
SAM Research Group J. Buford
Internet-Draft Avaya Labs Research
Intended status: Experimental M. Kolberg, Ed.
Expires: December 08, 2013 University of Stirling
 June 06, 2013

 Application Layer Multicast Extensions to RELOAD
 draft-irtf-samrg-sam-baseline-protocol-04

Abstract

 We define a RELOAD Usage for Application Layer Multicast as well as a
 mapping to the RELOAD experimental message type to support ALM. The
 ALM Usage is intended to support a variety of ALM control algorithms
 in an overlay-independent way. Two example algorithms are defined,
 based on Scribe and P2PCast.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 08, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Buford & Kolberg Expires December 08, 2013 [Page 1]

Internet-Draft ALM Extensions to RELOAD June 2013

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 4
 2. Definitions . 4
 2.1. Overlay Network . 4
 2.2. Overlay Multicast . 5
 2.3. Source Specific Multicast (SSM) 5
 2.4. Any Source Multicast (ASM) 5
 2.5. Peer . 5
 3. Assumptions . 5
 3.1. Overlay . 6
 3.2. Overlay Multicast . 6
 3.3. RELOAD . 6
 3.4. NAT . 6
 3.5. Tree Topology . 6
 4. Architecture Extensions to RELOAD 7
 5. RELOAD ALM Usage . 8
 6. ALM Tree Control Signaling 9
 7. ALM Messages Mapped to RELOAD 10
 7.1. Introduction . 10
 7.2. Tree Lifecycle Messages 11
 7.2.1. Create Tree . 11
 7.2.2. CreateTreeResponse 12
 7.2.3. Join . 12
 7.2.4. Join Accept (Join Response) 14
 7.2.5. Join Reject (Join Response) 14
 7.2.6. Join Confirm . 14
 7.2.7. Join Confirm Response 15
 7.2.8. Join Decline . 15
 7.2.9. Join Decline Response 16
 7.2.10. Leave . 16
 7.2.11. Leave Response 17
 7.2.12. Re-Form or Optimize Tree 17
 7.2.13. Reform Response 17
 7.2.14. Heartbeat . 17
 7.2.15. Heartbeat Response 18
 7.2.16. NodeQuery . 18
 7.2.17. NodeQuery Response 18
 7.2.18. Push . 21
 7.2.19. PushResponse . 21
 8. Scribe Algorithm . 22
 8.1. Overview . 22
 8.2. Create . 23
 8.3. Join . 23
 8.4. Leave . 23
 8.5. JoinConfirm . 23
 8.6. JoinDecline . 23

Buford & Kolberg Expires December 08, 2013 [Page 2]

Internet-Draft ALM Extensions to RELOAD June 2013

 8.7. Multicast . 24
 9. P2PCast Algorithm . 24
 9.1. Overview . 24
 9.2. Message Mapping . 24
 9.3. Create . 25
 9.4. Join . 25
 9.5. Leave . 26
 9.6. JoinConfirm . 27
 9.7. Multicast . 27
 10. Message Format . 27
 10.1. ALMHeader Definition 29
 10.2. ALMMessageContents Definition 29
 10.3. Response Codes . 30
 11. Examples . 31
 11.1. Create Tree . 31
 11.2. Join Tree . 32
 11.3. Leave Tree . 33
 11.4. Push Data . 33
 12. Kind Definitions . 34
 12.1. ALMTree Kind Definition 34
 13. RELOAD Configuration File Extensions 34
 14. Change History . 35
 15. IANA Considerations . 35
 15.1. ALM Algorithm Types 35
 15.2. Message Code Registration 36
 15.3. Error Code Registration 36
 16. Security Considerations 37
 17. Acknowledgement . 38
 18. Informative References 38
 Authors’ Addresses . 41

1. Introduction

 The concept of scalable adaptive multicast includes both scaling
 properties and adaptability properties. Scalability is intended to
 cover:

 o large group size

 o large numbers of small groups

 o rate of group membership change

 o admission control for QoS

 o use with network layer QoS mechanisms

 o varying degrees of reliability

Buford & Kolberg Expires December 08, 2013 [Page 3]

Internet-Draft ALM Extensions to RELOAD June 2013

 o trees connecting nodes over the global Internet

 Adaptability includes

 o use of different control mechanisms for different multicast trees
 depending on initial application parameters or application classes

 o changing multicast tree structure depending on changes in
 application requirements, network conditions, and membership

 Application Layer Multicast (ALM) has been demonstrated to be a
 viable multicast technology where native multicast isn’t available.
 Many ALM designs have been proposed. This ALM Usage focuses on:

 o ALM implemented in RELOAD-based overlays

 o Support for a variety of ALM control algorithms

 o Providing a basis for defining a separate hybrid-ALM RELOAD Usage

 RELOAD [I-D.ietf-p2psip-base] has an application extension mechanism
 in which a new type of application defines a Usage. A RELOAD Usage
 defines a set of data types and rules for their use. In addition,
 this document describes additional message types and a new ALM
 algorithm plugin architectural component.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Definitions

 We adopt the terminology defined in section 2 of
 [I-D.ietf-p2psip-base], specifically the distinction between Node,
 Peer, and Client.

2.1. Overlay Network

 Overlay network - An application layer virtual or logical network in
 which end points are addressable and that provides connectivity,
 routing, and messaging between end points. Overlay networks are
 frequently used as a substrate for deploying new network services, or
 for providing a routing topology not available from the underlying
 physical network. Many peer-to-peer systems are overlay networks
 that run on top of the Internet. In Figure 1, "P" indicates overlay
 peers, and peers are connected in a logical address space. The links

Buford & Kolberg Expires December 08, 2013 [Page 4]

Internet-Draft ALM Extensions to RELOAD June 2013

 shown in the figure represent predecessor/successor links. Depending
 on the overlay routing model, additional or different links may be
 present.

 P P P P P
 ..+....+....+...+.....+...
 . +P
 P+ .
 . +P
 ..+....+....+...+.....+...
 P P P P P

 Figure 1: Overlay Network Example

2.2. Overlay Multicast

 Overlay Multicast (OM): Hosts participating in a multicast session
 form an overlay network and utilize unicast connections among pairs
 of hosts for data dissemination [BUFORD2009], [KOLBERG2010],
 [BUFORD2008]. The hosts in overlay multicast exclusively handle
 group management, routing, and tree construction, without any support
 from Internet routers. This is also commonly known as Application
 Layer Multicast (ALM) or End System Multicast (ESM). We call systems
 which use proxies connected in an overlay multicast backbone "proxied
 overlay multicast" or POM.

2.3. Source Specific Multicast (SSM)

 SSM tree: The creator of the tree is the source. It sends data
 messages to the tree root which are forwarded down the tree.

2.4. Any Source Multicast (ASM)

 ASM tree: A node sending a data message sends the message to its
 parent and its children. Each node receiving a data message from one
 edge forwards it to remaining tree edges it is connected to.

2.5. Peer

 Peer: an autonomous end system that is connected to the physical
 network and participates in and contributes resources to overlay
 construction, routing and maintenance. Some peers may also perform
 additional roles such as connection relays, super nodes, NAT
 traversal assistance, and data storage.

3. Assumptions

Buford & Kolberg Expires December 08, 2013 [Page 5]

Internet-Draft ALM Extensions to RELOAD June 2013

3.1. Overlay

 Peers connect in a large-scale overlay, which may be used for a
 variety of peer-to-peer applications in addition to multicast
 sessions. Peers may assume additional roles in the overlay beyond
 participation in the overlay and in multicast trees. We assume a
 single structured overlay routing algorithm is used. Any of a
 variety of multi-hop, one-hop, or variable-hop overlay algorithms
 could be used.

 Castro et al. [CASTRO2003] compared multi-hop overlays and found
 that tree-based construction in a single overlay out-performed using
 separate overlays for each multicast session. We use a single
 overlay rather than separate overlays per multicast sessions.

 An overlay multicast algorithm may leverage the overlay’s mechanism
 for maintaining overlay state in the face of churn. For example, a
 peer may store a number of DHT (Distributed Hash Table) entries.
 When the peer gracefully leaves the overlay, it transfers those
 entries to the nearest peer. When another peer joins which is closer
 to some of the entries than the current peer which holds those
 entries, than those entries are migrated. Overlay churn affects
 multicast trees as well; remedies include automatic migration of the
 tree state and automatic re-join operations for dislocated children
 nodes.

3.2. Overlay Multicast

 The overlay supports concurrent multiple multicast trees. The limit
 on number of concurrent trees depends on peer and network resources
 and is not an intrinsic property of the overlay.

3.3. RELOAD

 We use RELOAD [I-D.ietf-p2psip-base] as the Peer-to-Peer overlay for
 data storage and the mechanism by which the peers interconnect and
 route messages. RELOAD is a generic P2P overlay, and application
 support is defined by profiles called Usages.

3.4. NAT

 Some nodes in the overlay may be in a private address space and
 behind firewalls. We use the RELOAD mechanisms for NAT traversal.
 We permit clients to be leaf nodes in an ALM tree.

3.5. Tree Topology

Buford & Kolberg Expires December 08, 2013 [Page 6]

Internet-Draft ALM Extensions to RELOAD June 2013

 All tree control messages are routed in the overlay. Two types of
 data or media topologies are envisioned: 1) tree edges are paths in
 the overlay, 2) tree edges are direct connections between a parent
 and child peer in the tree, formed using the RELOAD AppAttach method.

4. Architecture Extensions to RELOAD

 There are two changes as depicted in Figure 2. New ALM messages are
 mapped to RELOAD Message Transport using the RELOAD experimental
 message type. A plug-in for ALM algorithms handles the ALM state and
 control. The ALM Algorithm is under control of the application via
 the Group API [I-D.irtf-samrg-common-api].

 +---------+
 |Group API|
 +---------+
 |
 ------------------- Application ------------------------
 +-------+ |
 | ALM | |
 | Usage | |
 +-------+ |
 -------------- Messaging Service Boundary --------------
 |
 +--------+ +-----------+---------+ +---------+
 | Storage|<---> | RELOAD | ALM |<-->| ALM Alg |
 +--------+ | Message | Messages| +---------+
 ^ | Transport | |
 | +-----------+---------+
 v | |
 +-------------+ |
 | Topology | |
 | Plugin | |
 +-------------+ |
 ^ |
 v v
 +-------------------+
 | Forwarding & |
 | Link Management |
 +-------------------+

 ---------- Overlay Link Service Boundary --------------

 Figure 2: RELOAD Architecture Extensions

 The ALM components interact with RELOAD as follows:

Buford & Kolberg Expires December 08, 2013 [Page 7]

Internet-Draft ALM Extensions to RELOAD June 2013

 o ALM uses the RELOAD data storage functionality to store an ALMTree
 instance when a new ALM tree is created in the overlay, and to
 retrieve ALMTree instance(s) for existing ALM trees.

 o ALM applications and management tools may use the RELOAD data
 storage functionality to store diagnostic information about the
 operation of trees, including average number of tree, delay from
 source to leaf nodes, bandwidth use, packet loss rate. In
 addition, diagnostic information may include statistics specific
 to the tree root, or to any node in the tree.

5. RELOAD ALM Usage

 Applications of RELOAD are restricted in the data types that can be
 stored in the DHT. The profile of accepted data types for an
 application is referred to as a Usage. RELOAD is designed so that
 new applications can easily define new Usages. New RELOAD Usages are
 needed for multicast applications since the data types in base RELOAD
 and existing usages are not sufficient.

 We define an ALM Usage in RELOAD. This ALM Usage is sufficient for
 applications which require ALM functionality in the overlay. Figure
 2 shows the internal structure of the ALM Usage. This contains the
 Group API ([I-D.irtf-samrg-common-api]) an ALM algorithm plugin (e.g.
 Scribe) and the ALM messages which are then sent out to the RELOAD
 network.

 A RELOAD Usage is required [I-D.ietf-p2psip-base] to define the
 following:

 o Kind-Id and Code points

 o data structures for each kind

 o access control rules for each kind

 o the Resource Name used to hash to the Resource ID that determines
 where the kind is stored

 o Addresses restoration of values after recovery from a network
 partition

 o the types of connections that can be initiated using AppConnect

 an ALM GroupID is a RELOAD Node-ID. The owner of an ALM group
 creates a RELOAD Node-ID as specified in [I-D.ietf-p2psip-base].
 This means that a GroupID is used as a RELOAD Destination for overlay
 routing purposes.

Buford & Kolberg Expires December 08, 2013 [Page 8]

Internet-Draft ALM Extensions to RELOAD June 2013

6. ALM Tree Control Signaling

 Peers use the overlay to support ALM operations such as:

 o Create tree

 o Join

 o Leave

 o Re-Form or optimize tree

 There are a variety of algorithms for peers to form multicast trees
 in the overlay. The approach presented here permits multiple such
 algorithms to be supported in the overlay since different algorithms
 may be more suitable for certain application requirements, and to
 support experimentation. Therefore, overlay messaging corresponding
 to the set of overlay multicast operations MUST carry algorithm
 identification information.

 For example, for small groups, the join point might be directly
 assigned by the rendezvous point, while for large trees the join
 request might be propagated down the tree with candidate parents
 forwarding their position directly to the new node.

 Here is a simplistic notation for forming a multicast tree in the
 overlay. Its main advantage is the use of the overlay for routing
 both control and data messages. The group creator does not have to
 be the root of the tree or even in the tree. It does not consider
 per node load, admission control, or alternative paths. After the
 creation of a tree, the groupID is expected to be advertised or
 distributed out of band, perhaps by publishing in the DHT.
 Similarly, joining peers will discover the groupID out of band,
 perhaps by a lookup in the tree.

 As stated earlier, multiple algorithms will co-exist in the overlay.

 1. Peer which initiates multicast group:

 groupID = create(); // Allocate a unique groupId.
 // The root is the nearest
 // peer in the overlay.

 2. Any joining peer:

Buford & Kolberg Expires December 08, 2013 [Page 9]

Internet-Draft ALM Extensions to RELOAD June 2013

 joinTree(groupID); // sends "join groupID" message

 The overlay routes the join request using the overlay routing
 mechanism toward the peer with the nearest id to the groupID.
 This peer is the root. Peers on the path to the root join the
 tree as forwarding points.

 3. Leave Tree:

 leaveTree(groupID) // removes this node from the tree

 Propagates a leave message to each child node and to the parent
 node. If the parent node is a forwarding node and this is its
 last child, then it propagates a leave message to its parent. A
 child node receiving a leave message from a parent sends a join
 message to the groupID.

 4. Message forwarding:

 multicastMsg(groupID, msg);

 For the message forwarding both Any Source Multicast (ASM) and
 Source Specific Multicast (SSM) approaches may be used.

7. ALM Messages Mapped to RELOAD

7.1. Introduction

 In this document we define messages for overlay multicast tree
 creation, using an existing protocol (RELOAD) in the P2P-SIP WG
 [I-D.ietf-p2psip-base] for a universal structured peer-to-peer
 overlay protocol. RELOAD provides the mechanism to support a number
 of overlay topologies. Hence the overlay multicast framework defined
 in this document can be used with P2P-SIP, and makes the SAM
 framework overlay agnostic.

 As discussed in the SAM requirements document
 [I-D.muramoto-irtf-sam-generic-require], there are a variety of ALM
 tree formation and tree maintenance algorithms. The intent of this
 specification is to be algorithm agnostic, similar to how RELOAD is
 overlay algorithm agnostic. We assume that all control messages are
 propagated using overlay routed messages.

 The message types needed for ALM behavior are divided into the
 following categories:

 o Tree life-cycle (create, join, leave, re-form, heartbeat)

Buford & Kolberg Expires December 08, 2013 [Page 10]

Internet-Draft ALM Extensions to RELOAD June 2013

 o Peer region and multicast properties

 The message codes are defined in Section 15.2 of this document.
 Messages are mapped to the RELOAD experimental message type.

 In the following sections the protocol messages as mapped to RELOAD
 are discussed. Detailed example message flows are provided in
 Section 11.

 In the following descriptions we use the datatype Dictionary which is
 a set of opaque values indexed by an opaque key with one value for
 each key. A single dictionary entry is represented by a
 DictionaryEntry as defined in Section 7.2.3 of the RELOAD document
 [I-D.ietf-p2psip-base]. The Dictionary datatype is defined as
 follows:

 struct {
 DictionaryEntry elements<0..2^16-1>;
 } Dictionary;

7.2. Tree Lifecycle Messages

 Peers use the overlay to transmit ALM (application layer multicast)
 operations defined in this section.

7.2.1. Create Tree

 A new ALM tree is created in the overlay with the identity specified
 by group_id. The common interpretation in a DHT based overlay of
 group_id is that the peer with peer id closest to and less than the
 group_id is the root of the tree. However, other overlay types are
 supported. The tree has no children at the time it is created.

 The group_id is generated from a well-known session key to be used by
 other peers to address the multicast tree in the overlay. The
 generation of the group_id from the session_key MUST be done using
 the overlay’s id generation mechanism.

 struct {
 node_id peer_id;
 opaque session_key<0..2^32-1>;
 node_id group_id;
 Dictionary options;
 } ALMTree;

Buford & Kolberg Expires December 08, 2013 [Page 11]

Internet-Draft ALM Extensions to RELOAD June 2013

 peer_id: the overlay address of the peer that creates the multicast
 tree.

 session_key: a well-known string that when hashed using the overlay’s
 id generation algorithm produces the group_id.

 group_id: the overlay address of the root of the tree

 options: name-value list of properties to be associated with the
 tree, such as the maximum size of the tree, restrictions on peers
 joining the tree, latency constraints, preference for distributed or
 centralized tree formation and maintenance, heartbeat interval.

 Tree creation is subject to access control since it involves a Store
 operation. The NODE-MATCH access policy defined in section 7.3.2 of
 RELOAD is used.

 A successful Create Tree causes an ALMTree structure to be stored in
 the overlay at the node G responsible for the group_id. This node G
 performs the RELOAD-defined StoreReq operation as a side effect of
 performing the Create Tree. If the StoreReq fails, the Create Tree
 fails too.

 After a successful Create Tree, peers can use the RELOAD Fetch method
 to retrieve the ALMTree struct at address group_id. The ALMTree kind
 is defined in Section 12.1.

7.2.2. CreateTreeResponse

 After receiving a CreateTree message from node S, the peer sends a
 CreateTreeReponse to node S.

 struct {
 Dictionary options;
 } CreateTreeResponse;

 options: A node may provide algorithm-dependent parameters about the
 created tree to the requesting node.

7.2.3. Join

 Causes the distributed algorithm for peer join of a specific ALM
 group to be invoked. The definition of the Join message is shown
 below. If successful, the joining peer is notified of one or more
 candidate parent peers in one or more JoinAccept messages. The
 particular ALM join algorithm is not specified in this protocol.

Buford & Kolberg Expires December 08, 2013 [Page 12]

Internet-Draft ALM Extensions to RELOAD June 2013

 struct {
 node_id peer_id;
 node_id group_id;
 Dictionary options;
 } Join;

 peer_id: overlay address of joining/leaving peer

 group_id: the overlay address of the root of the tree

 options: name-value list of options proposed by joining peer

 RELOAD is a request-response protocol. Consequently, the messages
 JoinAccept and JoinReject (defined below) are matching responses for
 Join. If JoinReject is received, then no further action on this
 request is carried out. If JoinAccept is received, then either a
 JoinConfirm or a JoinDecline message (see below) is sent. The
 matching response for JoinConfirm is JoinConfirmResponse. The
 matching response for JoinDecline is JoinDeclineResponse.

 The following list shows the matching request-responses according to
 the request-response mechanism defined in RELOAD.

 Join -- JoinAccept: Node C sends a Join request to node P. If
 node P accepts, it responds with JoinAccept.

 Join -- JoinReject: Node C sends a Join request to node P. If
 node P does not accept the join request, it responds with
 JoinReject.

 JoinConfirm -- JoinConfirmResponse: If node P sent node C a
 JoinAccept and node C confirms with a JoinConfirm request then
 Node P then responds with a JoinConfirmResponse.

 JoinDecline -- JoinDeclineResponse: If node P sent node C a
 JoinAccept and node C declines with a JoinDecline request then
 Node P then responds with a JoinDeclineResponse.

 Thus Join, JoinConfirm, and JoinDecline are treated as requests as
 defined in RELOAD, are mapped to the RELOAD exp_a_req message, and
 are therefore retransmitted until either a retry limit is reached or
 a matching response received. JoinAccept, JoinReject,
 JoinConfirmResponse, and JoinDeclineResponse are treated as message
 responses as defined above, and are mapped to the RELOAD exp_a_ans
 message.

 The Join behaviour can be described as follows:

Buford & Kolberg Expires December 08, 2013 [Page 13]

Internet-Draft ALM Extensions to RELOAD June 2013

 if(checkAccept(msg)) {
 recvJoins.add(msg.source, msg.group_id)
 SEND(JOINAccept(node_id, msg.source, msg.group_id))
 }

7.2.4. Join Accept (Join Response)

 Tells the requesting joining peer that the indicated peer is
 available to act as its parent in the ALM tree specified by group_id,
 with the corresponding options specified. A peer MAY receive more
 than one JoinAccept from different candidate parent peers in the
 group_id tree. The peer accepts a peer as parent using a JoinConfirm
 message. A JoinAccept which receives neither a JoinConfirm or
 JoinDecline message MUST expire. RELOAD implementations are able to
 read a local configuration file for settings. It is assumed that
 this file contains the timeout value to be used.

 struct {
 node_id parent_peer_id;
 node_id child_peer_id;
 node_id group_id;
 Dictionary options;
 } JoinAccept;

 parent_peer_id: overlay address of a peer which accepts the joining
 peer

 child_peer_id: overlay address of joining peer

 group_id: the overlay address of the root of the tree

 options: name-value list of options accepted by parent peer

7.2.5. Join Reject (Join Response)

 A peer receiving a Join message responds with a JoinReject response
 to indicate the request is rejected.

7.2.6. Join Confirm

 A peer receiving a JoinAccept message which it wishes to accept MUST
 explicitly accept it before the expiration of a timer for the
 JoinAccept message using a JoinConfirm message. The joining peer
 MUST include only those options from the JoinAccept which it also
 accepts, completing the negotiation of options between the two peers.

Buford & Kolberg Expires December 08, 2013 [Page 14]

Internet-Draft ALM Extensions to RELOAD June 2013

 struct {
 node_id child_peer_id;
 node_id parent_peer_id;
 node_id group_id;
 Dictionary options;
 } JoinConfirm;

 child_peer_id: overlay address of joining peer which is a child of
 the parent peer

 parent_peer_id: overlay address of the peer which is the parent of
 the joining peer

 group_id: the overlay address of the root of the tree

 options: name-value list of options accepted by both peers

 The JoinConfirm message behaviour is decribed below:

 if(recvJoins.contains(msg.source,msg.group_id)){
 if !(groups.contains(msg.group_id)) {
 groups.add(msg.group_id)
 SEND(msg,msg.group_id)
 }
 groups[msg.group_id].children.add(msg.source)
 recvJoins.del(msg.source, msg.group_id)
 }

7.2.7. Join Confirm Response

 A peer receiving a JoinConfirm message responds with a
 JoinConfirmResponse message.

7.2.8. Join Decline

 A peer receiving a JoinAccept message which it does not wish to
 accept it MAY explicitly decline it using a JoinDecline message.

 struct {
 node_id peer_id;
 node_id parent_peer_id;
 node_id group_id;
 } JoinDecline;

Buford & Kolberg Expires December 08, 2013 [Page 15]

Internet-Draft ALM Extensions to RELOAD June 2013

 peer_id: overlay address of joining peer which declines the
 JoinAccept

 parent_peer_id: overlay address of the peer which issued a JoinAccept
 to this peer

 group_id: the overlay address of the root of the tree

 The behaviour of the JoinDecline message is described as follows:

 if(recvJoins.contains(msg.source,msg.group_id))
 recvJoins.del(msg.source, msg.group_id)

7.2.9. Join Decline Response

 A peer receiving a JoinConfirm message responds with a
 JoinDeclineResponse message.

7.2.10. Leave

 A peer which is part of an ALM tree identified by group_id which
 intends to detach from either a child or parent peer SHOULD send a
 Leave message to the peer it wishes to detach from. A peer receiving
 a Leave message from a peer which is neither in its parent or child
 lists SHOULD ignore the message.

 struct {
 node_id peer_id;
 node_id group_id;
 Dictionary options;
 } Leave;

 peer_id: overlay address of leaving peer

 group_id: the overlay address of the root of the tree

 options: name-value list of options

 The behaviour of the Leave message can be described as:

 groups[msg.group_id].children.remove(msg.source)
 if (groups[msg.group].children = 0)
 SEND(msg,groups[msg.group_id].parent)

Buford & Kolberg Expires December 08, 2013 [Page 16]

Internet-Draft ALM Extensions to RELOAD June 2013

7.2.11. Leave Response

 A peer receiving a Leave message responds with a LeaveResponse
 message.

7.2.12. Re-Form or Optimize Tree

 This triggers a reorganization of either the entire tree or only a
 sub-tree. It MAY include hints to specific peers of recommended
 parent or child peers to reconnect to. A peer receiving this message
 MAY ignore it, MAY propagate it to other peers in its subtree, and
 MAY invoke local algorithms for selecting preferred parent and/or
 child peers.

 struct {
 node_id group_id;
 node_id peer_id;
 Dictionary options;
 } Reform;

 group_id: the overlay address of the root of the tree

 peer_id: if omitted, then the tree is reorganized starting from the
 root, otherwise it is reorganized only at the sub-tree identified by
 peer_id.

 options: name-value list of options

7.2.13. Reform Response

 A peer receiving a Reform message responds with a ReformResponse

 struct {
 Dictionary options;
 } ReformResponse;

 options: algorithm dependent information about the results of the
 reform operation

7.2.14. Heartbeat

 A child node signals to its adjacent parent nodes in the tree that it
 is alive. If a parent node does not receive a Heartbeat message
 within N heartbeat time intervals, it MUST treat this as an explicit
 Leave message from the unresponsive peer. N is configurable. RELOAD
 implementations are able to read a local configuration file for

Buford & Kolberg Expires December 08, 2013 [Page 17]

Internet-Draft ALM Extensions to RELOAD June 2013

 settings. It is assumed that this file contains the value for N to
 be used.

 struct {
 node_id peer_id_src;
 node_id peer_id_dst;
 node_id group_id;
 Dictionary options;
 } Heartbeat;

 peer_id_src: source of heartbeat

 peer_id_dst: destination of heartbeat

 group_id: overlay address of the root of the tree

 options: an algorithm may use the heartbeat message to provide state
 information to adjacent nodes in the tree

7.2.15. Heartbeat Response

 A parent node responds with a Heartbeat Response to a Heartbeat from
 a child node indicating that it has received the Heartbeat message.

7.2.16. NodeQuery

 The NodeQuery message is used to obtain information about the state
 and performance of the tree on a per node basis. A set of nodes
 could be queried to construct a centralized view of the multicast
 trees, similar to a web crawler.

 struct {
 node_id peer_id_src;
 node_id peer_id_dst;
 } NodeQuery;

 peer_id_src: source of query

 peer_id_dst: destination of query

7.2.17. NodeQuery Response

 The response to a NodeQuery message contains a NodeStatistics
 instance for this node.

Buford & Kolberg Expires December 08, 2013 [Page 18]

Internet-Draft ALM Extensions to RELOAD June 2013

 public struct {
 uint32 node_lifetime;
 uint32 total_number_trees;
 uint16 number_algorithms_supported;
 uint8 algorithms_supported[32];
 TreeData max_tree_data;
 uint16 active_number_trees;
 TreeData tree_data<0..2^8-1>;
 ImplementationInfo imp_info;
 } NodeStatistics;

 node_lifetime: time the node has been alive in seconds since last
 restart

 total_number_trees: total number of trees this node has been part
 of during the node lifetime

 number_algorithms_supported: value between 0..2^16-1 corresponding
 to the number of algorithms supported

 algorithms_supported: list of algorithms, each byte encoded using
 the corresponding algorithm code

 max_tree_data: data about tree with largest number of nodes that
 this node was part of. NodeQuery can be used to crawl all the
 nodes in an ALM tree to fill this field. This is intended to
 support monitoring, algorithm design, and general experimentation
 with ALM in RELOAD.

 active_number_trees: current number of trees that the node is part
 of

 tree_data: details of each active tree, the number of such is
 specified by the number_active_trees.

 impl_info: information about the implementation of this usage

 public struct {
 uint32 tree_id;
 uint8 algorithm;
 NodeId tree_root;
 uint8 number_parents;
 NodeId parent<0..2^8-1>;
 Uint16 number_children_nodes;
 NodeId children<0..2^16-1>;
 Uint32 path_length_to_root;
 Uint32 path_delay_to_root;

Buford & Kolberg Expires December 08, 2013 [Page 19]

Internet-Draft ALM Extensions to RELOAD June 2013

 Uint32 path_delay_to_child;
 } TreeData;

 tree_id: the id of the tree

 algorithm: code identifying the multicast algorithm used by this
 tree

 tree_root: node_id of tree root, or 0 if unknown

 number_parents: 0 .. 2^8-1 indicates number of parent nodes for
 this node

 parent: the RELOAD NodeId of each parent node

 number_children_nodes: 0..2^16-1 indicates number of children

 children: the RELOAD NodeId of each child node

 path_length_to_root: number of overlay hops to the root of the
 tree

 path_delay_to_root: RTT in millisec. to root node

 path_delay_to_child: last measured RTT in msec to child node with
 largest RTT.

 public struct {
 uint32 join_confim_timeout;
 uint32 heartbeat_interval;
 uint32 heartbeat_reponse_timeout;
 uint16 info_length;
 uint8 info<0..2^16-1>;
 } ImplementationInfo;

 join_confirm_timeout: The default time for join confirm/decline,
 intended to provide sufficient time for a join request to receive
 all responses and confirm the best choice. Default value is 5000
 msec. An implementation can change this value.

 heartbeat interval: The default heartbeat interval is 2000 msec.
 Different interoperating implementations could use different
 intervals.

Buford & Kolberg Expires December 08, 2013 [Page 20]

Internet-Draft ALM Extensions to RELOAD June 2013

 heartbeat timeout interval: The default heartbeat timeout is 5000
 msec, and is the max time between heartbeat reports from an
 adjacent node in the tree at which point the heartbeat is missed.

 info_length: length of the info field

 info: implementation specific information, such as name of
 implementation, build version, and implementation specific
 features

7.2.18. Push

 A peer sends arbitrary multicast data to other peers in the tree.
 Nodes in the tree forward this message to adjacent nodes in the tree
 in an algorithm dependent way.

 struct {
 node_id group_id;
 uint8 priority;
 uint32 length;
 uint8 data<0..2^32-1>;
 } Push;

 group_id: overlay address of root of the ALM tree

 priority: the relative priority of the message, highest priority is
 255. A node may ignore this field

 length: length of the data field in bytes

 data: the data

 In pseudocode the behaviour of Push can be described as:

 foreach(groups[msg.group_id].children as node_id)
 SEND(msg,node_id)
 if memberOf(msg.group_id)
 invokeMessageHandler(msg.group_id, msg)

7.2.19. PushResponse

 After receiving a Push message from node S, the receiving peer sends
 a PushReponse to node S.

 struct {
 Dictionary options;

Buford & Kolberg Expires December 08, 2013 [Page 21]

Internet-Draft ALM Extensions to RELOAD June 2013

 } PushResponse;

 options: A node may provide feedback to the sender about previous
 push messages in some window, for example, the last N push messages.
 The feedback could include, for each push message received, the
 number of adjacent nodes which were forwarded the push message, and
 the number of adjacent nodes from which a PushResponse was received.

8. Scribe Algorithm

8.1. Overview

 Figure 3 shows a mapping between RELOAD ALM messages (as defined in
 Section 5 of this document) and Scribe messages as defined in
 [CASTRO2002].

 +---------+-------------------+-----------------+
 | Section |RELOAD ALM Message | Scribe Message |
 +---------+-------------------+-----------------+
 | 7.2.1 | CreateALMTree | Create |
 +---------+-------------------+-----------------+
 | 7.2.2 | Join | Join |
 +---------+-------------------+-----------------+
 | 7.2.3 | JoinAccept | |
 +---------+-------------------+-----------------+
 | 7.2.4 | JoinConfirm | |
 +---------+-------------------+-----------------+
 | 7.2.5 | JoinDecline | |
 +---------+-------------------+-----------------+
 | 7.2.6 | Leave | Leave |
 +---------+-------------------+-----------------+
 | 7.2.7 | Reform | |
 +---------+-------------------+-----------------+
 | 7.2.8 | Heartbeat | |
 +---------+-------------------+-----------------+
 | 7.2.9 | NodeQuery | |
 +---------+-------------------+-----------------+
 | 7.2.10 | Push | Multicast |
 +---------+-------------------+-----------------+
 | | Note 1 | deliver |
 +---------+-------------------+-----------------+
 | | Note 1 | forward |
 +---------+-------------------+-----------------+
 | | Note 1 | route |
 +---------+-------------------+-----------------+
 | | Note 1 | send |
 +---------+-------------------+-----------------+

Buford & Kolberg Expires December 08, 2013 [Page 22]

Internet-Draft ALM Extensions to RELOAD June 2013

 Figure 3: Mapping to Scribe Messages

 Note 1: These Scribe messages are handled by RELOAD messages.

 The following sections describe the Scribe algorithm in more detail.

8.2. Create

 This message will create a group with group_id. This message MUST be
 delivered to the node whose node_id is closest to the group_id. This
 node becomes the rendezvous point and root for the new multicast
 tree. Groups MAY have multiple sources of multicast messages.

8.3. Join

 To join a multicast tree a node SHALL send a JOIN request with the
 group_id as the key. This message gets routed by the overlay to the
 rendezvous point of the tree. If an intermediate node is already a
 forwarder for this tree, it SHALL add the joining node as a child.
 Otherwise the node SHALL create a child table for the group and add
 the joining node. It SHALL then send the JOIN request towards the
 rendevous point terminating the JOIN message from the child.

 To adapt the Scribe algorithm into the ALM Usage proposed here, after
 a JOIN request is accepted, a JOINAccept message MUST be returned to
 the joining node.

8.4. Leave

 When leaving a multicast group a node SHALL change its local state to
 indicate that it left the group. If the node has no children in its
 table it MUST send a LEAVE request to its parent, from where it SHALL
 travel up the multicast tree and stop at a node which has still
 children remaining after removing the leaving node.

8.5. JoinConfirm

 This message is not part of the Scribe protocol, but required by the
 basic protocol proposed in this document. Thus the usage MUST send
 this message to confirm a joining node accepting its parent node.

8.6. JoinDecline

 Like JoinConfirm, this message is not part of the Scribe protocol.
 Thus the usage MUST send this message if a peer receiving a
 JoinAccept message wishes to decline it.

Buford & Kolberg Expires December 08, 2013 [Page 23]

Internet-Draft ALM Extensions to RELOAD June 2013

8.7. Multicast

 A message to be multicast to a group MUST be sent to the rendevous
 node from where it is forwarded down the tree. If a node is a member
 of the tree rather than just a forwarder it SHALL pass the multicast
 data up to the application.

9. P2PCast Algorithm

9.1. Overview

 P2PCast [P2PCAST] creates a forest of related trees to increase load
 balancing. P2PCast is independent of the underlying P2P substrate.
 Its goals and approach are similar to Splitstream [SPLITSTREAM]
 (which assumes Pastry as the P2P overlay). In P2PCast the content
 provider splits the stream of data into f stripes. Each tree in the
 forest of multicast trees is an (almost) full tree of arity f. These
 trees are conceptually separate: every node of the system appears
 once in each tree, with the content provider being the source in all
 of them. To ensure that each peer contributes as much bandwidth as
 it receives, every node is a leaf in all the trees except for one, in
 which the node will serve as an internal node (proper tree of this
 node). The remainder of this section will assume f=2 for the
 discussion. This is to keep the complexity for the description down.
 However, the algorithm scales for any number f.

 P2PCast distinguishes the following types of nodes:

 o Incomplete Nodes: A node with less than f children in its proper
 stripe;

 o Only-Child Nodes: A node whose parent (in any multicast tree) is
 an incomplete node;

 o Complete Nodes: A node with exactly f children in its proper
 stripe

 o Special Node: A single node which is a leaf in all multicast trees
 of the forest

9.2. Message Mapping

 Figure 4 shows a mapping between RELOAD ALM messages (as defined in
 Section 5 of this document) and P2PCast messages as defined in
 [P2PCAST].

 +---------+-------------------+-----------------+
 | Section |RELOAD ALM Message | P2PCast Message |

Buford & Kolberg Expires December 08, 2013 [Page 24]

Internet-Draft ALM Extensions to RELOAD June 2013

 +---------+-------------------+-----------------+
 | 7.2.1 | CreateALMTree | Create |
 +---------+-------------------+-----------------+
 | 7.2.2 | Join | Join |
 +---------+-------------------+-----------------+
 | 7.2.3 | JoinAccept | |
 +---------+-------------------+-----------------+
 | 7.2.4 | JoinConfirm | |
 +---------+-------------------+-----------------+
 | 7.2.5 | JoinDecline | |
 +---------+-------------------+-----------------+
 | 7.2.6 | Leave | Leave |
 +---------+-------------------+-----------------+
 | 7.2.7 | Reform | Takeon |
 | | | Substitute |
 | | | Search |
 | | | Replace |
 | | | Direct |
 | | | Update |
 +---------+-------------------+-----------------+
 | 7.2.8 | Heartbeat | |
 +---------+-------------------+-----------------+
 | 7.2.9 | NodeQuery | |
 +---------+-------------------+-----------------+
 | 7.2.10 | Push | Multicast |
 +---------+-------------------+-----------------+

 Figure 4: Mapping to P2PCast Messages

 The following sections describe the mapping of the P2PCast messages
 in more detail.

9.3. Create

 This message will create a group with group_id. This message MUST be
 delivered to the node whose node_id is closest to the group_id. This
 node becomes the rendezvous point and root for the new multicast
 tree. The rendezvous point will maintain f subtrees.

9.4. Join

 To join a multicast tree a joining node N MUST send a JOIN request to
 a random node A already part of the tree. Depending of the type of A
 the joining algorithm continues as follows:

 o Incomplete Nodes: Node A will arbitrarily select for which tree it
 wants to serve as an internal node, and adopt N in that tree. In
 the other tree node N will adopt node A as a child (taking node

Buford & Kolberg Expires December 08, 2013 [Page 25]

Internet-Draft ALM Extensions to RELOAD June 2013

 A’s place in the tree) thus becoming an internal node in the
 stripe that node A didn’t choose.

 o Only-Child Nodes: As this node has a parent which is an incomplete
 node, the joining node will be redirected to the parent node and
 will handle the request as detailed above.

 o Complete Nodes: The contacted node A must be a leaf in the other
 tree. If node A is a leaf node in Stripe 1, node N will become an
 internal node in Stripe 1, taking the place of node A, adopting it
 at the same time. To find a place for itself in the other stripe,
 node N starts a random walk down the subtree rooted at the sibling
 of node A (if node A is the root and thus does not have siblings,
 node N is sent directly to a leaf in that tree), which ends as
 soon as node N finds an incomplete node or a leaf. In this case
 node N is adopted by the incomplete node.

 o Special Node: as this node is a leaf in all subtrees, the joining
 node MAY adopt the node in one tree and become a child in the
 other.

 P2PCast uses defined messages for communication between nodes during
 reorganisation. To use P2PCast in this context, these messages are
 encapsulated by the message type REFORM. In doing so, the P2PCast
 message is to be included in the options parameter of REFORM. The
 following reorganisation messages are defined by P2PCast:

 TAKEON: To take another peer as a child

 SUBSTITUTE: To take the place of a child of some peer

 SEARCH: To obtain the child of a node in a particular stripe

 REPLACE: Different from SUBSTITUTE in that the node which makes us
 its child sheds off a random child

 DIRECT: To direct a node to its would-be parent

 UPDATE: A node sends its updated state to its children

 To adapt the P2PCast algorithm into the ALM Usage proposed here,
 after a JOIN request is accepted, a JOINAccept message MUST be
 returned to the joining node (one for every subtree).

9.5. Leave

 When leaving a multicast group a node will change its local state to
 indicate that it left the group. Disregarding the case where the

Buford & Kolberg Expires December 08, 2013 [Page 26]

Internet-Draft ALM Extensions to RELOAD June 2013

 leaving node is the root of the tree, the leaving node must be
 complete or incomplete in its proper tree. In the other trees the
 node is a leaf and can just disappear by notifying its parent. For
 the proper tree, if the node is incomplete, it is replaced by its
 child. However, if the node is complete, a gap is created which is
 filled by a random child. If this child is incomplete, it can simply
 fill the gap. However, if it is complete, it needs to shed a random
 child. This child is directed to its sibling, which sheds a random
 child. This process ripples down the tree until the next-to-last
 level is reached. The shed node is then taken as a child by the
 parent of the deleted node in the other stripe.

 Again, for the reorganisation of the tree, the REFORM message type is
 used as defined in the previous section.

9.6. JoinConfirm

 This message is not part of the P2PCast protocol, but required by the
 basic protocol defined in this document. Thus the usage MUST send
 this message to confirm a joining node accepting its parent node. As
 with Join and JoinAccept, this MUST be carried out for every subtree.

9.7. Multicast

 A message to be multicast to a group MUST be sent to the rendezvous
 node from where it is forwarded down the tree by being split into k
 stripes. Each stripe is then sent via a subtree. If a receiving
 node is a member of the tree rather than just a forwarder it SHALL
 pass the multicast data up to the application.

10. Message Format

 All messages are mapped to the RELOAD experimental message type. The
 mapping is given in the following table. The message codes are given
 in Section 15.2. The format of the body of a message is given in
 Figure 5.

 +-------------------------+------------------+
 | Message |RELOAD Code Point |
 +-------------------------+------------------+
 | CreateALMTree | exp_a_req |
 +-------------------------+------------------+
 | CreateALMTreeResponse | exp_a_ans |
 +-------------------------+------------------+
 | Join | exp_a_req |
 +-------------------------+------------------+
 | JoinAccept | exp_a_ans |
 +-------------------------+------------------+

Buford & Kolberg Expires December 08, 2013 [Page 27]

Internet-Draft ALM Extensions to RELOAD June 2013

 | JoinReject | exp_a_ans |
 +-------------------------+------------------+
 | JoinConfirm | exp_a_req |
 +-------------------------+------------------+
 | JoinConfirmResponse | exp_a_ans |
 +-------------------------+------------------+
 | JoinDecline | exp_a_req |
 +-------------------------+------------------+
 | JoinDeclineResponse | exp_a_ans |
 +-------------------------+------------------+
 | Leave | exp_a_req |
 +-------------------------+------------------+
 | LeaveResponse | exp_a_ans |
 +-------------------------+------------------+
 | Reform | exp_a_req |
 +-------------------------+------------------+
 | ReformResponse | exp_a_ans |
 +-------------------------+------------------+
 | Heartbeat | exp_a_req |
 +-------------------------+------------------+
 | HeartbeatResponse | exp_a_ans |
 +-------------------------+------------------+
 | NodeQuery | exp_a_req |
 +-------------------------+------------------+
 | NodeQueryResponse | exp_a_ans |
 +-------------------------+------------------+
 | Push | exp_a_req |
 +-------------------------+------------------+
 | PushResponse | exp_a_ans |
 +-------------------------+------------------+

 Figure 5: RELOAD Message Code mapping

 For Data Kind-IDs, the RELOAD specification states: "Code points in
 the range 0xf0000001 to 0xfffffffe are reserved for private use".
 ALM Usage Kind-IDs are defined in the private use range.

 All ALM Usage messages map to the RELOAD Message Extension mechanism.

 Code points for the kinds defined in this document MUST NOT conflict
 with any defined code points for RELOAD. RELOAD defines exp_a_req,
 exp_a_ans for experimental purposes. This specification uses only
 these message types for all ALM messages. RELOAD defines the
 MessageContents data structure. The ALM mapping uses the fields as
 follows:

 o message_code: exp_a_req for requests and exp_a_ans for responses

Buford & Kolberg Expires December 08, 2013 [Page 28]

Internet-Draft ALM Extensions to RELOAD June 2013

 o message_body: contains one instance of ALMHeader followed by one
 instance of ALMMessageContents

 o extensions: unused

10.1. ALMHeader Definition

 struct {
 uint32 sam_token;
 uint16 alm_algorithm_id;
 uint8 version;
 } ALMHeader;

 The fields in ALMHeader are used as follows:

 sam_token: The first four bytes identify this message as an ALM
 message. This field MUST contain the value 0xd3414d42 (the string
 "SAMB" with the high bit of the first byte set.

 alm_algorithm_id: The ALM Algorith ID of the ALM algorithm being
 used. Each multicast tree uses only one algorithm. Trees with
 different ALM algorithms can co-exist, and can share the same
 nodes. ALM Algorithm ID codes are defined in Section 15.1

 version: The version of the ALM protocol being used. This is a
 fixed point integer between 0.1 and 25.4 This document describes
 version 1.0 with a value of 0xa.

10.2. ALMMessageContents Definition

 struct {
 uint16 alm_message_code;
 opaque alm_message_body;
 } ALMMessageContents;

 The fields in ALMMessageContents are used as follows:

 alm_message_code: This indicates the message being sent. The
 message codes are listed in Section 15.2.

 alm_message_body: The message body itself, represented as a
 variable-length string of bytes. The bytes themselves are
 dependent on the code value. See Section 8 and Section 9
 describing the various ALM methods for the definitions of the
 payload contents.

Buford & Kolberg Expires December 08, 2013 [Page 29]

Internet-Draft ALM Extensions to RELOAD June 2013

10.3. Response Codes

 Response codes are defined in section 6.3.3.1 in RELOAD. This
 specification maps to RELOAD ErrorResponse as follows:

 ErrorResponse.error_code = Error_Exp_A;

 Error_info contains an ALMErrorResponse instance.

 public struct {
 uint16 alm_error_code;
 opaque alm_error_info<0..2^16-1>;
 } ALMErrorResponse;

 alm_error_code: The following error code values are defined. Numeric
 values for these are defined in section Section 15.3.

 Error_Unknown_Algorithm: The multicast algorithm is not known or
 not supported.

 Error_Child_Limit_Reached: The maximum number of children nodes
 has been reached for this node

 Error_Node_Bandwidth_Reached: The overall data bandwidth limit
 through this node has been reached

 Error_Node_Conn_Limit_Reached: The total number of connections to
 this node has been reached

 Error_Link_Cap_Limit_Reached: The capacity of a link has been
 reached

 Error_Node_Mem_Limit_Reached: An internal memory capacity of the
 node has been reached

 Error_Node_CPU_Cap_Limit_Reached: An internal processing capacity
 of the node has been reached

 Error_Path_Limit_Reached: The maximum path length in hopcount over
 the multicast tree has been reached

 Error_Path_Delay_Limit_Reached: The maximum path length in message
 delay over the multicast tree has been reached

 Error_Tree_Fanout_Limit_Reached: The maximum fanout of a multicast
 tree has been reached

Buford & Kolberg Expires December 08, 2013 [Page 30]

Internet-Draft ALM Extensions to RELOAD June 2013

 Error_Tree_Depth_Limit_Reached: The maximum height of a multicast
 tree has been reached

 Error_Other: A human-readable description is placed in the
 alm_error_info field.

11. Examples

 All peers in the examples are assumed to have completed
 bootstrapping. "Pn" refers to peer N. "GroupID" refers to a peer
 responsible for storing the ALMTree instance with GroupID.

11.1. Create Tree

 A node with "NODE-MATCH" rights sends a request CreateTree to the
 group-id node, which also has NODE-MATCH rights for its own address.
 The group-id node determines whether to create the new tree, and if
 so, performs a local StoreReq. If the CreateTree succeeds, the
 ALMTree instance can be retrieved using Fetch. An example message
 flow for ceating a tree is depicted in Figure 6.

 P1 P2 P3 P4 GroupID
 | | | | |
 | | | | |
 | | | | |
 | CreateTree | | |
 |------------------------------->|
 | | | | |
 | | | | | StoreReq
 | | | | |--+
 | | | | | |
 | | | | | |
 | | | | |<-+
 | | | | | StoreResponse
 | | | | |--+
 | | | | | |
 | | | | | |
 | | | | |<-+
 | | | | |
 | | | | |
 | | CreateTreeResponse |
 |<-------------------------------|
 | | | | |
 | | | | |
 | Fetch | | |
 |------------------------------->|
 | | | | |
 | | | | |

Buford & Kolberg Expires December 08, 2013 [Page 31]

Internet-Draft ALM Extensions to RELOAD June 2013

 | | FetchResponse |
 |<-------------------------------|
 | | | | |

 Figure 6: Message flow example for CreateTree.

11.2. Join Tree

 P1 joins node GroupID as child node. P2 joins the tree as a child of
 P1. P4 joins the tree as a child of P1. The corresponding message
 flow is shown in Figure 7.

 P1 P2 P3 P4 GroupID
 | | | | |
 | | | | |
 | Join |
 |------------------------------->|
 | | | | |
 | JoinAccept |
 |<-------------------------------|
 | | | | |
 | | | | |
 | |Join |
 | |----------------------->|
 | | | | |
 | Join|
 |<-------------------------------|
 | | | | |
 |JoinAccept | | |
 |------>| | | |
 | | | | |
 |JoinConfirm | | |
 |<------| | | |
 | | | | |
 | | | |Join |
 | | | |------>|
 | | | | Join |
 |<-------------------------------|
 | | | | |
 | Join | | | |
 |------>| | | |
 | | | | |
 | JoinAccept | | |
 |----------------------->| |
 | | | | |
 | | JoinAccept | |
 | |--------------->| |
 | | | | |

Buford & Kolberg Expires December 08, 2013 [Page 32]

Internet-Draft ALM Extensions to RELOAD June 2013

 | | | | |
 | | Join Confirm | |
 |<-----------------------| |
 | | | | |
 | | Join Decline | |
 | |<---------------| |
 | | | | |
 | | | | |

 Figure 7: Message flow example for tree Join.

11.3. Leave Tree

 P1 P2 P3 P4 GroupID
 | | | | |
 | | | | |
 | | | Leave | |
 |<-----------------------| |
 | | | | |
 | LeaveResponse | | |
 |----------------------->| |
 | | | | |
 | | | | |

 Figure 8: Message flow example for Leave tree.

11.4. Push Data

 The multicast data is pushed recursively P1 => GroupID => P1 => P2,
 P4 following the tree topology created in the Join example above. An
 example message flow is shown in Figure 9.

 P1 P2 P3 P4 GroupID
 | | | | |
 | Push | | | |
 |------------------------------->|
 | | | | |
 | | | PushResponse|
 |<-------------------------------|
 | | | | |
 | | | | Push|
 |<-------------------------------|
 | | | | |
 | PushResponse | | |
 |------------------------------->|
 | | | | |
 |Push | | | |
 |------>| | | |

Buford & Kolberg Expires December 08, 2013 [Page 33]

Internet-Draft ALM Extensions to RELOAD June 2013

 | | | | |
 |PushResponse | | |
 |<------| | | |
 | | | | |
 | Push | | | |
 |----------------------->| |
 | | | | |
 | | PushResponse | |
 |<-----------------------| |
 | | | | |
 | | | | |
 | | | | |

 Figure 9: Message flow example for pushing data.

12. Kind Definitions

12.1. ALMTree Kind Definition

 This section defines the ALMTree kind per section 7.4.5 in RELOAD.
 An instance of the ALMTree kind is stored in the overlay for each ALM
 tree instance. It is stored at the address group_id.

 Kind-Id: 0xf0000001 (This is a private-use code-point per section
 14.6 of RELOAD.) The Resource Name for the ALMTree Kind-ID is the
 session_key used to identify the ALM tree.

 Data Model The data model is the ALMTree structure.

 Access Control NODE-MATCH. The node performing the store operation
 is required to have NODE-MATCH access.

 Meaning: The meaning of the fields is given in Section 7.2.1.

 struct {
 node_id peer_id;
 opaque session_key<0..2^32-1>;
 node_id group_id;
 Dictionary options;
 } ALMTree;

13. RELOAD Configuration File Extensions

 There are no ALM parameters defined for the RELOAD configuration
 file.

Buford & Kolberg Expires December 08, 2013 [Page 34]

Internet-Draft ALM Extensions to RELOAD June 2013

14. Change History

 o Version 02: Remove Hybrid ALM material. Define ALMTree kind.
 Define new RELOAD messages. Define RELOAD architecture
 extensions. Add Scribe as base algorithm for ALM usage. Define
 code points. Define preliminary ALM-specific security issues.

 o Version 03: Add P2Pcast Algorithm.

 o Version 04: Add mapping to RELOAD experimental message. Modified
 IANA considerations section. Changed category of id from
 Informational to Experimental. New algorithm identification
 coding. New message coding. Added push message. Create Tree
 access policy changed to use NODE-MATCH. Create Tree StoreReq
 clarified. Updated the diagrams in the Examples section. Added a
 Push data example. Defined the ALMTree kind.

15. IANA Considerations

 This section contains the new code points registered by this
 document. [NOTE TO IANA/RFC-EDITOR: Please replace RFC-to-be with
 the RFC number for this specification in the following list.]

15.1. ALM Algorithm Types

 IANA SHALL create a "SAM ALM Algorithm ID" Registry. Entries in this
 registry are 16-bit integers denoting Application Layer Multicast
 algorithms as described in section Section 10.1 of [RFC-to-be]. Code
 points in the range 0x3 to 0x7fff SHALL be registered vi RFC 5226
 Expert Review. Code points in the range 0x7fff to 0xfffe are
 reserved for private use. The initial contents of this registry are:

 +----------------+-------------------+-----------+
 | Algorithm Name | ALM Algorith ID | RFC |
 +----------------+-------------------+-----------+
 | INVALID-ALG | 0 | RFC-to-be |
 | SCRIBE-SAM | 1 | RFC-to-be |
 | P2PCAST-SAM | 2 | RFC-to-be |
 | Reserved | 0x3..0xffff | RFC-to-be |
 +----------------+-------------------+-----------+

 Figure 10

 These values have been made available for the purposes of
 experimentation. These values are not meant for vendor specific use
 of any sort and MUST NOT be used for operational deployments.

Buford & Kolberg Expires December 08, 2013 [Page 35]

Internet-Draft ALM Extensions to RELOAD June 2013

15.2. Message Code Registration

 IANA SHALL create a "SAM ALM Message Code" Registry. Entries in this
 registry are 16-bit integers denoting message codes as described in
 section Section 10.2 of [RFC-to-be]. Code points in the range 0x14
 to 0x7fff SHALL be registered vi RFC 5226 Expert Review. Code points
 in the range 0x7fff to 0xfffe are reserved for private use. The
 initial contents of this registry are:

 +-------------------------+----------------------+-----------+
 | Message Code Name | Message Code Value | RFC |
 +-------------------------+----------------------+-----------+
 | InvalidMessageCode | 0 | RFC-to-be |
 | CreateALMTRee | 1 | RFC-to-be |
 | CreateALMTreeResponse | 2 | RFC-to-be |
 | Join | 3 | RFC-to-be |
 | JoinAccept | 4 | RFC-to-be |
 | JoinReject | 5 | RFC-to-be |
 | JoinConfirm | 6 | RFC-to-be |
 | JoinConfirmResponse | 7 | RFC-to-be |
 | JoinDecline | 8 | RFC-to-be |
 | JoinDeclineResponse | 9 | RFC-to-be |
 | Leave | 10 | RFC-to-be |
 | LeaveResponse | 11 | RFC-to-be |
 | Reform | 12 | RFC-to-be |
 | ReformResponse | 13 | RFC-to-be |
 | Heartbeat | 14 | RFC-to-be |
 | HeartbeatResponse | 15 | RFC-to-be |
 | NodeQuery | 16 | RFC-to-be |
 | NodeQueryResponse | 17 | RFC-to-be |
 | Push | 18 | RFC-to-be |
 | PushResponse | 19 | RFC-to-be |
 | Reserved | 0x14..0xffff | RFC-to-be |
 +-------------------------+----------------------+-----------+

 Figure 11

 These values have been made available for the purposes of
 experimentation. These values are not meant for vendor specific use
 of any sort and MUST NOT be used for operational deployments.

15.3. Error Code Registration

Buford & Kolberg Expires December 08, 2013 [Page 36]

Internet-Draft ALM Extensions to RELOAD June 2013

 IANA SHALL create a "SAM ALM Error Code" Registry. Entries in this
 registry are 16-bit integers denoting error codes as described in
 section Section 10.3 of [RFC-to-be]. Code points in the range 0x14
 to 0x7fff SHALL be registered vi RFC 5226 Expert Review. Code points
 in the range 0x7fff to 0xfffe are reserved for private use. The
 initial contents of this registry are:

 +----------------------------------+--------------+-----------+
 | Error Code Name | Code Value | RFC |
 +----------------------------------+--------------+-----------+
 | InvalidErrorCode | 0 | RFC-to-be |
 | Error_Unknown_Algorithm | 1 | RFC-to-be |
 | Error_Child_Limit_Reached | 2 | RFC-to-be |
 | Error_Node_Bandwidth_Reached | 3 | RFC-to-be |
 | Error_Node_Conn_Limit_Reached | 4 | RFC-to-be |
 | Error_Link_Cap_Limit_Reached | 5 | RFC-to-be |
 | Error_Node_Mem_Limit_Reached | 6 | RFC-to-be |
 | Error_Node_CPU_Cap_Limit_Reached | 7 | RFC-to-be |
 | Error_Path_Limit_Reached | 8 | RFC-to-be |
 | Error_Path_Delay_Limit_Reached | 9 | RFC-to-be |
 | Error_Tree_Fanout_Limit_Reached | 10 | RFC-to-be |
 | Error_Tree_Depth_Limit_Reached | 11 | RFC-to-be |
 | Error_Other | 12 | RFC-to-be |
 | Reserved | 0x14..0xffff | RFC-to-be |
 +----------------------------------+--------------+-----------+

 Figure 12

 These values have been made available for the purposes of
 experimentation. These values are not meant for vendor specific use
 of any sort and MUST NOT be used for operational deployments.

16. Security Considerations

 Overlays are vulnerable to DOS and collusion attacks. We are not
 solving overlay security issues. We assume the node authentication
 model as defined in [I-D.ietf-p2psip-base].

 ALM Usage specific security issues:

 o Right to create GroupID at some node_id

 o Right to store Tree info at some Location in the DHT

 o Limit on # messages / sec and bandwidth use

 o Right to join an ALM tree

Buford & Kolberg Expires December 08, 2013 [Page 37]

Internet-Draft ALM Extensions to RELOAD June 2013

17. Acknowledgement

 Marc Petit-Huguenin, Michael Welzl, Joerg Ott, and Lars Eggert
 provided important comments on earlier versions of this document.

18. Informative References

 [AGU1984] Aguilar, L., "Datagram Routing for Internet Multicasting",
 ACM Sigcomm 84 1984, March 1984,
 <http://dl.acm.org/citation.cfm?id=802060>.

 [BUFORD2008]
 Buford, J. and H. Yu, "Peer-to-Peer Overlay Multicast",
 Encyclopedia of Wireless and Mobile Communications 2008,
 2008, <http://www.tandfonline.com/doi/abs/10.1081/
 E-EWMC-120043583>.

 [BUFORD2009]
 Buford, J., Yu, H., and E. Lua, "P2P Networking and
 Applications (Chapter 9)", Morgan Kaufman 2009, 2009,
 <http://www.sciencedirect.com/science/book/9780123742148>.

 [CASTRO2002]
 Castro, M., Druschel, P., Kermarrec, A., and A. Rowstron,
 "Scribe: A large-scale and decentralized application-level
 multicast infrastructure", IEEE Journal on Selected Areas
 in Communications vol.20, No.8, October 2002, <http://
 research.microsoft.com/en-us/um/people/antr/past/
 jsac.pdf>.

 [CASTRO2003]
 Castro, M., Jones, M., Kermarrec, A., Rowstron, A.,
 Theimer, M., Wang, H., and A. Wolman, "An Evaluation of
 Scalable Application-level Multicast Built Using Peer-to-
 peer overlays", Proceedings of IEEE INFOCOM 2003, April
 2003, <http://research.microsoft.com/en-us/um/people/
 mcastro/publications/infocom-compare.pdf>.

 [HE2005] He, Q. and M. Ammar, "Dynamic Host-Group/Multi-Destination
 Routing for Multicast Sessions", J. Telecommunication
 Systems vol. 28, pp. 409-433, 2005, <http://
 ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1284204&a
 bstractAccess=no&userType=inst>.

 [I-D.ietf-mboned-auto-multicast]
 Bumgardner, G., "Automatic Multicast Tunneling", draft-
 ietf-mboned-auto-multicast-14 (work in progress), June
 2012.

Buford & Kolberg Expires December 08, 2013 [Page 38]

Internet-Draft ALM Extensions to RELOAD June 2013

 [I-D.ietf-p2psip-base]
 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
 H. Schulzrinne, "REsource LOcation And Discovery (RELOAD)
 Base Protocol", draft-ietf-p2psip-base-26 (work in
 progress), February 2013.

 [I-D.ietf-p2psip-sip]
 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S.,
 Schulzrinne, H., and T. Schmidt, "A SIP Usage for RELOAD",
 draft-ietf-p2psip-sip-09 (work in progress), February
 2013.

 [I-D.irtf-p2prg-rtc-security]
 Schulzrinne, H., Marocco, E., and E. Ivov, "Security
 Issues and Solutions in Peer-to-peer Systems for Realtime
 Communications", draft-irtf-p2prg-rtc-security-05 (work in
 progress), September 2009.

 [I-D.irtf-sam-hybrid-overlay-framework]
 Buford, J., "Hybrid Overlay Multicast Framework", draft-
 irtf-sam-hybrid-overlay-framework-02 (work in progress),
 February 2008.

 [I-D.irtf-samrg-common-api]
 Waehlisch, M., Schmidt, T., and S. Venaas, "A Common API
 for Transparent Hybrid Multicast", draft-irtf-samrg-
 common-api-06 (work in progress), August 2012.

 [I-D.matuszewski-p2psip-security-overview]
 Yongchao, S., Matuszewski, M., and D. York, "P2PSIP
 Security Overview and Risk Analysis", draft-matuszewski-
 p2psip-security-overview-01 (work in progress), October
 2009.

 [I-D.muramoto-irtf-sam-generic-require]
 Muramoto, E., "Requirements for Scalable Adaptive
 Multicast Framework in Non-GIG Networks", draft-muramoto-
 irtf-sam-generic-require-01 (work in progress), November
 2006.

 [KOLBERG2010]
 Kolberg, M., "Employing Multicast in P2P Networks",
 Handbook of Peer-to-Peer Networking (Ed. X.Shen, H. Yu, J.
 Buford, M. Akon) 2010, 2010, <http://link.springer.com/
 content/pdf/10.1007%2F978-0-387-09751-0_30.pdf>.

 [P2PCAST] Nicolosi, A. and S. Annapureddy, "P2PCast: A Peer-to-Peer
 Multicast Scheme for Streaming Data", Stanford Secure

Buford & Kolberg Expires December 08, 2013 [Page 39]

Internet-Draft ALM Extensions to RELOAD June 2013

 Computer Systems Group Report 2003, May 2003, <http://
 www.scs.stanford.edu/˜reddy/research/p2pcast/report.pdf>.

 [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5,
 RFC 792, September 1981.

 [RFC1112] Deering, S., "Host extensions for IP multicasting", STD 5,
 RFC 1112, August 1989.

 [RFC1930] Hawkinson, J. and T. Bates, "Guidelines for creation,
 selection, and registration of an Autonomous System (AS)",
 BCP 6, RFC 1930, March 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3376] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
 Thyagarajan, "Internet Group Management Protocol, Version
 3", RFC 3376, October 2002.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003.

 [RFC3810] Vida, R. and L. Costa, "Multicast Listener Discovery
 Version 2 (MLDv2) for IPv6", RFC 3810, June 2004.

 [RFC4286] Haberman, B. and J. Martin, "Multicast Router Discovery",
 RFC 4286, December 2005.

 [RFC4605] Fenner, B., He, H., Haberman, B., and H. Sandick,
 "Internet Group Management Protocol (IGMP) / Multicast
 Listener Discovery (MLD)-Based Multicast Forwarding ("IGMP
 /MLD Proxying")", RFC 4605, August 2006.

 [RFC4607] Holbrook, H. and B. Cain, "Source-Specific Multicast for
 IP", RFC 4607, August 2006.

 [RFC5058] Boivie, R., Feldman, N., Imai, Y., Livens, W., and D.
 Ooms, "Explicit Multicast (Xcast) Concepts and Options",
 RFC 5058, November 2007.

 [SPLITSTREAM]

Buford & Kolberg Expires December 08, 2013 [Page 40]

Internet-Draft ALM Extensions to RELOAD June 2013

 Castro, M., Druschel, P., Nandi, A., Kermarrec, A.,
 Rowstron, A., and A. Singh, "SplitStream: High-bandwidth
 multicast in a cooperative environment", SOSP’03,Lake
 Bolton, New York 2003, October 2003, <http://
 research.microsoft.com/en-us/um/people/antr/PAST/
 SplitStream-sosp.pdf>.

Authors’ Addresses

 John Buford
 Avaya Labs Research
 211 Mt. Airy Rd
 Basking Ridge, New Jersey 07920
 USA

 Phone: +1 908 848 5675
 Email: buford@avaya.com

 Mario Kolberg (editor)
 University of Stirling
 Dept. Computing Science and Mathematics
 Stirling FK9 4LA
 UK

 Phone: +44 1786 46 7440
 Email: mkolberg@ieee.org
 URI: http://www.cs.stir.ac.uk/˜mko

Buford & Kolberg Expires December 08, 2013 [Page 41]

