Draft Change Log
 E.1. Changes in revision 08
 E.2. Changes in revision 07
 E.3. Changes in revision 06
 E.4. Changes in revision 05
 E.5. Changes in revision 04
 E.6. Changes in revision 03
 E.7. Changes in revision 02
§ Authors’ Addresses

1. Introduction

This document specifies a mutual authentication method for Hyper-Text Transport Protocl (HTTP).
The method, called "Mutual Authentication Protocol" in this document, provides a true mutual
authentication between an HTTP client and an HTTP server, using just a simple password as a
credential.

The currently available methods for authentication in HTTP and Web systems have several
deficiencies. The Basic authentication method [RFC2617] sends a plaintext password to a server
without any protection; the Digest method uses a hash function that suffers from simple
dictionary-based off-line attacks, and people have begun to think it is obsolete.

The authentication method proposed in this document solves these problems, substitutes for these
existing methods, and serves as a long-term solution to Web authentication security. It has the
following main characteristics:

It provides "true" mutual authentication: in addition to assuring the server that the user knows the
password, it also assures the user that the server truly knows the user’s encrypted password at the
same time. It makes it impossible for fake website owners to persuade users that thee
authenticated with the original websites.
It uses only passwords as the user’s credential: unlike public-key-based security algorithms, the
method does not rely on secret keys or other cryptographic data that have to be stored inside the
users’ computers. The proposed method can be used as a drop-in replacement to the current
authentication methods like Basic or Digest, while ensuring a much stronger level of security.
It is secure: when the server fails to authenticate with a user, the protocol will not reveal any bit
of the user’s password.

Users can discriminate between true and fake Web servers using their own passwords by using the
proposed method. Even when a user inputs his/her password to a fake website owned by illegitimate
phishers, the user will certainly notice that the authentication has failed. Phishers will not be successful
in their authentication attempts, even if they forward the received data from a user to a legitimate
server or vice versa. Users can input sensitive data to the web forms after confirming that the mutual
authentication has succeeded, without fear of phishing attacks.

- 3 -

The document also proposes several extensions to the current HTTP authentication framework, to
replace current widely-used form-based Web authentication. A majority of the recent Web-sites on the
Internet use custom application-layer authentication implementations using Web forms. The reasons
for these may vary, but many people believe that the current HTTP Basic (and Digest, too)
authentication method does not have enough functionality (including a good-feeling user interfaces) to
support most of realistic Web-based applications. However, the method is very weak against phishing
attacks, because the whole behavior of the authentication is controlled from the server side. To
overcome this problem, we need to "modernize" the HTTP authentication framework so that better
client-controlled secure methods can be used with Web applications. The extensions proposed in this
document include:

Multi-host single authentication within an Internet domain (Section 5),
non-mandatory, optional authentication on HTTP (Section 4.7),
log out from both server and client side (Section 10), and
finer control for redirection depending on authentication status (Section 10).

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

The terms "encouraged" and "advised" are used for suggestions that do not constitute
"SHOULD"-level requirements. People MAY freely choose not to include the suggested items
regarding [RFC2119], but complying with those suggestions would be a best practice; it will improve
the security, interoperability, and/or operational performance.

This document distinguishes the terms "client" and "user" in the following way: A "client" is an entity
understanding and talking HTTP and the specified authentication protocol, usually computer software;
a "user" is a (usually natural) person who wants to access data resources using "a client".

The term "natural numbers" refers to the non-negative integers (including zero) throughout this
document.

1.2. Document Structure Overview

The entire document is organized as follows:

Section 2 presents an overview of the protocol design.
Sections 3 to 9 define a general framework of the Mutual authentication protocol. This
framework is independent of specific cryptographic primitives.
Section 10 defines an optional extension to the generic HTTP authentication framework, which is
mostly useful for controlling the behavior of the Web browser for the authentication.
Section 11 defines a few specific cryptographic algorithms to be used with this authentication
framework.
The sections after that contain general normative and informative information about the protocol.
The appendices contain some information that may help developers to implement the protocol.

- 4 -

2. Protocol Overview

The protocol, as a whole, is designed as a natural extension to the HTTP protocol [RFC2616] using a
framework defined in [RFC2617]. Internally, the server and the client will first perform a
cryptographic key exchange, using the secret password as a "tweak" to the exchange. The
key-exchange will only succeed when the secrets used by the both peers are correctly related (i.e.
generated from the same password). Then, both peers will verify the authentication results by
confirming the sharing of the exchanged key. This section describes a brief image of the protocol and
the exchanged messages.

2.1. Messages

The authentication protocol uses seven kinds of messages to perform mutual authentication. These
messages have specific names within this specification.

Authentication request messages: used by the servers to request clients to start mutual
authentication.

401-B0 message: a general message to start the authentication protocol. It is also used as a
message indicating an authentication failure.
200-Optional-B0 message: a variant of the 401-B0 message indicating that an authentication
is not mandatory.
401-B0-stale message: a message indicating that it has to start a new authentication trial.

Authenticated key exchange messages: used by both peers to perform authentication and the
sharing of a cryptographic secret.

req-A1 message: a message sent from the client.
401-B1 message: a message sent from the server as a response to a req-A1 message.

Authentication verification messages: used by both peers to verify the authentication results.
req-A3 message: a message used by the client, requesting that the server authenticates and
authorizes the client.
200-B4 message: a successful response used by the server, and also asserting that the server
is authentic to the client simultaneously.

In addition to the above, either a request or a response without any HTTP headers related to this
specification will be hereafter called a "normal request" or a "normal response", respectively.

2.2. Typical Flows of the protocol

In typical cases, the client access to a resource protected by the Mutual authentication will follow the
following protocol sequence.

 Client Server
 | |
 | ---- (1) normal request ---------> |
 GET / HTTP/1.1 |
 | |
 | <------------------ (2) 401-B0 --- |
 | 401 Authentication Required
 | WWW-Authenticate: Mutual realm="a realm"
 | |
[user, | |
 pass]-->| |
 | ---- (3) req-A1 -----------------> |

- 5 -

 GET / HTTP/1.1 |
 Authorization: Mutual user="john", |--> [user DB]
 wa="...", ... |<-- [user info]
 | |
 | <------------------ (4) 401-B1 --- |
 | 401 Authentication Required
 | WWW-Authenticate: Mutual sid=..., wb="...", ...
 | |
 [compute] (5) compute session secret [compute]
 | |
 | |
 | ---- (6) req-A3 -----------------> |
 GET / HTTP/1.1 |--> [verify (6)]
 Authorization: Mutual sid=..., |<-- OK
 oa="...", ... |
 | |
 | <------------------ (7) 200-B4 --- |
[verify | 200 OK |
 (7)]<--| Authentication-Info: Mutual ob="..."
 | |
 v v

 Figure 1: Typical communication flow for first access to resource

As usual in general HTTP protocol designs, a client will at first request a resource without any
authentication attempt (1). If the requested resource is protected by the Mutual authentication, the
server will respond with a message requesting authentication (401-B0) (2).
The client processes the body of the message, and waits for the user to input the user name and a
password. If the user name and the password are available, the client will send a message with the
authenticated key exchange (req-A1) to start the authentication (3).
If the server has received a req-A1 message, the server looks up the user’s authentication
information within its user database. Then the server creates a new session identifier (sid) that
will be used to identify sets of the messages that follow it, and responds back with a message
containing a server-side authenticated key exchange value (401-B1) (4).
At this point (5), both peers calculate a shared "session secret" using the exchanged values in the
key exchange messages. Only when both the server and the client have used secret credentials
generated from the same password will the session secret values match. This session secret will
be used for the actual access authentication after this point.
The client will send a request with a client-side authentication challenge (req-A3) (6), generated
from the client-owned session secret. The server will check the validity of the challenge using its
own session secret.
If the challenge from the client was correct, it means that the client definitely owns the credential
based on the expected password (i.e. the client authentication succeeded.) The server will respond
with a successful message (200-B4) (7). Contrary to the usual one-way authentication (e.g. HTTP
Basic authentication or POP APOP authentication), this message also contains a server-side
authentication challenge.
When the client’s challenge is incorrect (e.g. because the user-supplied password was incorrect),
the server will respond with the 401-B0 message (used in (2)) instead.
The client MUST first check the validity of the server-side authentication challenge contained in
the message (7). If the challenge was equal to the expected value, the server authentication
succeeded.
If it is not the value expected, or if the message does not contain the authentication challenge
value, it means that the mutual authentication has been broken for some unexpected reason. The

- 6 -

client MUST NOT process any body or header values contained in this case. (Note: This case
should not happen between a correctly-implemented server and a client.)

2.3. Alternative flows

As shown above, the typical flow for a first authenticated request requires three request-response pairs.
To reduce the protocol overhead, the protocol enables several short-cut flows which require fewer
messages.

(case A) If the client knows that the resource is likely to require the authentication, the client
MAY omit the first unauthenticated request (1) and immediately send a req-A1 message. This
will reduce one round-trip of messages.
(case B) If both the client and the server previously shared a session secret associated with a valid
session identifier (sid), the client MAY directly send a req-A3 message using the existing session
identifier and corresponding session secret. This will further reduce one round-trip of messages.
In such cases, the server MAY have thrown out the corresponding sessions from the session table.
In this case, the server will send a 401-B0-stale message as a response to req-A3 message,
indicating a new key exchange is required. The client SHOULD retry constructing a req-A1
message in this case.

Figure 2 depicts the shortcut flows described above. Under the appropriate settings and
implementations, most of the requests to resources are expected to meet both the criteria, and thus only
one round-trip of request/responses will be required in most cases.

 (A) omit first request
 (2 round trips)

 Client Server
 | |
 | --- req-A1 ----> |
 | |
 | <---- 401-B1 --- |
 | |
 | --- req-A3 ----> |
 | |
 | <---- 200-B4 --- |
 | |

 (B) reusing session secret

 (B-1) key available (B-2) key expired
 (1 round trip) (3 round trips)

 Client Server Client Server
 | | | |
 | --- req-A3 ----> | | --- req-A3 ----------> |
 | | | |
 | <---- 200-B4 --- | | <---- 401-B0-stale --- |
 | | | |
 | --- req-A1 ----------> |
 | |
 | <---------- 401-B1 --- |
 | |

- 7 -

 | --- req-A3 ----------> |
 | |
 | <---------- 200-B4 --- |
 | |

 Figure 2: Several alternative flows on protocol

For more details, see Sections 8 and 9.

3. Message Syntax

The Mutual authentication protocol uses five headers: WWW-Authenticate (in responses with status
code 401), Optional-WWW-Authenticate (in responses with non-401 status codes),
Authentication-Control (in responses), Authorization (in requests), and Authentication-Info (in
responses other than 401 status). These headers follow a common framework described in [RFC2617]
[Editorial Note: to be httpbis-p7]. The detailed syntax definitions for these headers are contained in
Section 4.

These headers use some common syntax elements described in Figure 3. The syntax is denoted in the
augmented BNF syntax defined in [RFC5234].

 auth-scheme = "Mutual" ; see HTTP for other values
 extension-field = extension-token "=" value
 token = 1*(%x30-39 / %x41-5A / %x61-7A / "-" / "_")
 extensive-token = token / extension-token
 extension-token = "-" token 1*("." token)
 value = extensive-token / integer
 / hex-fixed-number
 / base64-fixed-number / string
 integer = "0" / (%x31-39 *%x30-39) ; no leading zeros
 hex-fixed-number = 1*(%x30-39 / %x41-46 / %x61-66)
 base64-fixed-number = string
 string = %x22 *(%x20-21 / %x23-5B / %x5D-FF
 / %x5C.22 / "\\") %x22
 spaces = 1*(" " / %x09)

 Figure 3: BNF syntax for common elements used in protocol

3.1. Tokens and Extensive-tokens

The tokens are case insensitive; Senders SHOULD send these in lower-case, and receivers MUST
accept both upper- and lower-cases. When tokens are used as the (partial) inputs to any hash or other
mathematical functions, it MUST always be used in lower-case. All hexadecimal numbers are also
case-insensitive, and SHOULD be sent in lower-case.

Extensive-tokens are used in this protocol where the set of acceptable tokens may include
non-standard extensions. Any non-standard extensions of this protocol MUST use the
extension-tokens with format "-<token>.<domain-name>", where <domain-name> is a validly
registered (sub-)domain name on the Internet owned by the party who defines the extensions.

- 8 -

3.2. Numbers

The syntax definition of the integers only allows representations that do not contain extra leading
zeros.

The numbers represented as a hex-fixed-number MUST include an even number of characters (i.e.
multiples of eight bits). When these are generated from any cryptographic values, they SHOULD have
their "natural length": if these are generated from a hash function, these lengths SHOULD correspond
to the hash size; if these are representing elements of a mathematical set (or group), its lengths
SHOULD be the shortest for representing all the elements in the set. See Appendix C for information
about the length of the fields used in this specification. Session-identifiers and other
non-cryptographically generated values are represented in any (even) length determined by the side
who generates it first, and the same length SHALL be used throughout the all communications by both
peers.

The numbers represented as base64-fixed-number SHALL be generated as follows: first, the number is
converted to a big-endian octet-string representation. The length of the representation is determined in
the same way as mentioned above. Then, the string is encoded using the Base 64 encoding [RFC4648]
without any spaces and newlines, and then enclosed by two double-quotations.

3.3. Strings

All the strings outside ASCII character sets MUST be encoded using the UTF-8 encoding [RFC3629]
for the ISO 10646-1 character set [ISO.10646-1.1993]. Both peers are RECOMMENDED to reject any
invalid UTF-8 sequences that might cause decoding ambiguities (e.g., containing <"> in the second or
later byte of the UTF-8 encoded characters).

To encode character strings to header values, they will first be encoded according to UTF-8 without a
leading BOM, then all occurrences of the characters <"> and "\" will be escaped by prepending "\",
and two <">s will be put around the string. These escaping backslashes and enclosing quotes SHALL
be removed before any processing other than when using them in a header field.

If strings are representing a domain name or URI that contains non-ASCII characters, the host parts
SHOULD be encoded as it is used in the HTTP protocol layer (e.g. in a Host: header); under current
standards it will be the one defined in [RFC5890]. It SHOULD use lower-case ASCII characters.

For base64-fixed-numbers, which use the string syntax, see the previous section.

4. Messages

In this section we define the seven kinds of messages used in the authentication protocol along with
the formats and requirements of the headers for each message.

To determine which message are expected to be sent, see Sections 8 and 9.

In the descriptions below, the type of allowable values for each header field is shown in parenthesis
after the key names. The "algorithm-determined" type means that the acceptable value for the field is
one of the types defined in Section 3, and is determined by the value of the "algorithm" field. The
fields marked "mandatory" SHALL be contained in the message. The fields marked "non-mandatory"
MAY either be contained or omitted in the message. Each field SHALL appear in each headers exactly
once at most.

- 9 -

4.1. 401-B0

Every 401-B0 message SHALL be a valid HTTP 401 (Authentication Required) message containing
one (and only one: hereafter not explicitly noticed) "WWW-Authenticate" header of the following
format.

WWW-Authenticate: Mutual algorithm=xxxx, validation=xxxx, realm="xxxx", stale=0,
version=-draft07

 header-401-B0 = "WWW-Authenticate" ":" [spaces]
 auth-scheme spaces fields-401-B0
 fields-401-B0 = field-401-B0 *([spaces] "," spaces field-401-B0)
 field-401-B0 = version / algorithm / validation
 / auth-domain / realm / pwd-hash / stale
 / extension-field
 version = "version" "=" extensive-token
 algorithm = "algorithm" "=" extensive-token
 validation = "validation" "=" extensive-token
 auth-domain = "auth-domain" "=" string
 realm = "realm" "=" string
 pwd-hash = "pwd-hash" "=" extensive-token
 stale = token

 Figure 4: BNF syntax for header in 401-B0 header

The header SHALL contain all of the fields marked "mandatory" below, and MAY contain those
marked "non-mandatory".

version:
(mandatory extensive-token) should be the token "-draft07" in this specification. The
behavior is undefined when other values are specified.

algorithm:
(mandatory extensive-token) specifies the authentication algorithm to be used. The value
MUST be one of the tokens described in Section 11, or the tokens specified in other
supplemental specification documentation.

validation:
(mandatory extensive-token) specifies the method of host validation. The value MUST be
one of the tokens described in Section 7, or the tokens specified in other supplemental
specification documentation.

auth-domain:
(non-mandatory string) specifies the authentication domain, the set of hosts for which the
authentication credentials are valid. It MUST be one of the strings described in Section 5. If
the value is omitted, it is assumed to be the host part of the requested URI.

realm:
(mandatory string) is a UTF-8 encoded string representing the name of the authentication
realm inside the authentication domain.

pwd-hash:
(non-mandatory extensive-token) specifies the hash algorithm (hereafter referred to by ph)
used for additionally hashing the password. The valid tokens are

none: ph(p) = p
md5: ph(p) = MD5(p)
digest-md5: ph(p) = MD5(username | ":" | realm | ":" | p), the same value as MD5(A1)

- 10 -

for "MD5" algorithm in [RFC2617].
sha1: ph(p) = SHA1(p)

If omitted, the value "none" is assumed. The use of "none" is recommended.
stale:

(mandatory token) MUST be "0".

The algorithm specified in this header will determine the types and the values for w_A, w_B, o_A and
o_B.

4.2. 401-B0-stale

A 401-B0-stale message is a variant of the 401-B0 message, which means that the client has sent a
request message that is not for any active session.

WWW-Authenticate: Mutual algorithm=xxxx, validation=xxxx, realm="xxxx", stale=1,
version=-draft07

The header MUST contain the same fields as in 401-B0, except that the stale field contains token 1.

4.3. req-A1

Every req-A1 message SHALL be a valid HTTP request message containing an "Authorization"
header of the following format.

Authorization: Mutual algorithm=xxxx, validation=xxxx, realm="xxxx", user="xxxx", wa=xxxx,
version=-draft07

 header-req-A1 = "Authorization" ":" [spaces]
 auth-scheme spaces fields-req-A1
 fields-req-A1 = field-req-A1 *([spaces] "," spaces field-req-A1)
 field-req-A1 = version / algorithm / validation
 / auth-domain / realm / user / wa
 / extension-field
 user = "user" "=" string
 wa = "wa" "=" value

 Figure 5: the BNF syntax for the header in req-A1 message

The header SHALL contain the fields with the following keys:

version:
(mandatory, extensive-token) should be the token "-draft07" in this specification. The
behavior is undefined when other values are specified.

algorithm, validation, auth-domain, realm:
MUST be the same value as it is when received from the server.

user:
(mandatory, string) is the UTF-8 encoded name of the user.

wa:
(mandatory, algorithm-determined) is the client-side key exchange value w_A, which is
specified by the algorithm that is used (see Section 11).

- 11 -

4.4. 401-B1

Every 401-B1 message SHALL be a valid HTTP 401 (Authentication Required) message containing a
"WWW-Authenticate" header of the following format.

WWW-Authenticate: Mutual algorithm=xxxx, validation=xxxx, realm="xxxx", sid=xxxx, wb=xxxx,
nc-max=x, nc-window=x, time=x, path="xxxx", version=-draft07

 header-401-B1 = "WWW-Authenticate" ":" [spaces]
 auth-scheme spaces fields-401-B1
 fields-401-B1 = field-401-B1 *([spaces] "," spaces field-401-B1)
 field-401-B1 = version / algorithm / validation
 / auth-domain / realm / sid / wb
 / nc-max / nc-window / time / path
 / extension-field
 sid = "sid" "=" string
 wb = "wb" "=" value
 nc-max = "nc-max" "=" integer
 nc-window = "nc-window" "=" integer
 time = "time" "=" integer
 path = "path" "=" string

 Figure 6: the BNF syntax for the header in 401-B1 message

The header SHALL contain the fields with the following keys:

version:
(mandatory, extensive-token) should be the token "-draft07" in this specification. The
behavior is undefined when other values are specified.

algorithm, validation, auth-domain, realm:
MUST be the same value as it is when received from the client.

sid:
(mandatory, hex-fixed-number) MUST be a session identifier, which is a random integer.
The sid SHOULD have uniqueness of at least 80 bits or the square of the maximal estimated
transactions concurrently available in the session table, whichever is larger. Session
identifiers are local to each concerned authentication realm: the same sids for different
authentication realms SHOULD be treated as independent ones.

wb:
(mandatory, algorithm-determined) is the server-side key exchange value w_B, which is
specified by the algorithm (see Section 11).

nc-max:
(mandatory, integer) is the maximal value of nonce counts that the server accepts.

nc-window:
(mandatory, integer) the number of available nonce slots that the server will accept. The
value of the nc-window field is RECOMMENDED to be 32 or more.

time:
(mandatory, integer) represents the suggested time (in seconds) that the client can reuse the
session represented by the sid. It is RECOMMENDED to be at least 60. The value of this
field is not directly linked to the duration that the server keeps track of the session
represented by the sid.

- 12 -

path:
(non-mandatory, string) specifies which path in the URI space the same authentication is
expected to be applied. The value is a space-separated list of URIs, in the same format as it
was specified in domain parameter [RFC2617] for the Digest authentications, and clients are
RECOMMENDED to recognize it. The all path elements contained in the field MUST be
inside the specified auth-domain: if not, clients SHOULD ignore such elements.

4.5. req-A3

Every req-A3 message SHALL be a valid HTTP request message containing an "Authorization"
header of the following format.

Authorization: Mutual algorithm=xxxx, validation=xxxx, realm="xxxx", sid=xxxx, nc=x, oa=xxxx,
version=-draft07

 header-req-A3 = "Authorization" ":" [spaces]
 auth-scheme spaces fields-req-A3
 fields-req-A3 = field-req-A3 *([spaces] "," spaces field-req-A3)
 field-req-A3 = version / algorithm / validation
 / auth-domain / realm / sid / nc / oa
 / extension-field
 nc = "nc" "=" integer
 oa = "oa" "=" value

 Figure 7: the BNF syntax for the header in req-A3 message

The fields contained in the header are as follows:

version:
(mandatory, extensive-token) should be the token "-draft07" in this specification. The
behavior is undefined when other values are specified.

algorithm, validation, auth-domain, realm:
MUST be the same value as it is when received from the server for the session.

sid:
(mandatory, hex-fixed-number) MUST be one of the sid values that was received from the
server for the same authentication realm.

nc:
(mandatory, integer) is a nonce value that is unique among the requests sharing the same sid.
The values of the nonces SHOULD satisfy the properties outlined in Section 6.

oa:
(mandatory, algorithm-determined) is the client-side authentication challenge value o_A,
which is specified by the algorithm (see Section 11).

4.6. 200-B4

Every 200-B4 message SHALL be a valid HTTP message that is not of the 401 (Authentication
Required) type, containing an "Authentication-Info" header of the following format.

Authentication-Info: Mutual sid=xxxx, ob=xxxx, version=-draft07

- 13 -

 header-200-B4 = "Authentication-Info" ":" [spaces]
 auth-scheme spaces fields-200-B4
 fields-200-B4 = field-200-B4 *([spaces] "," spaces field-200-B4)
 field-200-B4 = version / sid / ob / logout-timeout
 ob = "ob" "=" value
 logout-timeout = "logout-timeout" "=" integer

 Figure 8: BNF syntax for header in 200-B4 message

The fields contained in the header are as follows:

version:
(mandatory, extensive-token) should be the token "-draft07" in this specification. The
behavior is undefined when other values are specified.

sid:
(mandatory, hex-fixed-number) MUST be the value received from the client.

ob:
(mandatory, algorithm-determined) is the server-side authentication challenge value o_B,
which is specified by the algorithm (see Section 11).

logout-timeout:
(non-mandatory, integer) is the number of seconds after which the client should re-validate
the user’s password for the current authentication realm. The value 0 means that the client
SHOULD automatically forget the user-inputted password for the current authentication
realm and revert to the unauthenticated state (i.e. server-initiated logout). This does not,
however, mean that the long-term memories for the passwords (such as the password
reminders and auto fill-ins) should be removed. If a new timeout value is received for the
same authentication realm, it overrides the previous timeout.

The header MUST be sent before the content body: it MUST NOT be sent in the trailer of a
chunked-encoded response. If a "100 Continue" response is sent from the server, the
Authentication-Info header SHOULD be included in that response, instead of the final response.

4.7. 200-Optional-B0

The 200-Optional-B0 messages enable a non-mandatory authentication, which is not possible under
the current HTTP authentication mechanism. In several Web applications, users can access the same
contents as both a guest user and an authenticated user. In most Web applications, it is implemented
using HTTP cookies [RFC2965] and custom form-based authentications. The new authentication
method using this message will provide a replacement for these authentication systems. Support for
this message is RECOMMENDED, unless the protocol is used for some specific applications in which
the authentication is always mandatory.

Servers MAY send HTTP successful responses (response code 200, 206 and others) containing the
Optional-WWW-Authenticate header, when it is allowed to send 401-B0 responses (with one
exception described below). Such responses are hereafter called 200-Optional-B0 responses.

HTTP/1.1 200 OK
Optional-WWW-Authenticate: Mutual version=-draft07, algorithm=xxxx, validation=xxxx,
realm="xxxx", stale=0

- 14 -

 header-200-Optional-B0 = "Optional-WWW-Authenticate" ":" [spaces]
 auth-scheme spaces fields-401-B0

 Figure 9: BNF syntax for header in 200-Optional-B0 header

The fields contained in the Optional-WWW-Authenticate header are the same as those for the 401-B0
message described in Section 4.1. For authentication-related matters, a 200-Optional-B0 message will
have the same meaning as a 401-B0 message with a corresponding WWW-Authenticate header. (The
behavior for other matters, such as caching, MAY be different between the 200-Optional-B0 and
401-B0 messages.)

The 200-Optional-B0 message is the only place where an Optional-WWW-Authenticate header is
allowed. If a server is supposed to send a 401-B1 or a 401-B0-stale response, it SHALL NOT replace
it with 200-Optional-B0 or similar responses. Furthermore, if a server is going to send a 401-B0
message as a response to a req-A3 message with a correct realm, the server MUST send a 401-B0
message, not a 200-Optional-B0 message.

Servers requesting non-mandatory authentication SHOULD send the path field in the 401-B1
messages with an appropriate value. Clients supporting non-mandatory authentication MUST
recognize the field, and MUST send either a req-A1 or a req-A3 request for the URI space inside the
specified paths, instead of a normal request without an Authorization header.

5. Authentication Realms

In this protocol, an "authentication realm" is defined as a set of resources (URIs) for which the same
set of user names and passwords is valid for. If the server requests authentication for an authentication
realm that the client is already authenticated for, the client will automatically perform the
authentication using the already-known secrets. However, for the different authentication realms, the
clients SHOULD NOT automatically reuse the usernames and passwords for another realm.

Just like in Basic and Digest access authentication protocols, Mutual authentication protocol supports
multiple, separate authentication realms to be set up inside each host. Furthermore, the protocol
supports that a single authentication realm spans over several hosts within the same Internet domain.

Each authentication realm is defined and distinguished by the triple of an "authentication algorithm",
an "authentication domain", and a "realm" parameter. However, server operators are
NOT RECOMMENDED to use the same pair of an authentication domain and a realm for different
authentication algorithms.

Authentication algorithms are defined in Sections 4 and 11. The realm parameter is a string as defined
in Section 4. Authentication domains are described in the remainder of this section.

An authentication domain specifies the range of hosts that the authentication realm spans over. In this
protocol, it MUST be one of the following strings.

The string in format "<scheme>://<host>:<port>", where <scheme>, <host>, and <port> are the
URI parts of the requested URI. Even if the request-URI does not have a port part, the string will
include one (i.e. 80 for http and 443 for https). Use this when authentication is only valid for
specific protocol (such as https).
The "host" part of the requested URI. This is the default value. Authentication realms within this

- 15 -

kind of authentication domain will span over several protocols (i.e. http and https) and ports, but
not over different hosts.
The string in format "*.<domain-postfix>", where <domain-postfix> is either the host part of the
requested URI or any domain in which the requested host is included (this means that the specification
"*.example.com" is valid for all of hosts "www.example.com", "web.example.com",
"www.sales.example.com" and "example.com"). The domain-postfix sent from the servers MUST be
equal to or included in a valid Internet domain assigned to a specific organization: if clients know, by
some means such as a blacklist for HTTP cookies, that the specified domain is not to be assigned to
any specific organization (e.g. "*.com" or "*.jp"), the clients are RECOMMENDED to reject the
authentication request.

In the above specifications, every "scheme", "host", and "domain" MUST be in lower-case, and any
internationalized domain names beyond the ASCII character set SHALL be represented in the way
they are sent in the underlying HTTP protocol, represented in lower-case characters; i.e. these SHALL
be in the form of the LDH labels in IDNA [RFC5890]. All "port"s MUST be in the shortest, unsigned,
decimal number notation. Not obeying these requirements will cause failure of valid authentication
attempts.

5.1. Resolving ambiguities

In the above definitions of authentication domains, several domains will overlap each other.
Depending on the "path" parameters given in the "401-B1" message (see Section 4), there may be
several candidates when the client is going to send a request including an authentication credential
(Steps 3 and 4 of the decision procedure presented in Section 8).

If such choices are required, the following procedure SHOULD be followed.

If the client has previously sent a request to the same URI, and it remembers the authentication
realm requested by 401-B0 messages at that time, use that realm.
In other cases, use one of authentication realms representing the most-specific authentication
domains. From the list of possible domain specifications shown above, each one has priority over
ones described after that.
If there are several choices with different domain-postfix specifications, the one that has the
longest domain-postfix has priority over ones with a shorter domain-postfix.
If there are realms with the same authentication domain, there is no defined priority: the client
MAY choose any one of the possible choices.

If possible, server operators are encouraged to avoid such ambiguities by properly setting the "path"
parameters.

6. Session Management

In the Mutual authentication protocol, a session represented by an sid is set up using first four
messages (first request, 401-B0, req-A1 and 401-B1), and a "session secret" (z) associated with the
session is established. After sharing a session secret, this session, along with the secret, can be used for
one or more requests for resources protected by the same realm in the same server. Note that session
management is only an inside detail of the protocol and usually not visible to normal users. If a session
expires, the client and server SHOULD automatically reestablish another session without informing
the users.

- 16 -

The sessions are local to each port of the host inside an authentication domain; the clients MUST
establish separate sessions for each port of a host to be accessed.

The server SHOULD accept at least one req-A3 request for each session, given that the request
reaches the server in a time window specified by the timeout field in the 401-B1 message, and that
there are no emergent reasons (such as flooding attacks) to forget the sessions. After that, the server
MAY discard any session at any time and MAY send 401-B0-stale messages for any req-A3 requests.

The client MAY send two or more requests using a single session specified by the sid. However, for
all such requests, each value of the nonce (in the nc field) MUST satisfy the following conditions:

It is a natural number.
The same nonce was not sent within the same session.
It is not larger than the nc-max value that was sent from the server in the session represented by
the sid.
It is larger than (largest-nc - nc-window), where largest-nc is the maximal value of nc which was
previously sent in the session, and nc-window is the value of the nc-window field which was
received from the server in the session.

The last condition allows servers to reject any nonce values that are "significantly" smaller than the
"current" value (defined by the value of nc-window) of the nonce used in the session involved. In other
words, servers MAY treat such nonces as "already received". This restriction enables servers to
implement duplicated nonce detection in a constant amount of memory (for each session).

Servers MUST check for duplication of the received nonces, and if any duplication is detected, the
server MUST discard the session and respond with a 401-B0-stale message, as outlined in Section 9.
The server MAY also reject other invalid nonce values (such as ones above the nc-max limit) by
sending a 401-B0-stale message.

For example, assume the nc-window value of the current session is 32, nc-max is 100, and that the
client has already used the following nonce values: {1-20, 22, 24, 30-38, 45-60, 63-72}. Then the
nonce values that can be used for next request is one of the following set: {41-44, 61-62, 73-100}. The
values {0, 21, 23, 25-29, 39-40} MAY be rejected by the server because they are not above the current
"window limit" (40 = 72 - 32).

Typically, clients can ensure the above property by using a monotonically-increasing integer counter
that counts from zero upto the value of nc-max.

The values of the nonces and any nonce-related values MUST always be treated as natural numbers
within an infinite range. Implementations using fixed-width integers or fixed-precision floating
numbers MUST correctly and carefully handle integer overflows. Such implementations are
RECOMMENDED to accept any larger values that cannot be represented in the fixed-width integer
representations, as long as other limits such as internal header-length restrictions are not involved. The
protocol is designed carefully so that both the clients and servers can implement the protocol using
only fixed-width integers, by rounding any overflowed values to the maximum possible value.

7. Validation Methods

The "validation method" specifies a method to "relate" the mutual authentication processed by this
protocol with other authentications already performed in the underlying layers and to prevent
man-in-the-middle attacks. It decides the value v that is an input to the authentication protocols.

- 17 -

The valid tokens for the validation field and corresponding values of v are as follows:

host:
hostname validation: The value v will be the ASCII string in the following format:
"<scheme>://<host>:<port>", where <scheme>, <host>, and <port> are the URI components
corresponding to the currently accessing resource. The scheme and host are in lower-case,
and the port is in a shortest decimal representation. Even if the request-URI does not have a
port part, v will include one.

tls-cert:
TLS certificate validation: The value v will be the octet string of the hash value of the public
key certificate used in the underlying TLS [RFC5246] (or SSL) connection. The hash value
is defined as the value of the entire signed certificate (specified as "Certificate" in
[RFC5280]), hashed by the hash algorithm specified by the authentication algorithm used.

tls-key:
TLS shared-key validation: The value v will be the octet string of the shared master secret
negotiated in the underlying TLS (or SSL) connection.

If the HTTP protocol is used on a non-encrypted channel (TCP and SCTP, for example), the validation
type MUST be "host". If HTTP/TLS [RFC2818] (https) protocol is used with the server certificates,
the validation type MUST be either "tls-cert" or "tls-key". If HTTP/TLS protocol is used with an
anonymous Diffie-Hellman key exchange, the validation type MUST be "tls-key" (see the note below).

Clients MUST validate this field upon reception of the 401-B0 messages.

However, when the client is a Web browser with any scripting capabilities, the underlying TLS
channel used with HTTP/TLS MUST provide server identity verification. This means (1) the
anonymous Diffie-Hellman key exchange ciphersuite MUST NOT be used, and (2) the verification of
the server certificate provided from the server MUST be performed.

For other systems, when the underlying TLS channel used with HTTP/TLS does not perform server
identity verification, the client SHOULD ensure that all the responses are validated using the Mutual
authentication protocol, regardless of the existence of the 401-B0 responses.

Note: The protocol defines two variants for validation on the TLS connections. The "tls-key" method
is more secure. However, there are some situations where tls-cert is more preferable.

When TLS accelerating proxies are used, it is difficult for the authenticating server to acquire the
TLS key information that is used between the client and the proxy. This is not the case for
client-side "tunneling" proxies using a CONNECT method extension of HTTP.
When a black-box implementation of the TLS protocol is used on either peer.

Implementations supporting a Mutual authentication over the HTTPS protocol SHOULD support the
"tls-cert" validation. Support for "tls-key" validation is OPTIONAL for both the servers and clients.

8. Decision procedure for client

To securely implement the protocol, the user client must be careful about accepting the authenticated
responses from the server. This also holds true for the reception of "normal responses" (responses
which do not contain Mutual-related headers) from HTTP servers.

- 18 -

Clients SHOULD implement a decision procedure equivalent to the one shown below. (Unless
implementers understand what is required for the security, they should not alter this.) In particular,
clients SHOULD NOT accept "normal responses" unless explicitly allowed below. The labels on the
steps are for informational purposes only. Entries within each step are checked in top-to-bottom order,
and the first clause satisfied SHOULD be taken.

Step 1 (step_new_request):
If the client software needs to access a new Web resource, check whether the resource is
expected to be inside some authentication realm for which the user has already been
authenticated by the Mutual authentication scheme. If yes, go to Step 2. Otherwise, go to
Step 5.

Step 2:
Check whether there is an available sid for the authentication realm you expect. If there is
one, go to Step 3. Otherwise, go to Step 4.

Step 3 (step_send_a3_1):
Send a req-A3 request.

If you receive a 401-B0 message with a different authentication realm than expected, go
to Step 6.
If you receive a 200-Optional-B0 message with a different authentication realm than
expected, go to Step 6.
If you receive a 401-B0-stale message, go to Step 9.
If you receive a 401-B0 message, go to Step 13.
If you receive a 200-B4 message, go to Step 14.
If you receive a normal response, go to Step 11.

Step 4 (step_send_a1_1):
Send a req-A1 request.

If you receive a 401-B0 message with a different authentication realm than expected, go
to Step 6.
If you receive a 200-Optional-B0 message with a different authentication realm than
expected, go to Step 6.
If you receive a 401-B1 message, go to Step 10.
If you receive a 401-B0 message with the same authentication realm, go to Step 13 (see
Note 1).
If you receive a normal response, go to Step 11.

Step 5 (step_send_normal_1):
Send a request without any Mutual authentication headers.

If you receive a 401-B0 message, go to Step 6.
If you receive a 200-Optional-B0 message, go to Step 6.
If you receive a normal response, go to Step 11.

Step 6 (step_rcvd_b0):
Check whether you know the user’s password for the requested authentication realm. If yes,
go to Step 7. Otherwise, go to Step 12.

Step 7:
Check whether there is an available sid for the authentication realm you expect. If there is
one, go to Step 8. Otherwise, go to Step 9.

Step 8 (step_send_a3):
Send a req-A3 request.

If you receive a 401-B0-stale message, go to Step 9.
If you receive a 401-B0 message, go to Step 13.

- 19 -

If you receive a 200-B4 message, go to Step 14.
Step 9 (step_send_a1):

Send a req-A1 request.
If you receive a 401-B1 message, go to Step 10.
If you receive a 401-B0 message, go to Step 13 (See Note 1).

Step 10 (step_rcvd_b1):
Send a req-A3 request.

If you receive a 401-B0 message, go to Step 13.
If you receive a 200-B4 message, go to Step 14.

Step 11 (step_rcvd_normal):
The requested resource is out of the authenticated area. The client will be in the
"UNAUTHENTICATED" status. If the response contains a request for authentications other
than Mutual, it MAY be handled normally.

Step 12 (step_rcvd_b0_unknown):
The requested resource requires a Mutual authentication, and the user is not yet
authenticated. The client will be in the "AUTH_REQUESTED" status, and is
RECOMMENDED to process the content sent from the server, and to ask user for a user
name and a password. When those are supplied from the user, proceed to Step 9.

Step 13 (step_rcvd_b0_failed):
For some reason the authentication failed: possibly the password or the username is invalid
for the authenticated resource. Forget the password for the authentication realm and go to
Step 12.

Step 14 (step_rcvd_b4):
Check the validity of the received o_b value. If it is equal to the expected value, it means
that the mutual authentication has succeeded. The client will be in the
"AUTH_SUCCEEDED" status.
If the value is unexpected, it is a fatal communication error.
If a user explicitly requests to log out (via user interfaces), the client MUST forget the user’s
password, go to step 5 and reload the current resource without an authentication credential.

Note 1:
These transitions are valid for clients, but not recommended for servers to initiate.

Any kind of response (including a normal response) other than those shown in the above procedure
SHOULD be interpreted as a fatal communication error, and in such cases the clients MUST NOT
process any data (response body and other content-related headers) sent from the server. However, to
handle exceptional error cases, clients MAY accept a message without an Authentication-Info header,
if it is a Server-Error (5xx) status. The client will be in the "UNAUTHENTICATED" status in these
cases.

The client software SHOULD display the three client status to the end-user. For an interactive client,
however, if a request is a sub-request for a resource included in another page (e.g., embedded images,
style sheets, frames etc.), its status MAY be omitted from being shown, and any
"AUTH_REQUESTED" statuses MAY be treated in the same way as an "UNAUTHENTICATED"
status.

Figure 10 shows a diagram of the client-side state.

- 20 -

NEW REQUEST

the requested URI
known to be authed?

send
normal request

UNAUTHENTICATED

normal response

user/pass
known?

401-B0
200-Optional-B0

AUTH_REQUESTED

NO

NO

session
available?

send
req-A3

UNAUTHENTICATED

normal resonse

401-B0
AUTH_REQUESTED:

forget password

send
req-A1

NO

401-B0

AUTH_SUCCEED

200-B4

401-B1

send
req-A3

200-B4

session
available?

send
req-A3

send
req-A1

401-B0

401-B1

200-B4

401-B0-stale
401-B0-stale

NO

YES

YES

YES YES

USER/PASS INPUTED

401-B0, 200-Optional-B0
 with different realm

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(9)

(6)

(11)

(11)

(12)

(13)

(10)

(14)

 Figure 10: State diagram for clients

9. Decision procedure for the server

Each server SHOULD have a table of session states. This table need not be persistent over a long term;
it MAY be cleared upon server restart, reboot, or others. Each entry in the table SHOULD contain at
least the following information:

The session identifier, the value of the sid field.
The algorithm used.
The authentication realm.
The state of the protocol: one of "wa received", "authenticated", "rejected", or "inactive".
The user name received from the client
The boolean flag noting whether or not the session is fake.
When the state is "wa received", the values of wa and sb.
When the state is "authenticated", the following information:

The value of the session secret z
The largest nc received from the client (largest-nc)

- 21 -

For each possible nc values between (largest-nc - nc-window + 1) and max_nc, a flag
whether or not a request with the corresponding nc has been received.

The table MAY contain other information.

Servers SHOULD respond to the client requests according to the following procedure:

When the server receives a normal request:
If the requested resource is not protected by the Mutual Authentication, send a normal
response.
If the resource is protected by the Mutual Authentication, send a 401-B0 response.
If the resource is protected by the optional Mutual Authentication, send a 200-Optional-B0
response.

When the server receives a req-A1 request:
If the requested resource is not protected by the Mutual Authentication, send a normal
response.
If the authentication realm specified in the req-A1 request is not the expected one, send
either a 401-B0 or a 200-Optional-B0 response.
If the server cannot validate the field wa, send a 401-B0 response.
If the received user name is either invalid, unknown or unacceptable, create a new session,
mark it a "fake" session, compute a random value as wb, and send a fake 401-B1 response.
(Note: the server SHOULD NOT send a 401-B0 response in this case, because it will leak
the information to the client that the specified user will not be accepted. Instead, postpone it
to the response for the next req-A3 request.)
Otherwise, create a new session, compute wb and send a 401-B1 response.

The created session has the "wa received" state.
When the server receives a req-A3 request:

If the requested resource is not protected by the Mutual Authentication, send a normal
response.
If the authentication realm specified in the req-A3 request is not the expected one, send
either a 401-B0 or a 200-Optional-B0 response.

If none of above holds true, the server will lookup the session corresponding to the received sid
and the authentication realm.

If the session corresponding to the received sid could not be found, or it is inactive, send a
401-B0-stale response.
If the session is in the "rejected" state, send either a 401-B0 or a 401-B0-stale message.
If the session is a "fake" session, or if the received oa is incorrect, then send a 401-B0
response. If the session is in the "wa received" state, it SHOULD be changed to the
"rejected" state; otherwise, it MAY either be changed to the "rejected" status or kept in the
previous state.
If the session is in the "active" state, and the request has an nc value that was previously
received from the client, send a 401-B0-stale message. The session SHOULD be changed to
the "inactive" status.
If the nc value in the request is larger than the nc-max field sent from the server, or if it is
not larger then (largest-nc - nc-window) (when in "authenticated" status), the server MAY
(not REQUIRED to) send a 401-B0-stale message. The session SHOULD be changed to the
"inactive" status if so.
Otherwise, send a 200-B4 response. If the session was in the "wa received" state, the session
SHOULD be changed to an "authenticated" state. The maximum nc and nc flags of the state
SHOULD be updated properly.

- 22 -

At any time, the server MAY change any state entries with both the "rejected" and "authenticated"
statuses to the "inactive" status, and MAY discard any "inactive" states from the table. The entries
with the "wa received" status SHOULD be kept unless there is an emergency situation such as a server
reboot or a table capacity overflow.

10. Authentication-Control header

 Authentication-Control-header
 = "Authentication-Control" ":" [spaces]
 auth-scheme spaces Auth-Ctrl-fields
 Auth-Ctrl-fields = Auth-Ctrl-field
 *([spaces] "," spaces Auth-Ctrl-field)
 Auth-Ctrl-field = loc-when-unauthed / loc-when-logout
 / logout-timeout
 / extension-field
 loc-when-unauthed = "location-when-unauthenticated" "=" string
 loc-when-logout = "location-when-logout" "=" string

 Figure 11: the BNF syntax for the Authentication-Control header

The Authentication-Control header provides a more precise control of the client behavior for Web
applications using the Mutual authentication protocol. This header will usually be generated in the
application layer, as opposed to WWW-Authenticate headers which will be generated by the Web
servers.

Support of this header is RECOMMENDED for interactive clients and not required for non-interactive
clients. Web applications SHOULD consider the security impacts of the behaviors of clients that do
not support this header.

The "auth-scheme" of this header and other authentication-related headers within the same message
MUST be equal. This document does not define any behavior associated with this header, when the
"auth-scheme" of this header is not "Mutual".

10.1. Location-when-unauthenticated field

Authentication-Control: Mutual
location-when-unauthenticated="http://www.example.com/login.html"

The field "location-when-unauthenticated" specifies a location where any unauthenticated clients
should be redirected to. This header may be used, for example, when there is a central login page for
the entire Web application. The value of this field MUST be a string that contains an absolute URL
location. If a given URL is not absolute, the clients MAY consider it a relative URL from the current
location.

This field MAY be used with a 401-B0 and 200-Optional-B0 message; however, use of this field with
200-Optional-B0 messages is not recommended. If there is a 200-B4, 401-B0-stale or 401-B1 message
with this field, the clients MUST ignore this field.

When a client receives a message with this field, if and only if the client’s state after processing the
response is either Step 12 or 13 (i.e., a state in which the client will process the response body and ask
for the user’s password), the client will treat the entire response as if it were a 303 "See Other"
response with a Location header that contains the value of this field (i.e., client will be redirected to

- 23 -

the specified location with a GET request). Unlike a normal 303 response, if the client can process
authentication without the user’s interaction (like Steps 3, 4, 8, 9 and 10), this field is ignored.

The specified location SHOULD be included in a set of locations specified in the "auth-domain" field
of the corresponding 401-B0 message. If this is not satisfied, the clients MAY ignore this field.

10.2. Location-when-logout field

Authentication-Control: Mutual location-when-logout="http://www.example.com/byebye.html"

The field "location-when-logout" specifies a location where the client is to be redirected when the user
explicitly request a logout. The value of this field MUST be a string that contains an absolute URL
location. If a given URL is not absolute, the clients MAY consider it a relative URL from the current
location.

This field MAY be used with 200-B4 messages. If there is a 401-B0, 401-B1, 401-B0-stale,
200-Optional-B0 or normal 200 message with this field, the clients MUST ignore this field.

When the user of a client request to terminate an authentication session, and if the client currently
displays a page supplied by a response with this field, the client will be redirected to the specified
location by a new GET request (as if it received a 303 response), instead of reloading the page without
the authentication credential. Web applications are encouraged to send this field with an appropriate
value for any responses (except those with redirection (3XX) statuses) for non-GET requests.

10.3. Logout-timeout

Authentication-Control: Mutual logout-timeout=300

The field "logout-timeout" has the same meaning as the field of the same name in the
"Authentication-Info" header. This field will be used with 200-B4 messages. If both are specified,
clients are RECOMMENDED to use the one with the smaller value.

11. Authentication Algorithms

This document specifies only one family of the authentication algorithm. The family consists of four
authentication algorithms, which only differ in their underlying mathematical groups and security
parameters. The algorithms do not add any additional fields. The tokens for these algorithms are

iso-kam3-ec-p256-sha256: for the 256-bit prime-field elliptic-curve setting with the SHA-256
hash function.
iso-kam3-ec-p521-sha512: for the 521-bit prime-field elliptic-curve setting with the SHA-512
hash function.
iso-kam3-dl-2048-sha256: for the 2048-bit discrete-logarithm setting with the SHA-256 hash
function.
iso-kam3-dl-4096-sha512: for the 4096-bit discrete-logarithm setting with the SHA-512 hash
function.

For the elliptic-curve settings, the underlying groups are the elliptic curves over the prime fields P-256
and P-521, respectively, specified in the appendix D.1.2 of FIPS PUB 186-3 [FIPS.186-3.2009]
specification. The hash functions H are SHA-256 for the P-256 curve and SHA-512 for the P-521
curve, respectively, defined in FIPS PUB 180-2 [FIPS.180-2.2002]. The representation of the fields
wa, wb, oa, and ob is hex-fixed-number.

- 24 -

For discrete-logarithm settings, the underlying groups are the 2048-bit and 4096-bit MODP groups
defined in [RFC3526], respectively. See Appendix B for the exact specifications of the groups and
associated parameters. The hash functions H are SHA-256 for the 2048-bit group and SHA-512 for the
4096-bit group. The representation of the fields wa, wb, oa, and ob is base64-fixed-number.

The clients SHOULD support at least the "iso-kam3-dl-2048-sha256" algorithm, and are advised to
support all of the above-mentioned four algorithms whenever possible. The server software
implementations SHOULD support at least the "iso-kam3-dl-2048-sha256" algorithm, unless it is
known that users will not use it.

Note: This algorithm is based on the Key Agreement Mechanism 3 (KAM3) defined in Section 6.3 of
ISO/IEC 11770-4 [ISO.11770-4.2006] with a few modifications/improvements. However,
implementers should use this document as the normative reference, because the algorithm has been
changed in several minor details as well as major improvements.

11.1. Support functions and notations

The algorithm definitions use several support functions and notations defined below:

The integers in the specification are in decimal, or in hexadecimal when prefixed with "0x".

The function octet(c) generates a single octet string whose code value is equal to c. The operator |,
when applied to octet strings, denotes the concatenation of two operands.

The function VI encodes natural numbers into octet strings in the following manner: numbers are
represented in big-endian radix-128 string, where each digit is represented by a octet within 0x80–0xff
except the last digit represented by a octet within 0x00–0x7f. The first octet MUST NOT be 0x80. For
example, VI(i) = octet(i) for i < 128, and VI(i) = octet(0x80 + (i >> 7)) | octet(i & 127) for 128 <= i <
16384. This encoding is the same as the one used for the subcomponents of object identifiers in the
ASN.1 encoding [ITU.X690.1994], and available as a "w" conversion in the pack function of several
scripting languages.

The function VS encodes a variable-length octet string into a uniquely-decoded, self-delimited octet
string, as in the following manner:

VS(s) = VI(length(s)) | s

where length(s) is a number of octets (not characters) in s.

[Editorial note: Unlike the colon-separated notion used in the Basic/Digest HTTP authentication
scheme, the string generated by a concatenation of the VS-encoded strings will be unique, regardless
of the characters included in the strings to be encoded.]

The function OCTETS converts an integer into the corresponding radix-256 big-endian octet string
having its natural length: See Section 3.2 for the definition of "natural length".

Note: The definition of OCTETS() is different from the function GE2OS_x in the original ISO
specification, which takes the shortest representation.

- 25 -

11.2. Common functions for both settings

The password-based string pi used by this authentication is derived in the following manner:

pi = H(VS(algorithm) | VS(auth-domain) | VS(realm) | VS(username) | VS(ph(password)).

The values of algorithm, realm, and auth-domain are taken from the values contained in the 401-B0 (or
200-Optional-B0, hereafter implied) message. When pi is used in the context of an octet string, it
SHALL have the natural length derived from the size of the output of function H (e.g. 32 octets for
SHA-256). The function ph is determined by the value of the pwd-hash field given in a 401-B0
message. The password SHALL be encoded as a UTF-8 string before passed to ph.

The values o_A and o_B are derived by the following equation.

o_A = H(octet(4) | OCTETS(w_A) | OCTETS(w_B) | OCTETS(z) | VI(nc) | VS(v))
o_B = H(octet(3) | OCTETS(w_A) | OCTETS(w_B) | OCTETS(z) | VI(nc) | VS(v))

The equations for J, w_A, T, z, and w_B are specified differently for the discrete-logarithm setting and
the elliptic-curve setting. These equations are defined later in this section.

11.3. Functions for discrete-logarithm settings

In this section, an equation (x / y mod z) denotes a natural number w less than z that satisfies (w * y)
mod z = x mod z.

For the discrete-logarithm, we refer to some of the domain parameters by using the following symbols:

q: for "the prime" of the group.
g: for "the generator" associated with the group.
r: for the order of the subgroup generated by g.

The function J is defined as

J(pi) = g^(pi) mod q.

The value of w_A is derived as

w_A = g^(s_A) mod q,

where s_A is a random integer within range [1, r-1] and r is the size of the subgroup generated by g. In
addition, s_A MUST be larger than log(q)/log(g) (so that g^(s_A) > q).

The value of w_A SHALL satisfy 1 < w_A < q-1. The server MUST check this condition upon
reception.

The value of w_B is derived from J(pi) and w_A as:

w_B = (J(pi) * w_A^(H(octet(1) | OCTETS(w_A))))^s_B mod q,

where s_B is a random number within range [1, r-1]. The value of w_B MUST satisfy 1 < w_B < q-1.
If this condition is not held, the server MUST retry using another value for s_B. The client MUST
check this condition upon reception.

- 26 -

The value z on the client side is derived by the following equation:

z = w_B^((s_A + H(octet(2) | OCTETS(w_A) | OCTETS(w_B))) / (s_A * H(octet(1) | w_A) + pi) mod
r) mod q.

The value z on the server side is derived by the following equation:

z = (w_A * g^(H(octet(2) | OCTETS(w_A) | OCTETS(w_B))))^s_B mod q.

11.4. Functions for elliptic-curve settings

For the elliptic-curve setting, we refer to some of the domain parameters by the following symbols:

q: for the prime used to define the group.
G: for the defined point called the generator.
r: for the order of the subgroup generated by G.

The function P(p) converts a curve point p into an integer representing point p, by computing x * 2 +
(y mod 2), where (x, y) are the coordinates of point p. P’(z) is the inverse of function P, that is, it
converts an integer z to a point p that satisfies P(p) = z. If such p exists, it is uniquely defined.
Otherwise, z does not represent a valid curve point. The operation [x] * p denotes an
integer-multiplication of point p: it calculates p + p + ... (x times) ... + p. See the literatures on
elliptic-curve cryptography for the exact algorithms used for those functions. 0_E represents the
infinity point. The equation (x / y mod z) denotes an natural number w less than z that satisfies (w * y)
mod z = x mod z.

The function J is defined as

J(pi) = [pi] * G.

The value of w_A is derived as

w_A = P(W_A), where W_A = [s_A] * G,

where s_A is a random number within range [1, r-1]. The value of w_A MUST represent a valid curve
point, and W_A SHALL NOT be 0_E. The server MUST check this condition upon reception.

The value of w_B is derived from J(pi) and W_A = P’(w_A) as:

w_B = P(W_B), where W_B = [s_B] * (J(pi) + [H(octet(1) | OCTETS(w_A))] * W_A),

where s_B is a random number within range [1, r-1]. The value of w_B MUST represent a valid curve
point and satisfy [4] * P’(w_B) <> 0_E. If this condition is not satisfied, the server MUST retry using
another value for s_B. The client MUST check this condition upon reception.

The value z on the client side is derived by the following equation:

z = P([(s_A + H(octet(2) | OCTETS(w_A) | OCTETS(w_B))) / (s_A * H(octet(1) | OCTETS(w_A)) +
pi) mod r] * W_B), where W_B = P’(w_B).

The value z on the server side is derived by the following equation:

- 27 -

z = P([s_B] * (W_A + [H(octet(2) | OCTETS(w_A) | OCTETS(w_B))] * G)), where W_A = P’(w_A).

12. Methods to extend this protocol

If a non-standard extension to this protocol is implemented, it MUST use the extension-tokens defined
in Section 3 to avoid conflicts with this protocol and other extensions.

Authentication algorithms other than those defined in this document MAY use other representations
for the fields "wa", "wb", "oa", and "ob", replace those keys, and/or add fields to the messages
containing those fields in supplemental specifications. Two-octet keys from "wc" to "wz" and from
"oc" to "oz" are reserved for this purpose. If those specifications use keys other than those mentioned
above, it is RECOMMENDED to use extension-tokens to avoid any key-name conflict with the future
extension of this protocol.

Extension-tokens MAY be freely used for any non-standard, private, and/or experimental uses for
those fields provided that the domain part in the token is appropriately used.

13. IANA Considerations

The tokens used for the authentication-algorithm, pwd-hash, and validation fields MUST be allocated
by IANA. To acquire registered tokens, a specification for the use of such tokens MUST be available
as an RFC, as outlined in [RFC5226].

Note: More formal declarations will be added in the future drafts to meet the RFC 5226 requirements.

14. Security Considerations

14.1. Security Properties

The protocol is secure against passive eavesdropping and replay attacks. However, the protocol
relies on transport security including DNS integrity for data secrecy and integrity. HTTP/TLS
SHOULD be used where transport security is not assured and/or data secrecy is important.
When used with HTTP/TLS, if TLS server certificates are reliably verified, the protocol provides
true protection against active man-in-the-middle attacks.
Even if the server certificate is not used or is unreliable, the protocol provides protection against
active man-in-the-middle attacks for each HTTP request/response pair. However, in such cases,
JavaScript or similar scripting facilities can be used to affect the Mutually-authenticated contents
from other contents not protected by this authentication mechanism. This is the reason why this
protocol requires that valid TLS server certificates MUST be presented (Section 7).

14.2. Denial-of-service attacks to servers

The protocol requires a server-side table of active sessions, which may become a critical point of the
server resource consumptions. For proper operation, the protocol requires that at least one key
verification request is processed for each session identifier. After that, servers MAY discard sessions
internally at any time, without causing any operational problems to clients. Clients will silently
reestablishes a new session then.

- 28 -

However, if a malicious client sends too many requests of key exchanges (req-A1 messages) only,
resource starvation might occur. In such critical situations, servers MAY discard any kind of existing
sessions regardless of these statuses. One way to mitigate such attacks are that servers MAY have a
number and a time limits for unverified pending key exchange requests (in the "wa received" status).

This is a common weakness of authentication protocols with almost any kind of negotiations or states,
including Digest authentication method and most Cookie-based authentication implementations.
However, regarding the resource consumption, a situation of the mutual authentication method is a
slightly better than the Digest, because HTTP requests without any kind of authentication requests will
not generate any kind of sessions. Session identifiers are only generated after a client starts a key
negotiation. It means that simple clients such as web crawlers will not accidentally consume
server-side resources for session managements.

14.3. Implementation Considerations

To securely implement the protocol, the Authentication-Info headers in the 200-B4 messages
MUST always be validated by the client. If the validation fails, the client MUST NOT process
any content sent with the message, including the body part. Non-compliance to this requirement
will allow phishing attacks.
The authentication status on the client-side SHOULD be visible to the users of the client. In
addition, the method for asking for the user’s name and passwords SHOULD be carefully
designed so that (1) the user can easily distinguish the request from this authentication method
from any other authentication methods such as Basic and Digest methods, and (2) the Web
contents cannot imitate the user-interfaces for this protocol.
An informational memo regarding user-interface considerations and recommendations for
implementing this protocol will be separately published.
For HTTP/TLS communications, when a web form is submitted from Mutually-authenticated
pages with the "tls-cert" validation method to a URI that is protected by the same realm (so
indicated by the path field), if the server certificate has been changed since the pages were
received, the peer is RECOMMENDED to be revalidated using a req-A1 message with an
"Expect: 100-continue" header. The same applies when the page is received with the "tls-key"
validation method, and when the TLS session has expired.
Server-side storages of user passwords are advised to contain the values encrypted by one-way
function J(pi), instead of the real passwords, those hashed by ph, or pi.

14.4. Usage Considerations

The user-names inputted by a user may be sent automatically to any servers sharing the same
auth-domain. This means that when host-type auth-domain is used for authentication on an
HTTPS site, and when an HTTP server on the same host requests Mutual authentication within
the same realm, the client will send the user-name in a clear text. If user-names have to be kept
secret against eavesdropping, the server must use full-scheme-type auth-domain parameter.
Contrarily, passwords are not exposed to eavesdroppers even on HTTP requests.
The "Pwd_hash" field is only provided for backward compatibility of password databases. The
use of "none" function is the most secure choice and is RECOMMENDED. If values other than
"none" are used, you MUST ensure that the hash values of the passwords were not exposed to the
public. Note that hashed password databases for plain-text authentications are usually not
considered secret.
If the server provides several ways for storing server-side password secrets into the password
database, it is advised to store the values encrypted by using the one-way function J(pi), instead

- 29 -

of the real passwords, those hashed by ph, or pi.

15. Notice on intellectual properties

The National Institute of Advanced Industrial Science and Technology (AIST) and Yahoo! Japan, Inc.
has jointly submitted a patent application on the protocol proposed in this documentation to the Patent
Office of Japan. The patent is intended to be open to any implementors of this protocol and its variants
under non-exclusive royalty-free manner. For the details of the patent application and its status, please
contact the author of this document.

The elliptic-curve based authentication algorithms might involve several existing third-party patents.
The authors of the document take no position regarding the validity or scope of such patents, and other
patents as well.

16. References

16.1. Normative References

[FIPS.180-2.2002] National Institute of Standards and Technology, “Secure Hash Standard,”
FIPS PUB 180-2, August 2002.

[FIPS.186-3.2009] National Institute of Standards and Technology, “Digital Signature
Standard (DSS),” FIPS PUB 186-3, June 2009.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,”
BCP 14, RFC 2119, March 1997 (TXT, HTML, XML).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3526] Kivinen, T. and M. Kojo, “More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE),” RFC 3526,
May 2003 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63,
RFC 3629, November 2003 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,”
RFC 4648, October 2006 (TXT).

[RFC5234] Crocker, D. and P. Overell, “Augmented BNF for Syntax Specifications:
ABNF,” STD 68, RFC 5234, January 2008 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246, August 2008 (TXT).

16.2. Informative References

[ISO.10646-1.1993] International Organization for Standardization, “Information Technology -
Universal Multiple-octet coded Character Set (UCS) - Part 1: Architecture
and Basic Multilingual Plane,” ISO Standard 10646-1, May 1993.

- 30 -

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips186-3.pdf
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc3526
http://tools.ietf.org/html/rfc3526
http://www.rfc-editor.org/rfc/rfc3526.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://www.rfc-editor.org/rfc/rfc5234.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt

[ISO.11770-4.2006] International Organization for Standardization, “Information technology –
Security techniques – Key management – Part 4: Mechanisms based on
weak secrets,” ISO Standard 11770-4, May 2006.

[ITU.X690.1994] International Telecommunications Union, “Information Technology -
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER),” ITU-T Recommendation X.690, 1994.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,
and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,
Luotonen, A., and L. Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” RFC 2617, June 1999 (TXT, HTML, XML).

[RFC2965] Kristol, D. and L. Montulli, “HTTP State Management Mechanism,”
RFC 2965, October 2000 (TXT, HTML, XML).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA
Considerations Section in RFCs,” BCP 26, RFC 5226, May 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W.
Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[RFC5890] Klensin, J., “Internationalized Domain Names for Applications (IDNA):
Definitions and Document Framework,” RFC 5890, August 2010 (TXT).

[RFC5929] Altman, J., Williams, N., and L. Zhu, “Channel Bindings for TLS,”
RFC 5929, July 2010 (TXT).

Appendix A. (Informative) Generic syntax of headers

Several headers (e.g. WWW-Authenticate: headers in 401-B0, 401-B0-stale, and 401-B1 messages)
shares common header names. To parse these headers, one MAY use the following general syntax
definition of the message syntax:

 header = header-name ":" [spaces] auth-scheme
 spaces fields
 header-name = "WWW-Authenticate" / "Optional-WWW-Authenticate"
 / "Authorization" / "Authentication-info"
 / "Authentication-Control"
 auth-scheme = "Mutual" ; see HTTP for other values
 fields = field *([spaces] "," spaces field)
 field = key "=" value ; either a specific or
 ; an extension field
 key = extensive-token
 token = 1*(%x30-39 / %x41-5A / %x61-7A / "-" / "_")
 extensive-token = token / extension-token
 extension-token = "-" token 1*("." token)
 value = extensive-token / integer
 / hex-fixed-number
 / base64-fixed-number / string

- 31 -

http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
http://tools.ietf.org/html/rfc2965
http://www.rfc-editor.org/rfc/rfc2965.txt
http://xml.resource.org/public/rfc/html/rfc2965.html
http://xml.resource.org/public/rfc/xml/rfc2965.xml
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
http://tools.ietf.org/html/rfc5890
http://tools.ietf.org/html/rfc5890
http://www.rfc-editor.org/rfc/rfc5890.txt
http://tools.ietf.org/html/rfc5929
http://www.rfc-editor.org/rfc/rfc5929.txt

 integer = "0" / (%x31-39 *%x30-39) ; no leading zeros
 hex-fixed-number = 1*(%x30-39 / %x41-46 / %x61-66)
 base64-fixed-number = string
 string = %x22 *(%x20-21 / %x23-5B / %x5D-FF
 / %x5C.22 / "\\") %x22
 spaces = 1*(" " / %x09)

 Figure 12: Common BNF syntax for headers in the protocol

In this way of parsing, messages will be distinguished by the fields contained in a header
corresponding to the authentication. The procedure below determines the kind of each HTTP
request/response.

If the message is a response with a "401" status:
If it does not contain any WWW-Authenticate header, it is an error.
If the WWW-Authenticate header specifies a scheme other than "Mutual", it is a normal
response within this draft’s scope.
Otherwise, the response contains a "WWW-Authenticate: Mutual" header. If the header
contains both sid and stale fields, it is an error.
If the header contains a stale field with a value of 0, it is a 401-B0 message.
If the header contains a stale field with a value of 1, it is a 401-B0-stale message.
If the header contains an sid field, it is a 401-B1 message.

If the message is a response other than a "401" status:
If it contains both Authentication-Info and Optional-WWW-Authenticate headers, it is an
error.
If it contains a Authentication-Info header with the "Mutual" scheme, it is a 200-B4
message.
If it contains a Optional-WWW-Authenticate header with the "Mutual" scheme, it is a
200-Optional-B0 message.
If it contains a Optional-WWW-Authenticate header with a scheme other than "Mutual", it is
either an error or a normal response, and the behavior is not defined in this specification.
Otherwise, it is a normal response.

If the message is a request:
If it does not contain an Authorization header, or it contains an Authorization header with a
scheme other than Mutual, it is a normal request.
Otherwise, the request contains a "Authorization: Mutual" header. If the header contains an
sid field, it is a req-A3 message.
If the header do not contain an sid field, it is a req-A1 message.

Implementations MAY perform checks stricter than the procedure above, according to the definitions
in Section 3.

Appendix B. (Informative) Group parameters for discrete-logarithm
based algorithms

The MODP group used for the iso-kam3-dl-2048-sha256 algorithm is defined by the following
parameters.

- 32 -

The prime is:

 q = 0xFFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
 E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
 DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
 15728E5A 8AACAA68 FFFFFFFF FFFFFFFF.

The generator is:

 g = 2.

The size of the subgroup generated by g is:

 r = (q - 1) / 2 =
 0x7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
 94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
 F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
 F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6
 F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F6722D9E
 E1003E5C 50B1DF82 CC6D241B 0E2AE9CD 348B1FD4 7E9267AF
 C1B2AE91 EE51D6CB 0E3179AB 1042A95D CF6A9483 B84B4B36
 B3861AA7 255E4C02 78BA3604 650C10BE 19482F23 171B671D
 F1CF3B96 0C074301 CD93C1D1 7603D147 DAE2AEF8 37A62964
 EF15E5FB 4AAC0B8C 1CCAA4BE 754AB572 8AE9130C 4C7D0288
 0AB9472D 45565534 7FFFFFFF FFFFFFFF.

The MODP group used for the iso-kam3-dl-4096-sha512 algorithm is defined by the following
parameters.

The prime is:

 q = 0xFFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
 E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
 DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
 15728E5A 8AAAC42D AD33170D 04507A33 A85521AB DF1CBA64
 ECFB8504 58DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
 F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31
 43DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
 88719A10 BDBA5B26 99C32718 6AF4E23C 1A946834 B6150BDA
 2583E9CA 2AD44CE8 DBBBC2DB 04DE8EF9 2E8EFC14 1FBECAA6
 287C5947 4E6BC05D 99B2964F A090C3A2 233BA186 515BE7ED
 1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
 FFFFFFFF FFFFFFFF.

- 33 -

The generator is:

 g = 2.

The size of the subgroup generated by g is:

 r = (q - 1) / 2 =
 0x7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
 94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
 F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
 F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6
 F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F6722D9E
 E1003E5C 50B1DF82 CC6D241B 0E2AE9CD 348B1FD4 7E9267AF
 C1B2AE91 EE51D6CB 0E3179AB 1042A95D CF6A9483 B84B4B36
 B3861AA7 255E4C02 78BA3604 650C10BE 19482F23 171B671D
 F1CF3B96 0C074301 CD93C1D1 7603D147 DAE2AEF8 37A62964
 EF15E5FB 4AAC0B8C 1CCAA4BE 754AB572 8AE9130C 4C7D0288
 0AB9472D 45556216 D6998B86 82283D19 D42A90D5 EF8E5D32
 767DC282 2C6DF785 457538AB AE83063E D9CB87C2 D370F263
 D5FAD746 6D8499EB 8F464A70 2512B0CE E771E913 0D697735
 F897FD03 6CC50432 6C3B0139 9F643532 290F958C 0BBD9006
 5DF08BAB BD30AEB6 3B84C460 5D6CA371 047127D0 3A72D598
 A1EDADFE 707E8847 25C16890 54908400 8D391E09 53C3F36B
 C438CD08 5EDD2D93 4CE1938C 357A711E 0D4A341A 5B0A85ED
 12C1F4E5 156A2674 6DDDE16D 826F477C 97477E0A 0FDF6553
 143E2CA3 A735E02E CCD94B27 D04861D1 119DD0C3 28ADF3F6
 8FB094B8 67716BD7 DC0DEEBB 10B8240E 68034893 EAD82D54
 C9DA754C 46C7EEE0 C37FDBEE 48536047 A6FA1AE4 9A0318CC
 FFFFFFFF FFFFFFFF.

Appendix C. (Informative) Derived numerical values

This section provides several numerical values for implementing this protocol, derived from the above
specifications. The values shown in this section are for informative purposes only.

dl-2048 dl-4096 ec-p256 ec-p521

Size of w_A etc. 2048 4096 257 522 (bits)

Size of H(...) 256 512 256 512 (bits)

length of OCTETS(w_A) etc. 256 512 33 66 (octets)

length of wa, wb field values. 346 * 686 * 66 132 (octets)

length of oa, ob field values. 46 * 90 * 64 128 (octets)

minimum allowed s_A 2048 4096 1 1

(The numbers marked with an * include enclosing quotation marks.)

Appendix D. (Informative) Draft Remarks from Authors

The following items are currently under consideration for future revisions by the authors.

Restructuring of the draft, possibly separating it to several parts, e.g. introduction, general HTTP
extensions and Mutual authentication.
Format of the "Authentication-Control" header and other header fields extending the general

- 34 -

HTTP authentication scheme, and harmonization of those with other draft proposals.
Whether to keep TLS-key validation or not.
When keeping tls-key validation, whether to use "TLS channel binding" [RFC5929] for "tls-key"
verification (Section 7). Note that existing TLS implementations should be considered to
determine this.
Adding test vectors for ensuring implementation correctness.
Possibly adding a method for servers to detect availability of Mutual authentication on client-side.
Applying the protocol for proxy authentication/authorization.

Appendix E. (Informative) Draft Change Log

E.1. Changes in revision 08

Note: the token for the header field "version" is NOT changed from the previous draft, because the
protocol semantics has not been changed in this revision.

The English text has been revised.

E.2. Changes in revision 07

Adapt to httpbis HTTP/1.1 drafts:
Changed definition of extensive-token.
LWSP continuation-line (%0D.0A.20) deprecated.

To simplify the whole spec, the type of nonce-counter related fields are change from hex-integer
to integer.
Algorithm tokens are renamed to include names of hash algorithms.
Clarified the session management, added details of server-side protocol decisions.
The whole draft was reorganized; introduction and overview has been rewritten.

E.3. Changes in revision 06

Integrated Optional Mutual Authentication to the main part.
Clarified the decision procedure for message recognitions.
Clarified that a new authentication request for any sub-requests in interactive clients may be
silently discarded.
Typos and confusing phrases are fixed.
Several "future considerations" are added.

E.4. Changes in revision 05

A new field called "version" is added for supporting future incompatible changes with a single
implementation. In the (first) final specification its value will be changed to 1.
A new header "Authentication-Control" is added for precise control of application-level
authentication behavior.

- 35 -

E.5. Changes in revision 04

Changed text of patent licenses: the phrase "once the protocol is accepted as an Internet standard"
is removed so that the sentence also covers the draft versions of this protocol.
The "tls-key" verification is now OPTIONAL.
Several description fixes and clarifications.

E.6. Changes in revision 03

Wildcard domain specifications (e.g. "*.example.com") are allowed for auth-domain parameters
(Section 4.1).
Specification of the "tls-cert" verification is updated (incompatible change).
State transitions fixed.
Requirements for servers concerning w_a values are clarified.
RFC references are updated.

E.7. Changes in revision 02

Auth-realm is extended to allow full-scheme type.
A decision diagram for clients and decision procedures for servers are added.
401-B1 and req-A3 messages are changed to contain authentication realm information.
Bugs on equations for o_A and o_B are fixed.
Detailed equations for the entire algorithm are included.
Elliptic-curve algorithms are updated.
Several clarifications and other minor updates.

Authors’ Addresses

 Yutaka Oiwa
 National Institute of Advanced Industrial Science and Technology
 Research Center for Information Security
 Room #1003, Akihabara Daibiru
 1-18-13 Sotokanda
 Chiyoda-ku, Tokyo
 JP

Phone: +81 3-5298-4722
Email: mutual-auth-contact@m.aist.go.jp

 Hajime Watanabe
 National Institute of Advanced Industrial Science and Technology

 Hiromitsu Takagi
 National Institute of Advanced Industrial Science and Technology

 Yuichi Ioku
 Yahoo! Japan, Inc.
 Midtown Tower
 9-7-1 Akasaka

- 36 -

 Minato-ku, Tokyo
 JP

 Tatsuya Hayashi
 Lepidum Co. Ltd.
 #602, Village Sasazuka 3
 1-30-3 Sasazuka
 Shibuya-ku, Tokyo
 JP

- 37 -

	Mutual Authentication Protocol for HTTP draft-oiwa-http-mutualauth-08
	
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Document Structure Overview

	2. Protocol Overview
	2.1. Messages
	2.2. Typical Flows of the protocol
	2.3. Alternative flows

	3. Message Syntax
	3.1. Tokens and Extensive-tokens
	3.2. Numbers
	3.3. Strings

	4. Messages
	4.1. 401-B0
	4.2. 401-B0-stale
	4.3. req-A1
	4.4. 401-B1
	4.5. req-A3
	4.6. 200-B4
	4.7. 200-Optional-B0

	5. Authentication Realms
	5.1. Resolving ambiguities

	6. Session Management
	7. Validation Methods
	8. Decision procedure for client
	9. Decision procedure for the server
	10. Authentication-Control header
	10.1. Location-when-unauthenticated field
	10.2. Location-when-logout field
	10.3. Logout-timeout

	11. Authentication Algorithms
	11.1. Support functions and notations
	11.2. Common functions for both settings
	11.3. Functions for discrete-logarithm settings
	11.4. Functions for elliptic-curve settings

	12. Methods to extend this protocol
	13. IANA Considerations
	14. Security Considerations
	14.1. Security Properties
	14.2. Denial-of-service attacks to servers
	14.3. Implementation Considerations
	14.4. Usage Considerations

	15. Notice on intellectual properties
	16. References
	16.1. Normative References
	16.2. Informative References

	Appendix A. (Informative) Generic syntax of headers
	Appendix B. (Informative) Group parameters for discrete-logarithm based algorithms
	Appendix C. (Informative) Derived numerical values
	Appendix D. (Informative) Draft Remarks from Authors
	Appendix E. (Informative) Draft Change Log
	E.1. Changes in revision 08
	E.2. Changes in revision 07
	E.3. Changes in revision 06
	E.4. Changes in revision 05
	E.5. Changes in revision 04
	E.6. Changes in revision 03
	E.7. Changes in revision 02
	Authors' Addresses

