Internet Draft DS3 Objects November 20, 1990 Definitions of Managed Objects for the DS3 Interface Type November 20, 1990 SNMP Working Group Editors: Tracy A. Cox Bell Communications Research tacox@sabre.bellcore.com Kaj Tesink Bell Communications Research kaj@nvuxr.cc.bellcore.com 1. Status of this Memo This draft document will be submitted to the RFC editor as an experimental extension to the SNMP MIB. Distribution of this memo is unlimited. Please send comments to the editors. 2. Abstract This memo defines an experimental portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing DS3 objects. This document is a companion document with Definitions of Managed Objects for the DS1 Interface Type. This memo does not specify a standard for the Internet community. T. A. Cox and K. Tesink (editors) [Page 1] Internet Draft DS3 Objects November 20, 1990 3. Historical Perspective As reported in RFC 1052, IAB Recommendations for the Development of Internet Network Management Standards [1], a two-prong strategy for network management of TCP/IP-based internets was undertaken. In the short-term, the Simple Network Management Protocol (SNMP), defined in RFC 1067, was to be used to manage nodes in the Internet community. In the long-term, the use of the OSI network management framework was to be examined. Two documents were produced to define the management information: RFC 1065, which defined the Structure of Management Information (SMI), and RFC 1066, which defined the Management Information Base (MIB). Both of these documents were designed so as to be compatible with both the SNMP and the OSI network management framework. This strategy was quite successful in the short-term: Internet-based network management technology was fielded, by both the research and commercial communities, within a few months. As a result of this, portions of the Internet community became network manageable in a timely fashion. As reported in RFC 1109, Report of the Second Ad Hoc Network Management Review Group [2], the requirements of the SNMP and the OSI network management frameworks were more different than anticipated. As such, the requirement for compatibility between the SMI/MIB and both frameworks was suspended. This action permitted the operational network management framework, based on the SNMP, to respond to new operational needs in the Internet community by producing MIB-II. In May of 1990, the core documents were elevated to "Standard Protocols" with "Recommended" status. As such, the Internet- standard network management framework consists of: Structure and Identification of Management Information for TCP/IP-based internets, RFC 1155 [3], which describes how managed objects contained in the MIB are defined; Management Information Base for Network Management of TCP/IP-based internets, which describes the managed objects contained in the MIB, RFC 1156 [4]; and, the Simple Network Management Protocol, RFC 1157 [5], which defines the protocol used to manage these objects. Consistent with the IAB directive to produce simple, workable systems in the short-term, the list of managed objects defined in the Internet-standard MIB was derived by taking only those T. A. Cox and K. Tesink (editors) [Page 2] Internet Draft DS3 Objects November 20, 1990 elements which are considered essential. However, the SMI defined three extensibility mechanisms: one, the addition of new standard objects through the definitions of new versions of the MIB; two, the addition of widely-available but non- standard objects through the experimental subtree; and three, the addition of private objects through the enterprises subtree. Such additional objects can not only be used for vendor-specific elements, but also for experimentation as required to further the knowledge of which other objects are essential. This memo defines extensions to the MIB using the second method. It contains definitions of managed objects used for experimentation. T. A. Cox and K. Tesink (editors) [Page 3] Internet Draft DS3 Objects November 20, 1990 4. Objects Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI. In particular, each object has a name, a syntax, and an encoding. The name is an object identifier, an administratively assigned name, which specifies an object type. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to the object type. The syntax of an object type defines the abstract data structure corresponding to that object type. The ASN.1 language is used for this purpose. However, the SMI [3] purposely restricts the ASN.1 constructs which may be used. These restrictions are explicitly made for simplicity. The encoding of an object type is simply how that object type is represented using the object type's syntax. Implicitly tied to the notion of an object type's syntax and encoding is how the object type is represented when being transmitted on the network. The SMI specifies the use of the basic encoding rules of ASN.1 [8], subject to the additional requirements imposed by the SNMP. 4.1. Format of Definitions Section 6 contains contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in [13]. T. A. Cox and K. Tesink (editors) [Page 4] Internet Draft DS3 Objects November 20, 1990 5. Overview These objects are used when the particular media being used to realize an interface is a DS3 interface. At present, this applies to these values of the ifType variable in the Internet-standard MIB: ds3 (30) The definitions contained herein are based on the DS3 specifications in ANSI T1.102-1987, ANSI T1.107-1988, and ANSI T1.404-1989 [9,10,11]. 5.1. Binding between Interfaces and CSUs Each agent which resides on a host which uses DS3 interfaces is required to assign a small, non-negative integer uniquely to each CSU. This is known as the "CSUIndex", and is used to distinguish between different CSUs attached to a node. The CSUIndex is also used as the `key' when accessing tabular information about DS3 interfaces. The ds3Index column of the DS3 Configuration table relates each CSU to its corresponding interface in the Internet- standard MIB. 5.2. Objectives of this MIB Module There are numerous things that could be included in a MIB for DS3 signals: the management of multiplexors, CSUs, DSUs, and the like. The intent of this document is to facilitate the common management of CSUs, both in-chassis and external via proxy. As such, a design decision was made up front to very closely align the MIB with the set of objects that can generally be read from CSUs that are currently deployed. 5.3. DS3 Terminology The terminology used in this document to describe error conditions on a DS3 circuit as monitored by a DS3 CSU are from the ANSI T1M1.3/90 draft standard [12]. Out of Frame (OOF) event An OOF event is detected when any three or more errors in sixteen or fewer consecutive F-bits occur within a DS3 T. A. Cox and K. Tesink (editors) [Page 5] Internet Draft DS3 Objects November 20, 1990 M-frame. An OOF event is cleared when reframe occurs. Loss of Signal (LOS) This state is declared upon observing 175 +/- 75 contiguous pulse positions with no pulses of either positive or negative polarity. Coding Violation (CV) For all DS3 applications, a coding violation is a P-bit Parity Error event. A P-bit Parity Error event is the occurrence of a received P-bit code on the DS3 M-frame that is not identical to the corresponding locally- calculated code. For C-Bit Parity applications, it is also the occurrence of a received CP-Bit parity violation. For SYNTRAN applications, it is also the occurrence of a received CRC-9 code that is not identical to the corresponding locally calculated code. Bipolar Violation (BPV) A bipolar violation, for B3ZS-coded signals, is the occurrence of a received bipolar violation that is not part of a zero-substitution code. For B3ZS-coded signals, a bipolar violation may also include other error patterns such as: three or more consecutive zeros and incorrect parity. Errored Seconds (ES) An ES is a second with one or more Coding Violation OR one or more Out of Frame events OR an AIS. Severely Errored Seconds (SES) A SES is a second with 44 or more Coding Violations OR one or more Out of Frame events OR an AIS. Severely Errored Framing Seconds (SEFS) A SEFS is a second with one or more Out of Frame events. Unavailable Seconds (UAS) UAS are calculated by counting the number of seconds that the CSU is in the Unavailable signal state (i.e., declared a Red Alarm or a Yellow Alarm), including the initial 10 seconds to enter the state but not including the 10 seconds to exit the state. Note that any second that may be counted as an UAS may T. A. Cox and K. Tesink (editors) [Page 6] Internet Draft DS3 Objects November 20, 1990 not be counted as an ES or a SES. Since the 10 SESs that comprise the transition from the available to unavailable signal state may also be counted as ESs and SESs previous to entering the state, these three counters are adjusted so that any second counted during this transition is then subtracted. The 10 seconds in the transition from unavailable to available may be counted as ESs. A special case exists when the 10 or more second period crosses the 900 second statistics window boundary, as the foregoing description implies that the SES and UAS counters must be adjusted when the Unavailable Signal State is entered. Clearly, successive GETs of the affected ds3IntervalSES and ds3IntervalUAS objects will return differing values if the first GET occurs during the first few seconds of the window. This is viewed as an unavoidable side-effect of selecting the presently defined managed objects as a basis for this memo. Yellow Alarm The Yellow Alarm is declared after detecting the Yellow Signal. See ANSI T1.107-1989 [10]. Red Alarm The Red Alarm is declared after detecting a Loss of Signal, a Loss of Frame (a persistent OOF event), or an Alarm Indication Signal, see [10] for at least 2-10 seconds. The Red Alarm is cleared at the onset of 10 consecutive seconds with no SES. Circuit Identifier This is a character string specified by the circuit vendor, and is useful when communicating with the vendor during the troubleshooting process. T. A. Cox and K. Tesink (editors) [Page 7] Internet Draft DS3 Objects November 20, 1990 6. Object Definitions RFCxxxx-MIB DEFINITIONS ::= BEGIN IMPORTS experimental, Counter FROM RFC1155-SMI DisplayString FROM RFC1158-MIB2 OBJECT-TYPE FROM RFC-oooo; -- This MIB module uses the extended OBJECT-TYPE macro as -- defined in [13]. -- this is the MIB module for the DS3 objects ds3 OBJECT IDENTIFIER ::= { experimental 15 } T. A. Cox and K. Tesink (editors) [Page 8] Internet Draft DS3 Objects November 20, 1990 -- the DS3 Configuration group -- Although the objects in this group are read-only, at the -- agent's discretion they may be made read-write so that the -- management station, when appropriately authorized, may -- change the behavior of the CSU, e.g., to place the device -- into a loopback state. -- Implementation of this group is mandatory for all systems -- that attach to a DS3 Interface. ds3ConfigTable OBJECT-TYPE SYNTAX SEQUENCE OF DS3ConfigEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The DS3 Configuration table." ::= { ds3 1 } ds3ConfigEntry OBJECT-TYPE SYNTAX DS3ConfigEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An entry in the DS3 Configuration table." INDEX { ds3CSUIndex } ::= { ds3ConfigTable 1 } DS3ConfigEntry ::= SEQUENCE { ds3CSUIndex INTEGER, ds3Index INTEGER, ds3TimeElapsed INTEGER (1..900), ds3ValidIntervals INTEGER (0..96), ds3LineType INTEGER, ds3ZeroCoding INTEGER, ds3Loopback INTEGER, ds3YellowAlarm T. A. Cox and K. Tesink (editors) [Page 9] Internet Draft DS3 Objects November 20, 1990 INTEGER, ds3RedAlarm INTEGER, ds3CircuitIdentifier DisplayString (SIZE (0..255)) } ds3CSUIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The index value which uniquely identifies the CSU to which this entry is applicable." ::= { ds3ConfigEntry 1 } ds3Index OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "An index value that uniquely identifies a DS3 Interface. The interface identified by a particular value of this index is the same interface as identified by the same value an ifIndex object instance." ::= { ds3ConfigEntry 2 } ds3TimeElapsed OBJECT-TYPE SYNTAX INTEGER (1..900) ACCESS read-only STATUS mandatory DESCRIPTION "The number of seconds, including partial seconds, that have elapsed since the beginning of the current error-measurement period." ::= { ds3ConfigEntry 3 } ds3ValidIntervals OBJECT-TYPE SYNTAX INTEGER (0..96) ACCESS read-only STATUS mandatory DESCRIPTION "The number of previous intervals for which valid data was collected. The value will be 96 unless T. A. Cox and K. Tesink (editors) [Page 10] Internet Draft DS3 Objects November 20, 1990 the CSU device was brought online within the last 24 hours, in which case the value will be the number of complete 15 minute intervals the CSU has been online." ::= { ds3ConfigEntry 4 } ds3LineType OBJECT-TYPE SYNTAX INTEGER { other(1), ds3M23(2), ds3SYNTRAN(3), ds3CbitParity(4), ds3ClearChannel(5) } ACCESS read-only STATUS mandatory DESCRIPTION "This variable indicates the variety of DS3 C-bit application implementing this circuit. The type of circuit affects the interpretation of the usage and error statistics. The rate of all of them is 44.736 Mbps. The values, in sequence, describe: TITLE: SPECIFICATION: ds3M23 ANSI T1.107-1988 [10] ds3SYNTRAN ANSI T1.107-1988 [10] ds3C-bitParity ANSI T1.107a-1989 [10a] ds3ClearChannel ANSI T1.102-1987 [9] " ::= { ds3ConfigEntry 5 } ds3ZeroCoding OBJECT-TYPE SYNTAX INTEGER { ds3other(1), ds3B3ZS(2) } ACCESS read-only STATUS mandatory DESCRIPTION "This variable describes the variety of Zero Code Suppression used on the link, which in turn affects a number of its characteristics. ds3B3ZS refers to the use of specified patterns of T. A. Cox and K. Tesink (editors) [Page 11] Internet Draft DS3 Objects November 20, 1990 normal bits and bipolar violations which are used to replace sequences of zero bits of a specified length." ::= { ds3ConfigEntry 6 } ds3Loopback OBJECT-TYPE SYNTAX INTEGER { ds3NoLoop(1), ds3LocalLoopbackLocalSide(2), ds3LocalLoopbackRemoteSide(3), ds3RemoteLoopbackLocalSide(4), ds3RemoteLoopbackRemoteSide(5) } ACCESS read-only STATUS mandatory DESCRIPTION "This variable represents the loopback state of the CSU. Devices supporting read/write access should return badValue in response to a requested loopback state that the CSU does not support. The values mean: ds3NoLoop Not in the loopback state. A device that is not capable of performing a loopback on either interface shall always return this as it's value. ds3LocalLoopbackLocalSide Signal received from the local side of the device is looped back at the local connector (eg, without involving the CSU). ds3LocalLoopbackRemoteSide Signal received from the local side of the device is looped back at the remote connector (eg, through the CSU). ds3RemoteLoopbackLocalSide Signal received from the remote side of the device is looped back at the local connector T. A. Cox and K. Tesink (editors) [Page 12] Internet Draft DS3 Objects November 20, 1990 (eg, through the CSU). ds3RemoteLoopbackRemoteSide Signal received from the remote side of the device is looped back at the remote connector (eg, without involving the CSU). Note that M23 and ClearChannel interfaces do not support the Loopback managed object." ::= { ds3ConfigEntry 7 } ds3YellowAlarm OBJECT-TYPE SYNTAX INTEGER { ds3YellowAlarm(1), ds3NoYellowAlarm(2) } ACCESS read-only STATUS mandatory DESCRIPTION "This variable indicates if a Yellow Alarm condition exists." ::= { ds3ConfigEntry 8 } ds3RedAlarm OBJECT-TYPE SYNTAX INTEGER { ds3RedAlarm(1), ds3NoRedAlarm(2) } ACCESS read-only STATUS mandatory DESCRIPTION "This variable indicates if a Red Alarm condition exists." ::= { ds3ConfigEntry 9 } ds3CircuitIdentifier OBJECT-TYPE SYNTAX DisplayString (SIZE (0..255)) ACCESS read-only STATUS mandatory DESCRIPTION "This variable contains the transmission vendor's circuit identifier, for the purpose of facilitating troubleshooting." ::= { ds3ConfigEntry 10 } T. A. Cox and K. Tesink (editors) [Page 13] Internet Draft DS3 Objects November 20, 1990 -- the DS3 Interval group -- Implementation of this group is mandatory for all systems -- that attach to a DS3 interface. -- The DS3 Interval Table contains various statistics -- collected by each CSU over the previous 24 hours of -- operation. The past 24 hours are broken into 96 completed -- 15 minute intervals. ds3IntervalTable OBJECT-TYPE SYNTAX SEQUENCE OF DS3IntervalEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The DS3 Interval table." ::= { ds3 2 } ds3IntervalEntry OBJECT-TYPE SYNTAX DS3IntervalEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An entry in the DS3 Interval table." INDEX { ds3IntervalIndex, ds3IntervalNumber } ::= { ds3IntervalTable 1 } DS3IntervalEntry ::= SEQUENCE { ds3IntervalIndex INTEGER, ds3IntervalNumber INTEGER (1..96), ds3IntervalESs Counter, ds3IntervalSESs Counter, ds3IntervalSEFSs Counter, ds3IntervalUASs Counter, ds3IntervalCSSs Counter, ds3IntervalBPVs Counter, T. A. Cox and K. Tesink (editors) [Page 14] Internet Draft DS3 Objects November 20, 1990 ds3IntervalCVs Counter } ds3IntervalIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The index value which uniquely identifies the CSU to which this entry is applicable. The interface identified by a particular value of this index is the same interface as identified by the same value an DS3CSUIndex object instance." ::= { ds3IntervalEntry 1 } ds3IntervalNumber OBJECT-TYPE SYNTAX INTEGER (1..96) ACCESS read-only STATUS mandatory DESCRIPTION "A number between 1 and 96, where 1 is the most recently completed 15 minute interval and 96 is the least recently completed 15 minutes interval (assuming that all 96 intervals are valid)." ::= { ds3IntervalEntry 2 } ds3IntervalESs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Errored Seconds, as defined by [12], encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals." ::= { ds3IntervalEntry 3 } ds3IntervalSESs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Severely Errored Seconds, as defined by [12], T. A. Cox and K. Tesink (editors) [Page 15] Internet Draft DS3 Objects November 20, 1990 encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals." ::= { ds3IntervalEntry 4 } ds3IntervalSEFSs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Severely Errored Framing Seconds, as defined by [12], encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals." ::= { ds3IntervalEntry 5 } ds3IntervalUASs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Unavailable Seconds, as defined by [12], encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals." ::= { ds3IntervalEntry 6 } ds3IntervalCSSs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Controlled Slip Seconds, as defined by [12], encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals. Note that SYNTRAN interfaces are the only interfaces that support the Controlled Slip Seconds managed object. Accordingly, agents configured with non-SYNTRAN interfaces may treat this object as having an ACCESS clause value of not-accessible." ::= { ds3IntervalEntry 7} ds3IntervalBPVs OBJECT-TYPE T. A. Cox and K. Tesink (editors) [Page 16] Internet Draft DS3 Objects November 20, 1990 SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Bipolar Violations, as defined by [12], encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals." ::= { ds3IntervalEntry 8 } ds3IntervalCVs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Coding Violations, as defined by [12], encountered by a DS3 CSU in one of the previous 96, individual 15 minute, intervals." ::= { ds3IntervalEntry 9 } T. A. Cox and K. Tesink (editors) [Page 17] Internet Draft DS3 Objects November 20, 1990 -- the DS3 Current group -- Implementation of this group is mandatory for all systems -- that attach to a DS3 Interface. -- The DS3 current table contains various statistics being -- collected for the current 15 minute interval. ds3CurrentTable OBJECT-TYPE SYNTAX SEQUENCE OF DS3CurrentEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The DS3 Current table." ::= { ds3 3 } ds3CurrentEntry OBJECT-TYPE SYNTAX DS3CurrentEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An entry in the DS3 Current table." INDEX { ds3CurrentIndex } ::= { ds3CurrentTable 1 } DS3CurrentEntry ::= SEQUENCE { ds3CurrentIndex INTEGER, ds3CurrentESs Counter, ds3CurrentSESs Counter, ds3CurrentSEFSs Counter, ds3CurrentUASs Counter, ds3CurrentCSSs Counter, ds3CurrentBPVs Counter, ds3CurrentCVs Counter } T. A. Cox and K. Tesink (editors) [Page 18] Internet Draft DS3 Objects November 20, 1990 ds3CurrentIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The index value which uniquely identifies the CSU to which this entry is applicable. The interface identified by a particular value of this index is the same interface as identified by the same value an DS3CSUIndex object instance." ::= { ds3CurrentEntry 1 } ds3CurrentESs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Errored Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval." ::= { ds3CurrentEntry 2 } ds3CurrentSESs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Severely Errored Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval." ::= { ds3CurrentEntry 3 } ds3CurrentSEFSs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Severely Errored Framing Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval." ::= { ds3CurrentEntry 4 } ds3CurrentUASs OBJECT-TYPE T. A. Cox and K. Tesink (editors) [Page 19] Internet Draft DS3 Objects November 20, 1990 SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Unavailable Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval." ::= { ds3CurrentEntry 5 } ds3CurrentCSSs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Controlled Slip Seconds, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval. Note that SYNTRAN interfaces are the only interfaces that support the Controlled Slip Seconds managed object. Accordingly, agents configured with non-SYNTRAN interfaces may treat this object as having an ACCESS clause value of not-accessible." ::= { ds3CurrentEntry 6 } ds3CurrentBPVs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Bipolar Violations, as defined by [12], encountered by a DS3 CSU in the current 15 minute interval." ::= { ds3CurrentEntry 7} ds3CurrentCVs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Coding Violations, as defined by [12], encountered by a T. A. Cox and K. Tesink (editors) [Page 20] Internet Draft DS3 Objects November 20, 1990 DS3 CSU in the current 15 minute interval." ::= { ds3CurrentEntry 8 } T. A. Cox and K. Tesink (editors) [Page 21] Internet Draft DS3 Objects November 20, 1990 -- the DS3 Total group -- Implementation of this group is mandatory for all systems -- that attach to a DS3. -- The DS3 Total Table contains the cumulative sum of the -- various statistics for the 24 hour interval preceding the -- first valid interval in the DS3CurrentTable. ds3TotalTable OBJECT-TYPE SYNTAX SEQUENCE OF DS3TotalEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The DS3 Total table. 24 hour interval." ::= { ds3 4 } ds3TotalEntry OBJECT-TYPE SYNTAX DS3TotalEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An entry in the DS3 Total table." INDEX { ds3TotalIndex } ::= { ds3TotalTable 1 } DS3TotalEntry ::= SEQUENCE { ds3TotalIndex INTEGER, ds3TotalESs Counter, ds3TotalSESs Counter, ds3TotalSEFSs Counter, ds3TotalUASs Counter, ds3TotalCSSs Counter, ds3TotalBPVs Counter, ds3TotalCVs Counter } T. A. Cox and K. Tesink (editors) [Page 22] Internet Draft DS3 Objects November 20, 1990 ds3TotalIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The index value which uniquely identifies the CSU to which this entry is applicable. The interface identified by a particular value of this index is the same interface as identified by the same value an DS3CSUIndex object instance." ::= { ds3TotalEntry 1 } ds3TotalESs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Errored Seconds, as defined by [12], encountered by a DS3 CSU in the previous 24 hour interval" ::= { ds3TotalEntry 2 } ds3TotalSESs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Severely Errored Seconds, as defined by [12], encountered by a DS3 CSU in the previous 24 hour interval." ::= { ds3TotalEntry 3 } ds3TotalSEFSs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Severely Errored Framing Seconds, as defined by [12], encountered by a DS3 CSU in the previous 24 hour interval." ::= { ds3TotalEntry 4 } T. A. Cox and K. Tesink (editors) [Page 23] Internet Draft DS3 Objects November 20, 1990 ds3TotalUASs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Unavailable Seconds, as defined by [12], encountered by a DS3 CSU in the previous 24 hour interval." ::= { ds3TotalEntry 5 } ds3TotalCSSs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Controlled Slip Seconds, as defined by [12], encountered by a DS3 CSU in the previous 24 hour interval. Note that SYNTRAN interfaces are the only interfaces that support the Controlled Slip Seconds managed object. Accordingly, agents configured with non-SYNTRAN interfaces may treat this object as having an ACCESS clause value of not-accessible." ::= { ds3TotalEntry 6 } ds3TotalBPVs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Bipolar Violations, as defined by [12], encountered by a DS3 CSU in the previous 24 hour interval." ::= { ds3TotalEntry 7 } ds3TotalCVs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The counter associated with the number of Coding T. A. Cox and K. Tesink (editors) [Page 24] Internet Draft DS3 Objects November 20, 1990 Violations, as defined by [12], encountered by a DS3 CSU in the previous 24 hour interval." ::= { ds3TotalEntry 8 } END T. A. Cox and K. Tesink (editors) [Page 25] Internet Draft DS3 Objects November 20, 1990 7. Acknowledgments This document was produced by the SNMP and the Transmission MIB Working Groups. In addition, the comments of the following individuals are also acknowledged: Fred Baker, Jeff Case, Chris Kolb, and Marshall Rose. T. A. Cox and K. Tesink (editors) [Page 26] Internet Draft DS3 Objects November 20, 1990 8. References [1] V. Cerf, IAB Recommendations for the Development of Internet Network Management Standards. Internet Working Group Request for Comments 1052. Network Information Center, SRI International, Menlo Park, California, (April, 1988). [2] V. Cerf, Report of the Second Ad Hoc Network Management Review Group, Internet Working Group Request for Comments 1109. Network Information Center, SRI International, Menlo Park, California, (August, 1989). [3] M.T. Rose and K. McCloghrie, Structure and Identification of Management Information for TCP/IP-based internets, Internet Working Group Request for Comments 1155. Network Information Center, SRI International, Menlo Park, California, (May, 1990). [4] K. McCloghrie and M.T. Rose, Management Information Base for Network Management of TCP/IP-based internets, Internet Working Group Request for Comments 1156. Network Information Center, SRI International, Menlo Park, California, (May, 1990). [5] J.D. Case, M.S. Fedor, M.L. Schoffstall, and J.R. Davin, Simple Network Management Protocol, Internet Working Group Request for Comments 1157. Network Information Center, SRI International, Menlo Park, California, (May, 1990). [6] M.T. Rose (editor), Management Information Base for Network Management of TCP/IP-based internets, Internet Working Group Request for Comments 1158. Network Information Center, SRI International, Menlo Park, California, (May, 1990). [7] Information processing systems - Open Systems Interconnection - Specification of Abstract Syntax Notation One (ASN.1)P, International Organization for Standardization. International Standard 8824, (December, 1987). [8] Information processing systems - Open Systems Interconnection - Specification of Basic Encoding Rules T. A. Cox and K. Tesink (editors) [Page 27] Internet Draft DS3 Objects November 20, 1990 for Abstract Notation One (ASN.1), International Organization for Standardization. International Standard 8825, (December, 1987). [9] American National Standard for telecommunications - digital hierarchy - electrical interfaces, ANSI T1.102- 1987. [10] American National Standard for telecommunications - digital hierarchy - formats specification, ANSI T1.107- 1988. [10a] ANSI T1.107a-1989. [11] American National Standard for telecommunications - Carrier-to-Customer Installation - DS3 Metallic Interface, ANSI T1.404-1989. [12] In-Service Digital Transmission Performance Monitoring Draft Standard, T1M1.3/90 - 027R2. [13] M.T. Rose, K. McCloghrie (editors), Towards Concise MIB Definitions, Internet Draft, Internet Engineering Task Force, (September, 1990). T. A. Cox and K. Tesink (editors) [Page 28] Internet Draft DS3 Objects November 20, 1990 Table of Contents 1 Status of this Memo ................................... 1 2 Abstract .............................................. 1 3 Historical Perspective ................................ 2 4 Objects ............................................... 4 4.1 Format of Definitions ............................... 4 5 Overview .............................................. 5 5.1 Binding between Interfaces and CSUs ................. 5 5.2 Objectives of this MIB Module ....................... 5 5.3 DS3 Terminology ..................................... 5 6 Object Definitions .................................... 8 6.1 The DS3 Configuration Group ......................... 9 6.2 The DS3 Interval Group .............................. 14 6.3 The DS3 Current Group ............................... 18 6.4 The DS3 Total Group ................................. 22 7 Acknowledgments ....................................... 26 8 References ............................................ 27 T. A. Cox and K. Tesink (editors) [Page 29]