
RATS Working Group L. Lundblade
Internet-Draft Security Theory LLC
Intended status: Standards Track G. Mandyam
Expires: April 26, 2022 J. O’Donoghue
 Qualcomm Technologies Inc.
 October 23, 2021

 The Entity Attestation Token (EAT)
 draft-ietf-rats-eat-11

Abstract

 An Entity Attestation Token (EAT) provides a signed (attested) set of
 claims that describe state and characteristics of an entity,
 typically a device like a phone or an IoT device. These claims are
 used by a Relying Party to determine how much it wishes to trust the
 entity.

 An EAT is either a CWT or JWT with some attestation-oriented claims.
 To a large degree, all this document does is extend CWT and JWT.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2022.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Lundblade, et al. Expires April 26, 2022 [Page 1]

Internet-Draft EAT October 2021

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 5
 1.1. CWT, JWT, UCCS, UJCS and DEB 5
 1.2. CDDL, CBOR and JSON 6
 1.3. Operating Model and RATS Architecture 7
 1.3.1. Use as Attestation Evidence 8
 1.3.2. Use as Attestation Results 8
 1.4. Entity Overview . 9
 2. Terminology . 9
 3. The Claims . 10
 3.1. Token ID Claim (cti and jti) 11
 3.2. Timestamp claim (iat) 11
 3.3. Nonce Claim (nonce) 11
 3.4. Universal Entity ID Claim (ueid) 12
 3.5. Semi-permanent UEIDs (SUEIDs) 14
 3.6. Hardware OEM Identification (oemid) 15
 3.6.1. Random Number Based 15
 3.6.2. IEEE Based . 15
 3.6.3. IANA Private Enterprise Number 16
 3.7. Hardware Version Claims (hardware-version-claims) 16
 3.8. Software Name Claim 17
 3.9. Software Version Claim 17
 3.10. The Security Level Claim (security-level) 17
 3.11. Secure Boot Claim (secure-boot) 19
 3.12. Debug Status Claim (debug-status) 19
 3.12.1. Enabled . 20
 3.12.2. Disabled . 20
 3.12.3. Disabled Since Boot 21
 3.12.4. Disabled Permanently 21
 3.12.5. Disabled Fully and Permanently 21
 3.13. Including Keys . 21
 3.14. The Location Claim (location) 22
 3.15. The Uptime Claim (uptime) 23
 3.16. The Boot Seed Claim (boot-seed) 23
 3.17. The Intended Use Claim (intended-use) 24
 3.18. The Profile Claim (profile) 25
 3.19. The DLOA (Digital Letter or Approval) Claim (dloas) . . . 26
 3.20. The Software Manifests Claim (manifests) 27
 3.21. The Software Evidence Claim (swevidence) 28
 3.22. The SW Measurement Results Claim (swresults) 29
 3.22.1. Scheme . 29

Lundblade, et al. Expires April 26, 2022 [Page 2]

Internet-Draft EAT October 2021

 3.22.2. Objective . 30
 3.22.3. Results . 30
 3.22.4. Objective Name 31
 3.23. Submodules (submods) 33
 3.23.1. Submodule Types 33
 3.23.1.1. Submodule Claims-Set 33
 3.23.1.2. Nested Token 34
 3.23.1.3. Detached Submodule Digest 36
 3.23.2. No Inheritance 37
 3.23.3. Security Levels 37
 3.23.4. Submodule Names 37
 3.23.5. CDDL for submods 38
 4. Unprotected JWT Claims-Sets 38
 5. Detached EAT Bundles . 39
 6. Endorsements and Verification Keys 40
 6.1. Identification Methods 41
 6.1.1. COSE/JWS Key ID 41
 6.1.2. JWS and COSE X.509 Header Parameters 41
 6.1.3. CBOR Certificate COSE Header Parameters 42
 6.1.4. Claim-Based Key Identification 42
 6.2. Other Considerations 42
 7. Profiles . 42
 7.1. Format of a Profile Document 43
 7.2. List of Profile Issues 43
 7.2.1. Use of JSON, CBOR or both 43
 7.2.2. CBOR Map and Array Encoding 43
 7.2.3. CBOR String Encoding 44
 7.2.4. CBOR Preferred Serialization 44
 7.2.5. COSE/JOSE Protection 44
 7.2.6. COSE/JOSE Algorithms 44
 7.2.7. DEB Support . 44
 7.2.8. Verification Key Identification 45
 7.2.9. Endorsement Identification 45
 7.2.10. Freshness . 45
 7.2.11. Required Claims 45
 7.2.12. Prohibited Claims 45
 7.2.13. Additional Claims 45
 7.2.14. Refined Claim Definition 45
 7.2.15. CBOR Tags . 46
 7.2.16. Manifests and Software Evidence Claims 46
 8. Encoding and Collected CDDL 46
 8.1. Claims-Set and CDDL for CWT and JWT 46
 8.2. Encoding Data Types 47
 8.2.1. Common Data Types 47
 8.2.2. JSON Interoperability 47
 8.2.3. Labels . 47
 8.3. CBOR Interoperability 48
 8.3.1. EAT Constrained Device Serialization 48

Lundblade, et al. Expires April 26, 2022 [Page 3]

Internet-Draft EAT October 2021

 8.4. Collected Common CDDL 49
 8.5. Collected CDDL for CBOR 55
 8.6. Collected CDDL for JSON 57
 9. IANA Considerations . 59
 9.1. Reuse of CBOR and JSON Web Token (CWT and JWT) Claims
 Registries . 59
 9.2. Claim Characteristics 59
 9.2.1. Interoperability and Relying Party Orientation . . . 59
 9.2.2. Operating System and Technology Neutral 59
 9.2.3. Security Level Neutral 60
 9.2.4. Reuse of Extant Data Formats 60
 9.2.5. Proprietary Claims 60
 9.3. Claims Registered by This Document 61
 9.3.1. Claims for Early Assignment 61
 9.3.2. To be Assigned Claims 64
 9.3.3. Version Schemes Registered by this Document 64
 9.3.4. UEID URN Registered by this Document 64
 9.3.5. Tag for Detached EAT Bundle 65
 10. Privacy Considerations 65
 10.1. UEID and SUEID Privacy Considerations 65
 10.2. Location Privacy Considerations 66
 11. Security Considerations 66
 11.1. Key Provisioning . 66
 11.1.1. Transmission of Key Material 67
 11.2. Transport Security 67
 11.3. Multiple EAT Consumers 67
 12. References . 68
 12.1. Normative References 68
 12.2. Informative References 70
 Appendix A. Examples . 73
 A.1. Simple TEE Attestation 73
 A.2. EAT Produced by Attestation Hardware Block 74
 A.3. Detached EAT Bundle 75
 A.4. Key / Key Store Attestation 76
 A.5. SW Measurements of an IoT Device 78
 A.6. Attestation Results in JSON format 81
 Appendix B. UEID Design Rationale 82
 B.1. Collision Probability 82
 B.2. No Use of UUID . 84
 Appendix C. EAT Relation to IEEE.802.1AR Secure Device Identity
 (DevID) . 85
 C.1. DevID Used With EAT 85
 C.2. How EAT Provides an Equivalent Secure Device Identity . . 86
 C.3. An X.509 Format EAT 86
 C.4. Device Identifier Permanence 87
 Appendix D. Changes from Previous Drafts 87
 D.1. From draft-rats-eat-01 87
 D.2. From draft-mandyam-rats-eat-00 87

Lundblade, et al. Expires April 26, 2022 [Page 4]

Internet-Draft EAT October 2021

 D.3. From draft-ietf-rats-eat-01 87
 D.4. From draft-ietf-rats-eat-02 88
 D.5. From draft-ietf-rats-eat-03 88
 D.6. From draft-ietf-rats-eat-04 88
 D.7. From draft-ietf-rats-eat-05 89
 D.8. From draft-ietf-rats-eat-06 89
 D.9. From draft-ietf-rats-eat-07 89
 D.10. From draft-ietf-rats-eat-08 89
 D.11. From draft-ietf-rats-eat-09 89
 D.12. From draft-ietf-rats-eat-10 90
 Authors’ Addresses . 91

1. Introduction

 Remote device attestation is a fundamental service that allows a
 remote device such as a mobile phone, an Internet-of-Things (IoT)
 device, or other endpoint to prove itself to a Relying Party, a
 server or a service. This allows the Relying Party to know some
 characteristics about the device and decide whether it trusts the
 device.

 The notion of attestation here is large and may include, but is not
 limited to the following:

 o Proof of the make and model of the device hardware (HW)

 o Proof of the make and model of the device processor, particularly
 for security-oriented chips

 o Measurement of the software (SW) running on the device

 o Configuration and state of the device

 o Environmental characteristics of the device such as its GPS
 location

 This document uses the terminology and main operational model defined
 in [RATS.Architecture]. In particular it is a format that can be
 used for Attestation Evidence or Attestation Results as defined in
 the RATS architecture.

1.1. CWT, JWT, UCCS, UJCS and DEB

 An EAT is a set of claims about an entity/device based on one of the
 following:

 o CBOR Web Token (CWT), [RFC8392]

Lundblade, et al. Expires April 26, 2022 [Page 5]

Internet-Draft EAT October 2021

 o Unprotected CWT Claims Sets (UCCS), [UCCS.Draft]

 o JSON Web Token (JWT), [RFC7519]

 All definitions, requirements, creation and validation procedures,
 security considerations, IANA registrations and so on from these
 carry over to EAT.

 This specification extends those specifications by defining
 additional claims for attestation. This specification also describes
 the notion of a "profile" that can narrow the definition of an EAT,
 ensure interoperability and fill in details for specific usage
 scenarios. This specification also adds some considerations for
 registration of future EAT-related claims.

 The identification of a protocol element as an EAT, whether CBOR or
 JSON encoded, follows the general conventions used by CWT, JWT and
 UCCS. Largely this depends on the protocol carrying the EAT. In
 some cases it may be by content type (e.g., MIME type). In other
 cases it may be through use of CBOR tags. There is no fixed
 mechanism across all use cases.

 This specification adds two more top-level messages:

 o Unprotected JWT Claims Set (UJCS), Section 4

 o Detached EAT Bundle (DEB), Section 5

 A DEB is simple structure to hold a collection of detached claims-
 sets and the EAT that separately provides integrity and authenticity
 protection for them. It can be either CBOR or JSON encoded.

1.2. CDDL, CBOR and JSON

 An EAT can be encoded in either CBOR or JSON. The definition of each
 claim is such that it can be encoded either. Each token is either
 entirely CBOR or JSON, with only an exception for nested tokens.

 To implement composite attestation as described in the RATS
 architecture document, one token has to be nested inside another. It
 is also possible to construct composite Attestation Results (see
 below) which may be expressed as one token nested inside another. So
 as to not force each end-end attestation system to be all JSON or all
 CBOR, nesting of JSON-encoded tokens in CBOR-encoded tokens and vice
 versa is accommodated by this specification. This is the only place
 that CBOR and JSON can be mixed.

Lundblade, et al. Expires April 26, 2022 [Page 6]

Internet-Draft EAT October 2021

 This specification formally uses CDDL, [RFC8610], to define each
 claim. The implementor interprets the CDDL to come to either the
 CBOR [RFC8949] or JSON [ECMAScript] representation. In the case of
 JSON, Appendix E of [RFC8610] is followed. Additional rules are
 given in Section 8.2.2 where Appendix E is insufficient.

 The CWT and JWT specifications were authored before CDDL was
 available and did not use CDDL. This specification includes a CDDL
 definition of most of what is defined in [RFC8392]. Similarly, this
 specification includes CDDL for most of what is defined in [RFC7519].

 The UCCS specification does not include CDDL. This specification
 provides CDDL for it.

 (TODO: The authors are open to modifications to this specification
 and the UCCS specification to include CDDL for UCCS and UJCS there
 instead of here.)

1.3. Operating Model and RATS Architecture

 While it is not required that EAT be used with the RATS operational
 model described in Figure 1 in [RATS.Architecture], or even that it
 be used for attestation, this document is authored with an
 orientation around that model.

 To summarize, an Attester on an entity/device generates Attestation
 Evidence. Attestation Evidence is a Claims Set describing various
 characteristics of the entity/device. Attestation Evidence also is
 usually signed by a key that proves the entity/device and the
 evidence it produces are authentic. The Claims Set includes a nonce
 or some other means to provide freshness. EAT is designed to carry
 Attestation Evidence. The Attestation Evidence goes to a Verifier
 where the signature is validated. Some of the Claims may also be
 validated against Reference Values. The Verifier then produces
 Attestation Results which is also usually a Claims Set. EAT is also
 designed to carry Attestation Results. The Attestation Results go to
 the Relying Party which is the ultimate consumer of the "Remote
 Attestaton Procedures", RATS. The Relying Party uses the Attestation
 Results as needed for the use case, perhaps allowing a device on the
 network, allowing a financial transaction or such.

 Note that sometimes the Verifier and Relying Party are not separate
 and thus there is no need for a protocol to carry Attestation
 Results.

Lundblade, et al. Expires April 26, 2022 [Page 7]

Internet-Draft EAT October 2021

1.3.1. Use as Attestation Evidence

 Any claim defined in this document or in the IANA CWT or JWT registry
 may be used in Attestation Evidence.

 Attestation Evidence nearly always has to be signed or otherwise have
 authenticity and integrity protection because the Attester is remote
 relative to the Verifier. Usually, this is by using COSE/JOSE
 signing where the signing key is an attestation key provisioned into
 the entity/device by its manufacturer. The details of how this is
 achieved are beyond this specification, but see Section 6. If there
 is already a suitable secure channel between the Attester and
 Verifier, UCCS may be used.

1.3.2. Use as Attestation Results

 Any claim defined in this document or in the IANA CWT or JWT registry
 may be used in Attestation Results.

 It is useful to characterize the relationship of claims in Evidence
 to those in Attestation Results.

 Many claims in Attestation Evidence simply will pass through the
 Verifier to the Relying Party without modification. They will be
 verified as authentic from the device by the Verifier just through
 normal verification of the Attester’s signature. The UEID,
 Section 3.4, and Location, Section 3.14, are examples of claims that
 may be passed through.

 Some claims in Attestation Evidence will be verified by the Verifier
 by comparison to Reference Values. These claims will not likely be
 conveyed to the Relying Party. Instead, some claim indicating they
 were checked may be added to the Attestation Results or it may be
 tacitly known that the Verifier always does this check. For example,
 the Verifier receives the Software Evidence claim, Section 3.21,
 compares it to Reference Values and conveys the results to the
 Relying Party in a Software Measurement Results Claim, Section 3.22.

 In some cases the Verifier may provide privacy-preserving
 functionality by stripping or modifying claims that do not posses
 sufficient privacy-preserving characteristics. For example, the data
 in the Location claim, Section 3.14, may be modified to have a
 precision of a few kilometers rather than a few meters.

 When the Verifier is remote from the Relying Party, the Attestation
 Results must be protected for integrity, authenticity and possibly
 confidentiality. Often this will simply be HTTPS as per a normal web

Lundblade, et al. Expires April 26, 2022 [Page 8]

Internet-Draft EAT October 2021

 service, but COSE or JOSE may also be used. The details of this
 protection are beyond the scope of this document.

1.4. Entity Overview

 An "entity" can be any device or device subassembly ("submodule")
 that can generate its own attestation in the form of an EAT. The
 attestation should be cryptographically verifiable by the EAT
 consumer. An EAT at the device-level can be composed of several
 submodule EAT’s.

 Modern devices such as a mobile phone have many different execution
 environments operating with different security levels. For example,
 it is common for a mobile phone to have an "apps" environment that
 runs an operating system (OS) that hosts a plethora of downloadable
 apps. It may also have a TEE (Trusted Execution Environment) that is
 distinct, isolated, and hosts security-oriented functionality like
 biometric authentication. Additionally, it may have an eSE (embedded
 Secure Element) - a high security chip with defenses against HW
 attacks that is used to produce attestations. This device
 attestation format allows the attested data to be tagged at a
 security level from which it originates. In general, any discrete
 execution environment that has an identifiable security level can be
 considered an entity.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document reuses terminology from JWT [RFC7519] and CWT
 [RFC8392].

 Claim: A piece of information asserted about a subject. A claim is
 represented as pair with a value and either a name or key to
 identify it.

 Claim Name: A unique text string that identifies the claim. It is
 used as the claim name for JSON encoding.

 Claim Key: The CBOR map key used to identify a claim.

 Claim Value: The value portion of the claim. A claim value can be
 any CBOR data item or JSON value.

Lundblade, et al. Expires April 26, 2022 [Page 9]

Internet-Draft EAT October 2021

 CWT/JWT Claims Set: The CBOR map or JSON object that contains the
 claims conveyed by the CWT or JWT.

 This document reuses terminology from RATS Architecure
 [RATS.Architecture]

 Attester: A role performed by an entity (typically a device) whose
 Evidence must be appraised in order to infer the extent to which
 the Attester is considered trustworthy, such as when deciding
 whether it is authorized to perform some operation.

 Verifier: A role that appraises the validity of Attestation Evidence
 about an Attester and produces Attestation Results to be used by a
 Relying Party.

 Relying Party: A role that depends on the validity of information
 about an Attester, for purposes of reliably applying application
 specific actions. Compare /relying party/ in [RFC4949].

 Attestation Evidence: A Claims Set generated by an Attester to be
 appraised by a Verifier. Attestation Evidence may include
 configuration data, measurements, telemetry, or inferences.

 Attestation Results: The output generated by a Verifier, typically
 including information about an Attester, where the Verifier
 vouches for the validity of the results

 Reference Values: A set of values against which values of Claims can
 be compared as part of applying an Appraisal Policy for
 Attestation Evidence. Reference Values are sometimes referred to
 in other documents as known-good values, golden measurements, or
 nominal values, although those terms typically assume comparison
 for equality, whereas here Reference Values might be more general
 and be used in any sort of comparison.

3. The Claims

 This section describes new claims defined for attestation that are to
 be added to the CWT [IANA.CWT.Claims] and JWT [IANA.JWT.Claims] IANA
 registries.

 This section also describes how several extant CWT and JWT claims
 apply in EAT.

 CDDL, along with a text description, is used to define each claim
 independent of encoding. Each claim is defined as a CDDL group. In
 Section 8 on encoding, the CDDL groups turn into CBOR map entries and
 JSON name/value pairs.

Lundblade, et al. Expires April 26, 2022 [Page 10]

Internet-Draft EAT October 2021

 Each claim described has a unique text string and integer that
 identifies it. CBOR encoded tokens MUST use only the integer for
 Claim Keys. JSON encoded tokens MUST use only the text string for
 Claim Names.

3.1. Token ID Claim (cti and jti)

 CWT defines the "cti" claim. JWT defines the "jti" claim. These are
 equivalent to each other in EAT and carry a unique token identifier
 as they do in JWT and CWT. They may be used to defend against re use
 of the token but are distinct from the nonce that is used by the
 Relying Party to guarantee freshness and defend against replay.

3.2. Timestamp claim (iat)

 The "iat" claim defined in CWT and JWT is used to indicate the date-
 of-creation of the token, the time at which the claims are collected
 and the token is composed and signed.

 The data for some claims may be held or cached for some period of
 time before the token is created. This period may be long, even
 days. Examples are measurements taken at boot or a geographic
 position fix taken the last time a satellite signal was received.
 There are individual timestamps associated with these claims to
 indicate their age is older than the "iat" timestamp.

 CWT allows the use floating-point for this claim. EAT disallows the
 use of floating-point. No token may contain an iat claim in float-
 point format. Any recipient of a token with a floating-point format
 iat claim may consider it an error. A 64-bit integer representation
 of epoch time can represent a range of +/- 500 billion years, so the
 only point of a floating-point timestamp is to have precession
 greater than one second. This is not needed for EAT.

3.3. Nonce Claim (nonce)

 All EATs should have a nonce to prevent replay attacks. The nonce is
 generated by the Relying Party, the end consumer of the token. It is
 conveyed to the entity over whatever transport is in use before the
 token is generated and then included in the token as the nonce claim.

 This documents the nonce claim for registration in the IANA CWT
 claims registry. This is equivalent to the JWT nonce claim that is
 already registered.

 The nonce must be at least 8 bytes (64 bits) as fewer are unlikely to
 be secure. A maximum of 64 bytes is set to limit the memory a
 constrained implementation uses. This size range is not set for the

Lundblade, et al. Expires April 26, 2022 [Page 11]

Internet-Draft EAT October 2021

 already-registered JWT nonce, but it should follow this size
 recommendation when used in an EAT.

 Multiple nonces are allowed to accommodate multistage verification
 and consumption.

 $$claims-set-claims //=
 (nonce-label => nonce-type / [2* nonce-type])

 nonce-type = bstr .size (8..64)

3.4. Universal Entity ID Claim (ueid)

 UEID’s identify individual manufactured entities / devices such as a
 mobile phone, a water meter, a Bluetooth speaker or a networked
 security camera. It may identify the entire device or a submodule or
 subsystem. It does not identify types, models or classes of devices.
 It is akin to a serial number, though it does not have to be
 sequential.

 UEID’s must be universally and globally unique across manufacturers
 and countries. UEIDs must also be unique across protocols and
 systems, as tokens are intended to be embedded in many different
 protocols and systems. No two products anywhere, even in completely
 different industries made by two different manufacturers in two
 different countries should have the same UEID (if they are not global
 and universal in this way, then Relying Parties receiving them will
 have to track other characteristics of the device to keep devices
 distinct between manufacturers).

 There are privacy considerations for UEID’s. See Section 10.1.

 The UEID is permanent. It never change for a given device / entity.

 UEIDs are variable length. All implementations MUST be able to
 receive UEIDs that are 33 bytes long (1 type byte and 256 bits). The
 recommended maximum sent is also 33 bytes.

 When the entity constructs the UEID, the first byte is a type and the
 following bytes the ID for that type. Several types are allowed to
 accommodate different industries and different manufacturing
 processes and to give options to avoid paying fees for certain types
 of manufacturer registrations.

 Creation of new types requires a Standards Action [RFC8126].

Lundblade, et al. Expires April 26, 2022 [Page 12]

Internet-Draft EAT October 2021

 +------+------+---+
 | Type | Type | Specification |
 | Byte | Name | |
 +------+------+---+
0x01	RAND	This is a 128, 192 or 256 bit random number
		generated once and stored in the device. This may
		be constructed by concatenating enough identifiers
		to make up an equivalent number of random bits and
		then feeding the concatenation through a
		cryptographic hash function. It may also be a
		cryptographic quality random number generated once
		at the beginning of the life of the device and
		stored. It may not be smaller than 128 bits.
0x02	IEEE	This makes use of the IEEE company identification
	EUI	registry. An EUI is either an EUI-48, EUI-60 or
		EUI-64 and made up of an OUI, OUI-36 or a CID,
		different registered company identifiers, and some
		unique per-device identifier. EUIs are often the
		same as or similar to MAC addresses. This type
		includes MAC-48, an obsolete name for EUI-48. (Note
		that while devices with multiple network interfaces
		may have multiple MAC addresses, there is only one
		UEID for a device) [IEEE.802-2001], [OUI.Guide]
0x03	IMEI	This is a 14-digit identifier consisting of an
		8-digit Type Allocation Code and a 6-digit serial
		number allocated by the manufacturer, which SHALL
		be encoded as byte string of length 14 with each
		byte as the digit’s value (not the ASCII encoding
		of the digit; the digit 3 encodes as 0x03, not
		0x33). The IMEI value encoded SHALL NOT include
		Luhn checksum or SVN information. [ThreeGPP.IMEI]
 +------+------+---+

 Table 1: UEID Composition Types

 UEID’s are not designed for direct use by humans (e.g., printing on
 the case of a device), so no textual representation is defined.

 The consumer (the Relying Party) of a UEID MUST treat a UEID as a
 completely opaque string of bytes and not make any use of its
 internal structure. For example, they should not use the OUI part of
 a type 0x02 UEID to identify the manufacturer of the device. Instead
 they should use the oemid claim that is defined elsewhere. The
 reasons for this are:

 o UEIDs types may vary freely from one manufacturer to the next.

Lundblade, et al. Expires April 26, 2022 [Page 13]

Internet-Draft EAT October 2021

 o New types of UEIDs may be created. For example, a type 0x07 UEID
 may be created based on some other manufacturer registration
 scheme.

 o Device manufacturers are allowed to change from one type of UEID
 to another anytime they want. For example, they may find they can
 optimize their manufacturing by switching from type 0x01 to type
 0x02 or vice versa. The main requirement on the manufacturer is
 that UEIDs be universally unique.

 A Device Indentifier URN is registered for UEIDs. See Section 9.3.4.

 $$claims-set-claims //= (ueid-label => ueid-type)

 ueid-type = bstr .size (7..33)

3.5. Semi-permanent UEIDs (SUEIDs)

 An SEUID is of the same format as a UEID, but it may change to a
 different value on device life-cycle events. Examples of these
 events are change of ownership, factory reset and on-boarding into an
 IoT device management system. A device may have both a UEID and
 SUEIDs, neither, one or the other.

 There may be multiple SUEIDs. Each one has a text string label the
 purpose of which is to distinguish it from others in the token. The
 label may name the purpose, application or type of the SUEID.
 Typically, there will be few SUEDs so there is no need for a formal
 labeling mechanism like a registry. The EAT profile may describe how
 SUEIDs should be labeled. If there is only one SUEID, the claim
 remains a map and there still must be a label. For example, the
 label for the SUEID used by FIDO Onboarding Protocol could simply be
 "FDO".

 There are privacy considerations for SUEID’s. See Section 10.1.

 A Device Indentifier URN is registered for SUEIDs. See
 Section 9.3.4.

 $$claims-set-claims //= (sueids-label => sueids-type)

 sueids-type = {
 + tstr => ueid-type
 }

Lundblade, et al. Expires April 26, 2022 [Page 14]

Internet-Draft EAT October 2021

3.6. Hardware OEM Identification (oemid)

 This claim identifies the OEM of the hardware. Any of the three
 forms may be used at the convenience of the attester implementation.
 The receiver of this claim MUST be able to handle all three forms.

3.6.1. Random Number Based

 This format is always 16 bytes in size (128 bits).

 The OEM may create their own ID by using a cryptographic-quality
 random number generator. They would perform this only once in the
 life of the company to generate the single ID for said company. They
 would use that same ID in every device they make. This uniquely
 identifies the OEM on a statistical basis and is large enough should
 there be ten billion companies.

 The OEM may also use a hash like SHA-256 and truncate the output to
 128 bits. The input to the hash should be somethings that have at
 least 96 bits of entropy, but preferably 128 bits of entropy. The
 input to the hash may be something whose uniqueness is managed by a
 central registry like a domain name.

 This is to be base64url encoded in JSON.

3.6.2. IEEE Based

 The IEEE operates a global registry for MAC addresses and company
 IDs. This claim uses that database to identify OEMs. The contents
 of the claim may be either an IEEE MA-L, MA-M, MA-S or an IEEE CID
 [IEEE.RA]. An MA-L, formerly known as an OUI, is a 24-bit value used
 as the first half of a MAC address. MA-M similarly is a 28-bit value
 uses as the first part of a MAC address, and MA-S, formerly known as
 OUI-36, a 36-bit value. Many companies already have purchased one of
 these. A CID is also a 24-bit value from the same space as an MA-L,
 but not for use as a MAC address. IEEE has published Guidelines for
 Use of EUI, OUI, and CID [OUI.Guide] and provides a lookup services
 [OUI.Lookup].

 Companies that have more than one of these IDs or MAC address blocks
 should pick one and prefer that for all their devices.

 Commonly, these are expressed in Hexadecimal Representation
 [IEEE.802-2001] also called the Canonical format. When this claim is
 encoded the order of bytes in the bstr are the same as the order in
 the Hexadecimal Representation. For example, an MA-L like "AC-DE-48"
 would be encoded in 3 bytes with values 0xAC, 0xDE, 0x48. For JSON
 encoded tokens, this is further base64url encoded.

Lundblade, et al. Expires April 26, 2022 [Page 15]

Internet-Draft EAT October 2021

 This format is always 3 bytes in size in CBOR.

3.6.3. IANA Private Enterprise Number

 IANA maintains a simple integer-based company registry called the
 Private Enterprise Number (PEN) [PEN].

 PENs are often used to create an OID. That is not the case here.
 They are used only as a simple integer.

 In CBOR this is encoded as a major type 0 integer in CBOR and is
 typically 3 bytes. It is encoded as a number in JSON.

 oemid-pen = int

 oemid-ieee = bstr .size 3

 oemid-random = bstr .size 16

 $$claims-set-claims //= (
 oemid-label =>
 oemid-random / oemid-ieee / oemid-pen
)

3.7. Hardware Version Claims (hardware-version-claims)

 The hardware version can be claimed at three different levels, the
 chip, the circuit board and the final device assembly. An EAT can
 include any combination these claims.

 The hardware version is a simple text string the format of which is
 set by each manufacturer. The structure and sorting order of this
 text string can be specified using the version-scheme item from
 CoSWID [CoSWID].

 The hardware version can also be given by a 13-digit [EAN-13]. A new
 CoSWID version scheme is registered with IANA by this document in
 Section 9.3.3. An EAN-13 is also known as an International Article
 Number or most commonly as a bar code.

Lundblade, et al. Expires April 26, 2022 [Page 16]

Internet-Draft EAT October 2021

 $$claims-set-claims //= (
 chip-version-label => hw-version-type
)

 $$claims-set-claims //= (
 board-version-label => hw-version-type
)

 $$claims-set-claims //= (
 device-version-label => hw-version-type
)

 hw-version-type = [
 version: tstr,
 scheme: $version-scheme
]

3.8. Software Name Claim

 This is a simple free-form text claim for the name of the software.
 A CoSWID manifest or other type of manifest can be used instead if
 this is too simple.

 $$claims-set-claims //= (sw-name-label => tstr)

3.9. Software Version Claim

 This makes use of the CoSWID version scheme data type to give a
 simple version for the software. A full CoSWID manifest or other
 type of manifest can be instead if this is too simple.

 $$claims-set-claims //= (sw-version-label => sw-version-type)

 sw-version-type = [
 version: tstr,
 scheme: $version-scheme / As defined by CoSWID /
]

3.10. The Security Level Claim (security-level)

 This claim characterizes the device/entity ability to defend against
 attacks aimed at capturing the signing key, forging claims and at
 forging EATs. This is by defining four security levels as described
 below.

Lundblade, et al. Expires April 26, 2022 [Page 17]

Internet-Draft EAT October 2021

 These claims describe security environment and countermeasures
 available on the end-entity/client device where the attestation key
 resides and the claims originate.

 1 - Unrestricted: There is some expectation that implementor will
 protect the attestation signing keys at this level. Otherwise,
 the EAT provides no meaningful security assurances.

 2 - Restricted: Entities at this level are not general-purpose
 operating environments that host features such as app download
 systems, web browsers and complex productivity applications. It
 is akin to the secure-restricted level (see below) without the
 security orientation. Examples include a Wi-Fi subsystem, an IoT
 camera, or sensor device. Often these can be considered more
 secure than unrestricted just because they are much simpler and a
 smaller attack surface, but this won’t always be the case. Some
 unrestricted devices may be implemented in a way that provides
 poor protection of signing keys.

 3 - Secure-Restricted: Entities at this level must meet the criteria
 defined in section 4 of FIDO Allowed Restricted Operating
 Environments [FIDO.AROE]. Examples include TEE’s and schemes
 using virtualization-based security. Like the FIDO security goal,
 security at this level is aimed at defending well against large-
 scale network/remote attacks against the device.

 4 - Hardware: Entities at this level must include substantial
 defense against physical or electrical attacks against the device
 itself. It is assumed any potential attacker has captured the
 device and can disassemble it. Examples include TPMs and Secure
 Elements.

 The entity should claim the highest security level it achieves and no
 higher. This set is not extensible so as to provide a common
 interoperable description of security level to the Relying Party. If
 a particular implementation considers this claim to be inadequate, it
 can define its own proprietary claim. It may consider including both
 this claim as a coarse indication of security and its own proprietary
 claim as a refined indication.

 This claim is not intended as a replacement for a proper end-device
 security certification scheme such as those based on FIPS 140
 [FIPS-140] or those based on Common Criteria [Common.Criteria]. The
 claim made here is solely a self-claim made by the Attester.

Lundblade, et al. Expires April 26, 2022 [Page 18]

Internet-Draft EAT October 2021

 $$claims-set-claims //= (
 security-level-label =>
 security-level-cbor-type /
 security-level-json-type
)

 security-level-cbor-type = &(
 unrestricted: 1,
 restricted: 2,
 secure-restricted: 3,
 hardware: 4
)

 security-level-json-type =
 "unrestricted" /
 "restricted" /
 "secure-restricted" /
 "hardware"

3.11. Secure Boot Claim (secure-boot)

 The value of true indicates secure boot is enabled. Secure boot is
 considered enabled when base software, the firmware and operating
 system, are under control of the entity manufacturer identified in
 the OEMID claim described in Section 3.6. This may because the
 software is in ROM or because it is cryptographically authenticated
 or some combination of the two or other.

 $$claims-set-claims //= (secure-boot-label => bool)

3.12. Debug Status Claim (debug-status)

 This applies to system-wide or submodule-wide debug facilities of the
 target device / submodule like JTAG and diagnostic hardware built
 into chips. It applies to any software debug facilities related to
 root, operating system or privileged software that allow system-wide
 memory inspection, tracing or modification of non-system software
 like user mode applications.

 This characterization assumes that debug facilities can be enabled
 and disabled in a dynamic way or be disabled in some permanent way
 such that no enabling is possible. An example of dynamic enabling is
 one where some authentication is required to enable debugging. An
 example of permanent disabling is blowing a hardware fuse in a chip.
 The specific type of the mechanism is not taken into account. For
 example, it does not matter if authentication is by a global password
 or by per-device public keys.

Lundblade, et al. Expires April 26, 2022 [Page 19]

Internet-Draft EAT October 2021

 As with all claims, the absence of the debug level claim means it is
 not reported. A conservative interpretation might assume the Not
 Disabled state. It could however be that it is reported in a
 proprietary claim.

 This claim is not extensible so as to provide a common interoperable
 description of debug status to the Relying Party. If a particular
 implementation considers this claim to be inadequate, it can define
 its own proprietary claim. It may consider including both this claim
 as a coarse indication of debug status and its own proprietary claim
 as a refined indication.

 The higher levels of debug disabling requires that all debug
 disabling of the levels below it be in effect. Since the lowest
 level requires that all of the target’s debug be currently disabled,
 all other levels require that too.

 There is no inheritance of claims from a submodule to a superior
 module or vice versa. There is no assumption, requirement or
 guarantee that the target of a superior module encompasses the
 targets of submodules. Thus, every submodule must explicitly
 describe its own debug state. The Verifier or Relying Party
 receiving an EAT cannot assume that debug is turned off in a
 submodule because there is a claim indicating it is turned off in a
 superior module.

 An individual target device / submodule may have multiple debug
 facilities. The use of plural in the description of the states
 refers to that, not to any aggregation or inheritance.

 The architecture of some chips or devices may be such that a debug
 facility operates for the whole chip or device. If the EAT for such
 a chip includes submodules, then each submodule should independently
 report the status of the whole-chip or whole-device debug facility.
 This is the only way the Relying Party can know the debug status of
 the submodules since there is no inheritance.

3.12.1. Enabled

 If any debug facility, even manufacturer hardware diagnostics, is
 currently enabled, then this level must be indicated.

3.12.2. Disabled

 This level indicates all debug facilities are currently disabled. It
 may be possible to enable them in the future, and it may also be
 possible that they were enabled in the past after the target device/
 sub-system booted/started, but they are currently disabled.

Lundblade, et al. Expires April 26, 2022 [Page 20]

Internet-Draft EAT October 2021

3.12.3. Disabled Since Boot

 This level indicates all debug facilities are currently disabled and
 have been so since the target device/sub-system booted/started.

3.12.4. Disabled Permanently

 This level indicates all non-manufacturer facilities are permanently
 disabled such that no end user or developer cannot enable them. Only
 the manufacturer indicated in the OEMID claim can enable them. This
 also indicates that all debug facilities are currently disabled and
 have been so since boot/start.

3.12.5. Disabled Fully and Permanently

 This level indicates that all debug capabilities for the target
 device/sub-module are permanently disabled.

 $$claims-set-claims //= (
 debug-status-label =>
 debug-status-cbor-type / debug-status-json-type
)

 debug-status-cbor-type = &(
 enabled: 0,
 disabled: 1,
 disabled-since-boot: 2,
 disabled-permanently: 3,
 disabled-fully-and-permanently: 4
)

 debug-status-json-type =
 "enabled" /
 "disabled" /
 "disabled-since-boot" /
 "disabled-permanently" /
 "disabled-fully-and-permanently"

3.13. Including Keys

 An EAT may include a cryptographic key such as a public key. The
 signing of the EAT binds the key to all the other claims in the
 token.

 The purpose for inclusion of the key may vary by use case. For
 example, the key may be included as part of an IoT device onboarding
 protocol. When the FIDO protocol includes a pubic key in its
 attestation message, the key represents the binding of a user, device

Lundblade, et al. Expires April 26, 2022 [Page 21]

Internet-Draft EAT October 2021

 and Relying Party. This document describes how claims containing
 keys should be defined for the various use cases. It does not define
 specific claims for specific use cases.

 Keys in CBOR format tokens SHOULD be the COSE_Key format [RFC8152]
 and keys in JSON format tokens SHOULD be the JSON Web Key format
 [RFC7517]. These two formats support many common key types. Their
 use avoids the need to decode other serialization formats. These two
 formats can be extended to support further key types through their
 IANA registries.

 The general confirmation claim format [RFC8747], [RFC7800] may also
 be used. It provides key encryption. It also allows for inclusion
 by reference through a key ID. The confirmation claim format may
 employed in the definition of some new claim for a a particular use
 case.

 When the actual confirmation claim is included in an EAT, this
 document associates no use case semantics other than proof of
 posession. Different EAT use cases may choose to associate further
 semantics. The key in the confirmation claim MUST be protected the
 same as the key used to sign the EAT. That is, the same, equivalent
 or better hardware defenses, access controls, key generation and such
 must be used.

3.14. The Location Claim (location)

 The location claim gives the location of the device entity from which
 the attestation originates. It is derived from the W3C Geolocation
 API [W3C.GeoLoc]. The latitude, longitude, altitude and accuracy
 must conform to [WGS84]. The altitude is in meters above the [WGS84]
 ellipsoid. The two accuracy values are positive numbers in meters.
 The heading is in degrees relative to true north. If the device is
 stationary, the heading is NaN (floating-point not-a-number). The
 speed is the horizontal component of the device velocity in meters
 per second.

 When encoding floating-point numbers half-precision should not be
 used. It usually does not provide enough precision for a geographic
 location. It is not a requirement that the receiver of an EAT
 implement half-precision, so the receiver may not be able to decode
 the location.

 The location may have been cached for a period of time before token
 creation. For example, it might have been minutes or hours or more
 since the last contact with a GPS satellite. Either the timestamp or
 age data item can be used to quantify the cached period. The
 timestamp data item is preferred as it a non-relative time.

Lundblade, et al. Expires April 26, 2022 [Page 22]

Internet-Draft EAT October 2021

 The age data item can be used when the entity doesn’t know what time
 it is either because it doesn’t have a clock or it isn’t set. The
 entity must still have a "ticker" that can measure a time interval.
 The age is the interval between acquisition of the location data and
 token creation.

 See location-related privacy considerations in Section 10.2 below.

 $$claims-set-claims //= (location-label => location-type)

 location-type = {
 latitude => number,
 longitude => number,
 ? altitude => number,
 ? accuracy => number,
 ? altitude-accuracy => number,
 ? heading => number,
 ? speed => number,
 ? timestamp => ˜time-int,
 ? age => uint
 }

 latitude = 1 / "latitude"
 longitude = 2 / "longitude"
 altitude = 3 / "altitude"
 accuracy = 4 / "accuracy"
 altitude-accuracy = 5 / "altitude-accuracy"
 heading = 6 / "heading"
 speed = 7 / "speed"
 timestamp = 8 / "timestamp"
 age = 9 / "age"

3.15. The Uptime Claim (uptime)

 The "uptime" claim contains a value that represents the number of
 seconds that have elapsed since the entity or submod was last booted.

 $$claims-set-claims //= (uptime-label => uint)

3.16. The Boot Seed Claim (boot-seed)

 The Boot Seed claim is a random value created at system boot time
 that will allow differentiation of reports from different boot
 sessions. This value is usually public and not protected. It is not
 the same as a seed for a random number generator which must be kept
 secret.

Lundblade, et al. Expires April 26, 2022 [Page 23]

Internet-Draft EAT October 2021

 $$claims-set-claims //= (boot-seed-label => bytes)

3.17. The Intended Use Claim (intended-use)

 EAT’s may be used in the context of several different applications.
 The intended-use claim provides an indication to an EAT consumer
 about the intended usage of the token. This claim can be used as a
 way for an application using EAT to internally distinguish between
 different ways it uses EAT.

 1 - Generic Generic attestation describes an application where the
 EAT consumer requres the most up-to-date security assessment of
 the attesting entity. It is expected that this is the most
 commonly-used application of EAT.

 2- Registration Entities that are registering for a new service may
 be expected to provide an attestation as part of the registration
 process. This intended-use setting indicates that the attestation
 is not intended for any use but registration.

 3 - Provisioning Entities may be provisioned with different values
 or settings by an EAT consumer. Examples include key material or
 device management trees. The consumer may require an EAT to
 assess device security state of the entity prior to provisioning.

 4 - Certificate Issuance (Certificate Signing Request) Certifying
 authorities (CA’s) may require attestations prior to the issuance
 of certificates related to keypairs hosted at the entity. An EAT
 may be used as part of the certificate signing request (CSR).

 5 - Proof-of-Possession An EAT consumer may require an attestation
 as part of an accompanying proof-of-possession (PoP) appication.
 More precisely, a PoP transaction is intended to provide to the
 recipient cryptographically-verifiable proof that the sender has
 posession of a key. This kind of attestation may be neceesary to
 verify the security state of the entity storing the private key
 used in a PoP application.

Lundblade, et al. Expires April 26, 2022 [Page 24]

Internet-Draft EAT October 2021

 $$claims-set-claims //= (
 intended-use-label =>
 intended-use-cbor-type / intended-use-json-type
)

 intended-use-cbor-type = &(
 generic: 1,
 registration: 2,
 provisioning: 3,
 csr: 4,
 pop: 5
)

 intended-use-json-type =
 "generic" /
 "registration" /
 "provisioning" /
 "csr" /
 "pop"

3.18. The Profile Claim (profile)

 See Section 7 for the detailed description of a profile.

 A profile is identified by either a URL or an OID. Typically, the
 URI will reference a document describing the profile. An OID is just
 a unique identifier for the profile. It may exist anywhere in the
 OID tree. There is no requirement that the named document be
 publicly accessible. The primary purpose of the profile claim is to
 uniquely identify the profile even if it is a private profile.

 The OID is encoded in CBOR according to [CBOR.OID] and the URI
 according to [RFC8949]. Both are unwrapped and thus not tags. The
 OID is always absolute and never relative. If the claims CBOR type
 is a text string it is a URI and if a byte string it is an OID.

 Note that this named "eat_profile" for JWT and is distinct from the
 already registered "profile" claim in the JWT claims registry.

 $$claims-set-claims //= (profile-label => ˜uri / ˜oid)

 oid = #6.4000(bstr) ; TODO: Replace with CDDL from OID RFC

Lundblade, et al. Expires April 26, 2022 [Page 25]

Internet-Draft EAT October 2021

3.19. The DLOA (Digital Letter or Approval) Claim (dloas)

 A DLOA (Digital Letter of Approval) [DLOA] is an XML document that
 describes a certification that a device or entity has received.
 Examples of certifications represented by a DLOA include those issued
 by Global Platform and those based on Common Criteria. The DLOA is
 unspecific to any particular certification type or those issued by
 any particular organization.

 This claim is typically issued by a Verifier, not an Attester. When
 this claim is issued by a Verifier, it MUST be because the entity,
 device or submodule has received the certification in the DLOA.

 This claim can contain more than one DLOA. If multiple DLOAs are
 present, it MUST be because the entity, device or submodule received
 all of the certifications.

 DLOA XML documents are always fetched from a registrar that stores
 them. This claim contains several data items used to construct a URL
 for fetching the DLOA from the particular registrar.

 The first data item is a URI for the registrar. The second data item
 is a platform label to indicate the particular platform that was
 certified. For platform certifications only these two are needed.

 A DLOA may equally apply to an application. In that case it has the
 URI for the registrar, a platform label and additionally an
 application label.

 The method of combining the registrar URI, platform label and
 possibly application label is specified in [DLOA].

 $$claims-set-claims //= (
 dloas-label => [+ dloa-type]
)

 dloa-type = [
 dloa_registrar: ˜uri
 dloa_platform_label: text
 ? dloa_application_label: text
]

Lundblade, et al. Expires April 26, 2022 [Page 26]

Internet-Draft EAT October 2021

3.20. The Software Manifests Claim (manifests)

 This claim contains descriptions of software that is present on the
 device. These manifests are installed on the device when the
 software is installed or are created as part of the installation
 process. Installation is anything that adds software to the device,
 possibly factory installation, the user installing elective
 applications and so on. The defining characteristic is that they are
 created by the software manufacturer. The purpose of these claims in
 an EAT is to relay them without modification to the Verifier and/or
 the Relying Party.

 In some cases these will be signed by the software manufacturer
 independent of any signing for the purpose of EAT attestation.
 Manifest claims should include the manufacturer’s signature (which
 will be signed over by the attestation signature). In other cases
 the attestation signature will be the only one.

 This claim allows multiple formats for the manifest. For example the
 manifest may be a CBOR-format CoSWID, an XML-format SWID or other.
 Identification of the type of manifest is always by a CBOR tag. In
 many cases, for examples CoSWID, a tag will already be registered
 with IANA. If not, a tag MUST be registered. It can be in the
 first-come-first-served space which has minimal requirements for
 registration.

 The claim is an array of one or more manifests. To facilitate hand
 off of the manifest to a decoding library, each manifest is contained
 in a byte string. This occurs for CBOR-format manifests as well as
 non-CBOR format manifests.

 If a particular manifest type uses CBOR encoding, then the item in
 the array for it MUST be a byte string that contains a CBOR tag. The
 EAT decoder must decode the byte string and then the CBOR within it
 to find the tag number to identify the type of manifest. The
 contents of the byte string is then handed to the particular manifest
 processor for that type of manifest. CoSWID and SUIT manifest are
 examples of this.

 If a particular manifest type does not use CBOR encoding, then the
 item in the array for it must be a CBOR tag that contains a byte
 string. The EAT decoder uses the tag to identify the processor for
 that type of manifest. The contents of the tag, the byte string, are
 handed to the manifest processor. Note that a byte string is used to
 contain the manifest whether it is a text based format or not. An
 example of this is an XML format ISO/IEC 19770 SWID.

Lundblade, et al. Expires April 26, 2022 [Page 27]

Internet-Draft EAT October 2021

 It is not possible to describe the above requirements in CDDL so the
 type for an individual manifest is any in the CDDL below. The above
 text sets the encoding requirement.

 This claim allows for multiple manifests in one token since multiple
 software packages are likely to be present. The multiple manifests
 may be of multiple formats. In some cases EAT submodules may be used
 instead of the array structure in this claim for multiple manifests.

 When the [CoSWID] format is used, it MUST be a payload CoSWID, not an
 evidence CoSWID.

 $$claims-set-claims //= (
 manifests-label => manifests-type
)

 manifests-type = [+ $$manifest-formats]

 ; Must be a CoSWID payload type
 ; TODO: signed CoSWIDs
 coswid-that-is-a-cbor-tag-xx = tagged-coswid<concise-swid-tag>

 $$manifest-formats /= bytes .cbor coswid-that-is-a-cbor-tag-xx

 ; TODO: make this work too
 ;$$manifest-formats /= bytes .cbor SUIT_Envelope_Tagged

3.21. The Software Evidence Claim (swevidence)

 This claim contains descriptions, lists, evidence or measurements of
 the software that exists on the device. The defining characteristic
 of this claim is that its contents are created by processes on the
 device that inventory, measure or otherwise characterize the software
 on the device. The contents of this claim do not originate from the
 software manufacturer.

 In most cases the contents of this claim are signed as part of
 attestation signing, but independent signing in addition to the
 attestation signing is not ruled out when a particular evidence
 format supports it.

 This claim uses the same mechanism for identification of the type of
 the swevidence as is used for the type of the manifest in the
 manifests claim. It also uses the same byte string based mechanism
 for containing the claim and easing the hand off to a processing
 library. See the discussion above in the manifests claim.

Lundblade, et al. Expires April 26, 2022 [Page 28]

Internet-Draft EAT October 2021

 When the [CoSWID] format is used, it MUST be evidence CoSWIDs, not
 payload CoSWIDS.

 $$claims-set-claims //= (
 swevidence-label => swevidence-type
)

 swevidence-type = [+ $$swevidence-formats]

 ; Must be a CoSWID evidence type that is a CBOR tag
 ; TODO: fix the CDDL so a signed CoSWID is allowed too
 coswid-that-is-a-cbor-tag = tagged-coswid<concise-swid-tag>
 $$swevidence-formats /= bytes .cbor coswid-that-is-a-cbor-tag

3.22. The SW Measurement Results Claim (swresults)

 This claims reports the outcome of the comparison of a measurement on
 some software to the expected Reference Values. It may report a
 successful comparison, failed comparison or other.

 This claim may be generated by the Verifier and sent to the Relying
 Party. For example, it could be the results of the Verifier
 comparing the contents of the swevidence claim to Reference Values.

 This claim can also be generated on the device if the device has the
 ability for one subsystem to measure another subsystem. For example,
 a TEE might have the ability to measure the software of the rich OS
 and may have the Reference Values for the rich OS.

 Within an attestation target or submodule, multiple results can be
 reported. For example, it may be desirable to report the results for
 the kernel and each individual application separately.

 For each software objective, the following can be reported.

3.22.1. Scheme

 This is the free-form text name of the verification system or scheme
 that performed the verification. There is no official registry of
 schemes or systems. It may be the name of a commercial product or
 such.

Lundblade, et al. Expires April 26, 2022 [Page 29]

Internet-Draft EAT October 2021

3.22.2. Objective

 This roughly characterizes the coverage of the software measurement
 software. This corresponds to the attestation target or the
 submodule. If all of the indicated target is not covered, the
 measurement must indicate partial.

 1 - all Indicates all the software has been verified, for example,
 all the software in the attestation target or the submodule

 2 - firmware Indicates all of and only the firmware

 3 - kernel Refers to all of the most-privileged software, for
 example the Linux kernel

 4 - privileged Refers to all of the software used by the root,
 system or administrative account

 5 - system-libs Refers to all of the system libraries that are
 broadly shared and used by applications and such

 6 - partial Some other partial set of the software

3.22.3. Results

 This describes the result of the measurement and also the comparison
 to Reference Values.

 1 - verificaton-not-run Indicates no attempt was made to run the
 verification

 2 - verification-indeterminite The verification was attempted, but
 it did not produce a result; perhaps it ran out of memory, the
 battery died or such

 3 - verification-failed The verification ran to completion, the
 comparison was completed and did not compare correctly to the
 Reference Values

 4 - fully-verified The verification ran to completion and all
 measurements compared correctly to Reference Values

 5 - partially-verified The verification ran to completion and some,
 but not all measurements compared correctly to Reference Values

Lundblade, et al. Expires April 26, 2022 [Page 30]

Internet-Draft EAT October 2021

3.22.4. Objective Name

 This is a free-form text string that describes the objective. For
 example, "Linux kernel" or "Facebook App"

Lundblade, et al. Expires April 26, 2022 [Page 31]

Internet-Draft EAT October 2021

 $$claims-set-claims //= (swresults-label => [+ swresult-type])

 verification-result-cbor-type = &(
 verification-not-run: 1,
 verification-indeterminate: 2,
 verification-failed: 3,
 fully-verified: 4,
 partially-verified: 5,
)

 verification-result-json-type =
 "verification-not-run" /
 "verification-indeterminate" /
 "verification-failed" /
 "fully-verified" /
 "partially-verified"

 verification-objective-cbor-type = &(
 all: 1,
 firmware: 2,
 kernel: 3,
 privileged: 4,
 system-libs: 5,
 partial: 6,
)

 verification-objective-json-type =
 "all" /
 "firmware" /
 "kernel" /
 "privileged" /
 "system-libs" /
 "partial"

 swresult-type = [
 verification-system: tstr,
 objective: verification-objective-cbor-type /
 verification-objective-json-type,
 result: verification-result-cbor-type /
 verification-result-json-type,
 ? objective-name: tstr
]

Lundblade, et al. Expires April 26, 2022 [Page 32]

Internet-Draft EAT October 2021

3.23. Submodules (submods)

 Some devices are complex, having many subsystems. A mobile phone is
 a good example. It may have several connectivity subsystems for
 communications (e.g., Wi-Fi and cellular). It may have subsystems
 for low-power audio and video playback. It may have one or more
 security-oriented subsystems like a TEE or a Secure Element.

 The claims for a subsystem can be grouped together in a submodule or
 submod.

 The submods are in a single map/object, one entry per submodule.
 There is only one submods map/object in a token. It is identified by
 its specific label. It is a peer to other claims, but it is not
 called a claim because it is a container for a claims set rather than
 an individual claim. This submods part of a token allows what might
 be called recursion. It allows claims sets inside of claims sets
 inside of claims sets...

3.23.1. Submodule Types

 The following sections define the three major types of submodules:

 o A submodule Claims-Set

 o A nested token, which can be any valid EAT token, CBOR or JSON

 o The digest of a detached Claims-Set

 These are distinguished primarily by their data type which may be a
 map/object, string or array.

3.23.1.1. Submodule Claims-Set

 This is simply a subordinate Claims-Set containing claims about the
 submodule.

 The submodule claims-set is produced by the same Attester as the
 surrounding token. It is secured using the same mechanism as the
 enclosing token (e.g., it is signed by the same attestation key). It
 roughly corresponds to an Attester Target Environment as described in
 the RATS architecture.

 It may contain claims that are the same as its surrounding token or
 superior submodules. For example, the top-level of the token may
 have a UEID, a submod may have a different UEID and a further
 subordinate submodule may also have a UEID.

Lundblade, et al. Expires April 26, 2022 [Page 33]

Internet-Draft EAT October 2021

 The encoding of a submodule Claims-Set is always the same as the
 encoding as the token it is part of.

 This data type for this type of submodule is a map/object as that is
 the type of a Claims-Set.

3.23.1.2. Nested Token

 This type of submodule is a fully formed complete token. It is
 typically produced by a separate Attester. It is typically used by a
 Composite Device as described in RATS Architecture
 [RATS.Architecture]

 In being a submodule of the surrounding token, it is
 cryptographically bound to the surrounding token. If it was conveyed
 in parallel with the surrounding token, there would be no such
 binding and attackers could substitute a good attestation from
 another device for the attestation of an errant subsystem.

 A nested token does NOT need to use the same encoding as the
 enclosing token. This is to allow Composite Devices to be built
 without regards to the encoding supported by their Attesters.

 Thus a CBOR-encoded token like a CWT or UCCS can have a JWT as a
 nested token submodule and a JSON-encoded token can have a CWT or
 UCCS as a nested token submodule.

 The data type for this type of submodule is either a text or byte
 string.

 Mechanisms are defined for identifying the encoding and type of the
 nested token. These mechanisms are different for CBOR and JSON
 encoding. The type of a CBOR-encoded nested token is identified
 using the CBOR tagging mechanism and thus is in common with
 identification used when any CBOR-encoded token is part of a CBOR-
 based protocol. A new simple type mechanism is defined for
 indication of the type of a JSON-encoded token since there is no JSON
 equivalent of tagging.

3.23.1.2.1. Surrounding EAT is CBOR-Encoded

 If the submodule is a byte string, then the nested token is CBOR-
 encoded. The byte string always wraps a token that is a tag. The
 tag identifies whether the nested token is a CWT, a UCCS or a CBOR-
 encoded DEB.

 If the submodule is a text string, then the nested token is JSON-
 encoded. The text string contains JSON. That JSON is the exactly

Lundblade, et al. Expires April 26, 2022 [Page 34]

Internet-Draft EAT October 2021

 the JSON described in the next section with one exception. The token
 can’t be CBOR-encoded.

 ; This specifies how one fully-formed token is nested inside a
 ; CBOR-format token. The fully-formed nested token is any valid
 ; token, CBOR or JSON (JWT, CWT, UCCS, DEB...) The mechanism for
 ; identifying the type of the nested token is specific to the format
 ; of the surrounding token, CBOR in this case.
 ;
 ; A primary reason this is encoding-specific is that JSON does not
 ; have an equivalent to CBOR tags.
 ;
 ; If the data type here is text, then the nested token is JSON
 ; format, one of a JWT, UJCS or JSON-encoded DEB. The means for
 ; distinguishing which is in the definition of JSON-encoded
 ; Nested-Token. If the data type is bstr, then the nested token
 ; is CBOR format. It is byte-string wrapped and identified by a
 ;CBOR tag.

 Nested-Token =
 tstr / ; A JSON-encoded Nested-Token (see json-nested-token.cddl)
 bstr .cbor Tagged-CBOR-Token

3.23.1.2.2. Surrounding EAT is JSON-Encoded

 A nested token in a JSON-encoded token is an array of two items. The
 first is a string that indicates the type of the second item as
 follows:

 "JWT" A JWT formatted according to [RFC7519]

 "CBOR" Some base64url-encoded CBOR that is a tag that is either a
 CWT, UCCS or CBOR-encoded DEB

 "UJCS" A UJCS-Message. (A UJCS-Message is identical to a JSON-
 encoded Claims-Set)

 "DEB" A JSON-encoded Detached EAT Bundle.

Lundblade, et al. Expires April 26, 2022 [Page 35]

Internet-Draft EAT October 2021

 ; This describes a nested token that occurs inside a JSON-encoded
 ; token. It uses an array that is made up of a type indicator and the
 ; actual token. This is a substitute for the CBOR tag mechanism that
 ; JSON does not have.

 Nested-Token = [
 type : "JWT" / "CBOR" / "UJCS" / "DEB",
 nested-token : JWT-Message /
 B64URL-Tagged-CBOR-Token /
 DEB-JSON-Message /
 UJCS-Message
]

 ; This text is a Tagged-CBOR-Token (see cbor-token.cddl) that is
 ; base64url encoded. For example, it is a CWT that is a COSE_Sign1
 ; that is a CBOR tag that has been base64url encoded.

 B64URL-Tagged-CBOR-Token = tstr .regexp "[A-Za-z0-9_=-]+"

3.23.1.3. Detached Submodule Digest

 This is type of submodule equivalent to a Claims-Set submodule,
 except the Claims-Set is conveyed separately outside of the token.

 This type of submodule consists of a digest made using a
 cryptographic hash of a Claims-Set. The Claims-Set is not included
 in the token. It is conveyed to the Verifier outside of the token.
 The submodule containing the digest is called a detached digest. The
 separately conveyed Claims-Set is called a detached claims set.

 The input to the digest is exactly the byte-string wrapped encoded
 form of the Claims-Set for the submodule. That Claims-Set can
 include other submodules including nested tokens and detached
 digests.

 The primary use for this is to facilitate the implementation of a
 small and secure attester, perhaps purely in hardware. This small,
 secure attester implements COSE signing and only a few claims,
 perhaps just UEID and hardware identification. It has inputs for
 digests of submodules, perhaps 32-byte hardware registers. Software
 running on the device constructs larger claim sets, perhaps very
 large, encodes them and digests them. The digests are written into
 the small secure attesters registers. The EAT produced by the small
 secure attester only contains the UEID, hardware identification and
 digests and is thus simple enough to be implemented in hardware.
 Probably, every data item in it is of fixed length.

Lundblade, et al. Expires April 26, 2022 [Page 36]

Internet-Draft EAT October 2021

 The integrity protection for the larger Claims Sets will not be as
 secure as those originating in hardware block, but the key material
 and hardware-based claims will be. It is possible for the hardware
 to enforce hardware access control (memory protection) on the digest
 registers so that some of the larger claims can be more secure. For
 example, one register may be writable only by the TEE, so the
 detached claims from the TEE will have TEE-level security.

 The data type for this type of submodule is an array It contains two
 data items, an algorithm identifier and a byte string containing the
 digest.

 A DEB, described in Section 5, may be used to convey detached claims
 sets and the token with their detached digests. EAT, however,
 doesn’t require use of a DEB. Any other protocols may be used to
 convey detached claims sets and the token with their detached
 digests. Note that since detached Claims-Sets are usually signed,
 protocols conveying them must make sure they are not modified in
 transit.

3.23.2. No Inheritance

 The subordinate modules do not inherit anything from the containing
 token. The subordinate modules must explicitly include all of their
 claims. This is the case even for claims like the nonce.

 This rule is in place for simplicity. It avoids complex inheritance
 rules that might vary from one type of claim to another.

3.23.3. Security Levels

 The security level of the non-token subordinate modules should always
 be less than or equal to that of the containing modules in the case
 of non-token submodules. It makes no sense for a module of lesser
 security to be signing claims of a module of higher security. An
 example of this is a TEE signing claims made by the non-TEE parts
 (e.g. the high-level OS) of the device.

 The opposite may be true for the nested tokens. They usually have
 their own more secure key material. An example of this is an
 embedded secure element.

3.23.4. Submodule Names

 The label or name for each submodule in the submods map is a text
 string naming the submodule. No submodules may have the same name.

Lundblade, et al. Expires April 26, 2022 [Page 37]

Internet-Draft EAT October 2021

3.23.5. CDDL for submods

 ; This is the part of a token that contains all the submodules. It
 ; is a peer with the claims in the token, but not a claim, only a
 ; map/object to hold all the submodules.

 $$claims-set-claims //= (submods-label => { + text => Submodule })

 ; A submodule can be:
 ; - A simple Claims-Set (encoded in the same format as the token)
 ; - A digest of a detached Claims-Set (encoded in the same format as
 ; the token)
 ; - A nested token which may be either CBOR or JSON format. Further,
 ; the mechanism for identifying and containing the nested token
 ; depends on the format of the surrounding token, particularly
 ; because JSON doesn’t have any equivalent of a CBOR tag so a
 ; JSON-specific mechanism is invented. Also, there is the issue
 ; that binary data must be B64 encoded when carried in
 ; JSON. Nested-Token is defined in the format specific CDDL, not
 ; here.

 ; Note that at nested token can either be a signed token like a CWT
 ; or JWT, an unsigned token like a UCCS or UJCS, or a DEB (detached
 ; EAT bundle). The specific encoding of these is format-specific
 ; so it doesn’t appear here.

 Submodule = Claims-Set / Nested-Token / Detached-Submodule-Digest

 ; This is for both JSON and CBOR. JSON uses text label for
 ; algorithm from JOSE registry. CBOR uses integer label for
 ; algorithm from COSE registry. In JSON the digest is base64
 ; encoded.

 Detached-Submodule-Digest = [
 algorithm : int / text,
 digest : bstr
]

4. Unprotected JWT Claims-Sets

 This is simply the JSON equivalent of an Unprotected CWT Claims-Set
 [UCCS.Draft].

Lundblade, et al. Expires April 26, 2022 [Page 38]

Internet-Draft EAT October 2021

 It has no protection of its own so protections must be provided by
 the protocol carrying it. These are extensively discussed in
 [UCCS.Draft]. All the security discussion and security
 considerations in [UCCS.Draft] apply to UJCS.

 (Note: The EAT author is open to this definition being moved into the
 UCCS draft, perhaps along with the related CDDL. It is place here
 for now so that the current UCCS draft plus this document are
 complete. UJCS is needed for the same use cases that a UCCS is
 needed. Further, JSON will commonly be used to convey Attestation
 Results since JSON is common for server to server communications.
 Server to server communications will often have established security
 (e.g., TLS) therefore the signing and encryption from JWS and JWE are
 unnecssary and burdensome).

5. Detached EAT Bundles

 A detached EAT bundle is a structure to convey a fully-formed and
 signed token plus detached claims set that relate to that token. It
 is a top-level EAT message like a CWT, JWT, UCCS and UJCS. It can be
 used any place that CWT, JWT, UCCS or UJCS messages are used. It may
 also be sent as a submodule.

 A DEB has two main parts.

 The first part is a full top-level token. This top-level token must
 have at least one submodule that is a detached digest. This top-
 level token may be either CBOR or JSON-encoded. It may be a CWT,
 JWT, UCCS or UJCS, but not a DEB. The same mechanism for
 distinguishing the type for nested token submodules is used here.

 The second part is a map/object containing the detached Claims-Sets
 corresponding to the detached digests in the full token. When the
 DEB is CBOR-encoded, each Claims-Set is wrapped in a byte string.
 When the DEB is JSON-encoded, each Claims-Set is base64url encoded.
 All the detached Claims-Sets MUST be encoded in the same format as
 the DEB. No mixing of encoding formats is allowed for the Claims-
 Sets in a DEB.

 For CBOR-encoded DEBs, tag TBD602 can be used to identify it. The
 normal rules apply for use or non-use of a tag. When it is sent as a
 submodule, it is always sent as a tag to distinguish it from the
 other types of nested tokens.

 The digests of the detached claims sets are associated with detached
 claims-sets by label/name. It is up to the constructor of the
 detached EAT bundle to ensure the names uniquely identify the

Lundblade, et al. Expires April 26, 2022 [Page 39]

Internet-Draft EAT October 2021

 detached claims sets. Since the names are used only in the detached
 EAT bundle, they can be very short, perhaps one byte.

 ; Top-level definition of a DEB for CBOR and JSON

 Detached-EAT-Bundle = [
 main-token : Nested-Token,
 detached-claims-sets: {
 + tstr => cbor-wrapped-claims-set / json-wrapped-claims-set
 }
]

 ; text content is a base64url encoded JSON-format Claims-Set

 json-wrapped-claims-set = tstr .regexp "[A-Za-z0-9_=-]+"

 cbor-wrapped-claims-set = bstr .cbor Claims-Set

6. Endorsements and Verification Keys

 The Verifier must possess the correct key when it performs the
 cryptographic part of an EAT verification (e.g., verifying the COSE/
 JOSE signature). This section describes several ways to identify the
 verification key. There is not one standard method.

 The verification key itself may be a public key, a symmetric key or
 something complicated in the case of a scheme like Direct Anonymous
 Attestation (DAA).

 RATS Architecture [RATS.Architecture] describes what is called an
 Endorsement. This is an input to the Verifier that is usually the
 basis of the trust placed in an EAT and the Attester that generated
 it. It may contain the public key for verification of the signature
 on the EAT. It may contain Reference Values to which EAT claims are
 compared as part of the verification process. It may contain implied
 claims, those that are passed on to the Relying Party in Attestation
 Results.

 There is not yet any standard format(s) for an Endorsement. One
 format that may be used for an Endorsement is an X.509 certificate.
 Endorsement data like Reference Values and implied claims can be
 carried in X.509 v3 extensions. In this use, the public key in the
 X.509 certificate becomes the verification key, so identification of
 the Endorsement is also identification of the verification key.

Lundblade, et al. Expires April 26, 2022 [Page 40]

Internet-Draft EAT October 2021

 The verification key identification and establishment of trust in the
 EAT and the attester may also be by some other means than an
 Endorsement.

 For the components (Attester, Verifier, Relying Party,...) of a
 particular end-end attestation system to reliably interoperate, its
 definition should specify how the verification key is identified.
 Usually, this will be in the profile document for a particular
 attestation system.

6.1. Identification Methods

 Following is a list of possible methods of key identification. A
 specific attestation system may employ any one of these or one not
 listed here.

 The following assumes Endorsements are X.509 certificates or
 equivalent and thus does not mention or define any identifier for
 Endorsements in other formats. If such an Endorsement format is
 created, new identifiers for them will also need to be created.

6.1.1. COSE/JWS Key ID

 The COSE standard header parameter for Key ID (kid) may be used. See
 [RFC8152] and [RFC7515]

 COSE leaves the semantics of the key ID open-ended. It could be a
 record locator in a database, a hash of a public key, an input to a
 KDF, an authority key identifier (AKI) for an X.509 certificate or
 other. The profile document should specify what the key ID’s
 semantics are.

6.1.2. JWS and COSE X.509 Header Parameters

 COSE X.509 [COSE.X509.Draft] and JSON Web Siganture [RFC7515] define
 several header parameters (x5t, x5u,...) for referencing or carrying
 X.509 certificates any of which may be used.

 The X.509 certificate may be an Endorsement and thus carrying
 additional input to the Verifier. It may be just an X.509
 certificate, not an Endorsement. The same header parameters are used
 in both cases. It is up to the attestation system design and the
 Verifier to determine which.

Lundblade, et al. Expires April 26, 2022 [Page 41]

Internet-Draft EAT October 2021

6.1.3. CBOR Certificate COSE Header Parameters

 Compressed X.509 and CBOR Native certificates are defined by CBOR
 Certificates [CBOR.Cert.Draft]. These are semantically compatible
 with X.509 and therefore can be used as an equivalent to X.509 as
 described above.

 These are identified by their own header parameters (c5t, c5u,...).

6.1.4. Claim-Based Key Identification

 For some attestation systems, a claim may be re-used as a key
 identifier. For example, the UEID uniquely identifies the device and
 therefore can work well as a key identifier or Endorsement
 identifier.

 This has the advantage that key identification requires no additional
 bytes in the EAT and makes the EAT smaller.

 This has the disadvantage that the unverified EAT must be
 substantially decoded to obtain the identifier since the identifier
 is in the COSE/JOSE payload, not in the headers.

6.2. Other Considerations

 In all cases there must be some way that the verification key is
 itself verified or determined to be trustworthy. The key
 identification itself is never enough. This will always be by some
 out-of-band mechanism that is not described here. For example, the
 Verifier may be configured with a root certificate or a master key by
 the Verifier system administrator.

 Often an X.509 certificate or an Endorsement carries more than just
 the verification key. For example, an X.509 certificate might have
 key usage constraints and an Endorsement might have Reference Values.
 When this is the case, the key identifier must be either a protected
 header or in the payload such that it is cryptographically bound to
 the EAT. This is in line with the requirements in section 6 on Key
 Identification in JSON Web Signature [RFC7515].

7. Profiles

 This EAT specification does not gaurantee that implementations of it
 will interoperate. The variability in this specification is
 necessary to accommodate the widely varying use cases. An EAT
 profile narrows the specification for a specific use case. An ideal
 EAT profile will guarantee interoperability.

Lundblade, et al. Expires April 26, 2022 [Page 42]

Internet-Draft EAT October 2021

 The profile can be named in the token using the profile claim
 described in Section 3.18.

 A profile can apply to Attestation Evidence or to Attestation Results
 or both.

7.1. Format of a Profile Document

 A profile document doesn’t have to be in any particular format. It
 may be simple text, something more formal or a combination.

 In some cases CDDL may be created that replaces CDDL in this or other
 document to express some profile requirements. For example, to
 require the altitude data item in the location claim, CDDL can be
 written that replicates the location claim with the altitude no
 longer optional.

7.2. List of Profile Issues

 The following is a list of EAT, CWT, UCCS, JWS, UJCS, COSE, JOSE and
 CBOR options that a profile should address.

7.2.1. Use of JSON, CBOR or both

 The profile should indicate whether the token format should be CBOR,
 JSON, both or even some other encoding. If some other encoding, a
 specification for how the CDDL described here is serialized in that
 encoding is necessary.

 This should be addressed for the top-level token and for any nested
 tokens. For example, a profile might require all nested tokens to be
 of the same encoding of the top level token.

7.2.2. CBOR Map and Array Encoding

 The profile should indicate whether definite-length arrays/maps,
 indefinite-length arrays/maps or both are allowed. A good default is
 to allow only definite-length arrays/maps.

 An alternate is to allow both definite and indefinite-length arrays/
 maps. The decoder should accept either. Encoders that need to fit
 on very small hardware or be actually implement in hardware can use
 indefinite-length encoding.

 This applies to individual EAT claims, CWT and COSE parts of the
 implementation.

Lundblade, et al. Expires April 26, 2022 [Page 43]

Internet-Draft EAT October 2021

7.2.3. CBOR String Encoding

 The profile should indicate whether definite-length strings,
 indefinite-length strings or both are allowed. A good default is to
 allow only definite-length strings. As with map and array encoding,
 allowing indefinite-length strings can be beneficial for some smaller
 implementations.

7.2.4. CBOR Preferred Serialization

 The profile should indicate whether encoders must use preferred
 serialization. The profile should indicate whether decoders must
 accept non-preferred serialization.

7.2.5. COSE/JOSE Protection

 COSE and JOSE have several options for signed, MACed and encrypted
 messages. EAT/CWT has the option to have no protection using UCCS
 and JOSE has a NULL protection option. It is possible to implement
 no protection, sign only, MAC only, sign then encrypt and so on. All
 combinations allowed by COSE, JOSE, JWT, CWT, UCCS and UJCS are
 allowed by EAT.

 The profile should list the protections that must be supported by all
 decoders implementing the profile. The encoders them must implement
 a subset of what is listed for the decoders, perhaps only one.

 Implementations may choose to sign or MAC before encryption so that
 the implementation layer doing the signing or MACing can be the
 smallest. It is often easier to make smaller implementations more
 secure, perhaps even implementing in solely in hardware. The key
 material for a signature or MAC is a private key, while for
 encryption it is likely to be a public key. The key for encryption
 requires less protection.

7.2.6. COSE/JOSE Algorithms

 The profile document should list the COSE algorithms that a Verifier
 must implement. The Attester will select one of them. Since there
 is no negotiation, the Verifier should implement all algorithms
 listed in the profile. If detached submodules are used, the COSE
 algorithms allowed for their digests should also be in the profile.

7.2.7. DEB Support

 A Detatched EAT Bundle Section 5 is a special case message that will
 not often be used. A profile may prohibit its use.

Lundblade, et al. Expires April 26, 2022 [Page 44]

Internet-Draft EAT October 2021

7.2.8. Verification Key Identification

 Section Section 6 describes a number of methods for identifying a
 verification key. The profile document should specify one of these
 or one that is not described. The ones described in this document
 are only roughly described. The profile document should go into the
 full detail.

7.2.9. Endorsement Identification

 Similar to, or perhaps the same as Verification Key Identification,
 the profile may wish to specify how Endorsements are to be
 identified. However note that Endorsement Identification is
 optional, where as key identification is not.

7.2.10. Freshness

 Just about every use case will require some means of knowing the EAT
 is recent enough and not a replay of an old token. The profile
 should describe how freshness is achieved. The section on Freshness
 in [RATS.Architecture] describes some of the possible solutions to
 achieve this.

7.2.11. Required Claims

 The profile can list claims whose absence results in Verification
 failure.

7.2.12. Prohibited Claims

 The profile can list claims whose presence results in Verification
 failure.

7.2.13. Additional Claims

 The profile may describe entirely new claims. These claims can be
 required or optional.

7.2.14. Refined Claim Definition

 The profile may lock down optional aspects of individual claims. For
 example, it may require altitude in the location claim, or it may
 require that HW Versions always be described using EAN-13.

Lundblade, et al. Expires April 26, 2022 [Page 45]

Internet-Draft EAT October 2021

7.2.15. CBOR Tags

 The profile should specify whether the token should be a CWT Tag or
 not. Similarly, the profile should specify whether the token should
 be a UCCS tag or not.

 When COSE protection is used, the profile should specify whether COSE
 tags are used or not. Note that RFC 8392 requires COSE tags be used
 in a CWT tag.

 Often a tag is unncessary because the surrounding or carrying
 protocol identifies the object as an EAT.

7.2.16. Manifests and Software Evidence Claims

 The profile should specify which formats are allowed for the
 manifests and software evidence claims. The profile may also go on
 to say which parts and options of these formats are used, allowed and
 prohibited.

8. Encoding and Collected CDDL

 An EAT is fundamentally defined using CDDL. This document specifies
 how to encode the CDDL in CBOR or JSON. Since CBOR can express some
 things that JSON can’t (e.g., tags) or that are expressed differently
 (e.g., labels) there is some CDDL that is specific to the encoding
 format.

8.1. Claims-Set and CDDL for CWT and JWT

 CDDL was not used to define CWT or JWT. It was not available at the
 time.

 This document defines CDDL for both CWT and JWT as well as UCCS.
 This document does not change the encoding or semantics of anything
 in a CWT or JWT.

 A Claims-Set is the central data structure for EAT, CWT, JWT and
 UCCS. It holds all the claims and is the structure that is secured
 by signing or other means. It is not possible to define EAT, CWT,
 JWT or UCCS in CDDL without it. The CDDL definition of Claims-Set
 here is applicable to EAT, CWT, JWT and UCCS.

 This document specifies how to encode a Claims-Set in CBOR or JSON.

 With the exception of nested tokens and some other externally defined
 structures (e.g., SWIDs) an entire Claims-Set must be in encoded in
 either CBOR or JSON, never a mixture.

Lundblade, et al. Expires April 26, 2022 [Page 46]

Internet-Draft EAT October 2021

 CDDL for the seven claims defined by [RFC8392] and [RFC7519] is
 included here.

8.2. Encoding Data Types

 This makes use of the types defined in [RFC8610] Appendix D, Standard
 Prelude.

8.2.1. Common Data Types

 time-int is identical to the epoch-based time, but disallows
 floating-point representation.

 Unless expliclity indicated, URIs are not the URI tag defined in
 [RFC8949]. They are just text strings that contain a URI.

 string-or-uri = tstr

 time-int = #6.1(int)

8.2.2. JSON Interoperability

 JSON should be encoded per [RFC8610] Appendix E. In addition, the
 following CDDL types are encoded in JSON as follows:

 o bstr - must be base64url encoded

 o time - must be encoded as NumericDate as described section 2 of
 [RFC7519].

 o string-or-uri - must be encoded as StringOrURI as described
 section 2 of [RFC7519].

 o uri - must be a URI [RFC3986].

 o oid - encoded as a string using the well established dotted-
 decimal notation (e.g., the text "1.2.250.1").

8.2.3. Labels

 Map labels, including Claims-Keys and Claim-Names, and enumerated-
 type values are always integers when encoding in CBOR and strings
 when encoding in JSON. There is an exception to this for naming
 submodules and detached claims sets in a DEB. These are strings in
 CBOR.

 The CDDL in most cases gives both the integer label and the string
 label as it is not convenient to have conditional CDDL for such.

Lundblade, et al. Expires April 26, 2022 [Page 47]

Internet-Draft EAT October 2021

8.3. CBOR Interoperability

 CBOR allows data items to be serialized in more than one form. If
 the sender uses a form that the receiver can’t decode, there will not
 be interoperability.

 This specification gives no blanket requirements to narrow CBOR
 serialization for all uses of EAT. This allows individual uses to
 tailor serialization to the environment. It also may result in EAT
 implementations that don’t interoperate.

 One way to guarantee interoperability is to clearly specify CBOR
 serialization in a profile document. See Section 7 for a list of
 serialization issues that should be addressed.

 EAT will be commonly used where the device generating the attestation
 is constrained and the receiver/Verifier of the attestation is a
 capacious server. Following is a set of serialization requirements
 that work well for that use case and are guaranteed to interoperate.
 Use of this serialization is recommended where possible, but not
 required. An EAT profile may just reference the following section
 rather than spell out serialization details.

8.3.1. EAT Constrained Device Serialization

 o Preferred serialization described in section 4.1 of [RFC8949] is
 not required. The EAT decoder must accept all forms of number
 serialization. The EAT encoder may use any form it wishes.

 o The EAT decoder must accept indefinite length arrays and maps as
 described in section 3.2.2 of [RFC8949]. The EAT encoder may use
 indefinite length arrays and maps if it wishes.

 o The EAT decoder must accept indefinite length strings as described
 in section 3.2.3 of [RFC8949]. The EAT encoder may use indefinite
 length strings if it wishes.

 o Sorting of maps by key is not required. The EAT decoder must not
 rely on sorting.

 o Deterministic encoding described in Section 4.2 of [RFC8949] is
 not required.

 o Basic validity described in section 5.3.1 of [RFC8949] must be
 followed. The EAT encoder must not send duplicate map keys/labels
 or invalid UTF-8 strings.

Lundblade, et al. Expires April 26, 2022 [Page 48]

Internet-Draft EAT October 2021

8.4. Collected Common CDDL

 ; This is the fundamental definition of a Claims-Set for both CBOR
 ; and JSON. It is a set of label-value pairs each of which is a
 ; claim.
 ;
 ; In CBOR the labels can be integers or strings with a strong
 ; preference for integers. For JSON, the labels are always strings.
 ;
 ; The values can be anything, with some consideration for types that
 ; can work in both CBOR and JSON.

 Claims-Set = {
 * $$claims-set-claims,
 * Claim-Label .feature "extended-label" => any
 }

 Claim-Label = int / text
 string-or-uri = tstr

 time-int = #6.1(int)
 ; This is CDDL for the 7 individual claims that are defined in CWT
 ; and JWT. This CDDL works for either CBOR format CWT or JSON format
 ; JWT The integer format CWT Claim Keys (the labels) are defined in
 ; cwt-labels.cddl. The string format JWT Claim Names (the labels)
 ; are defined in jwt-labels.cddl.

 ; $$claims-set-claims is defined in claims-set.cddl

 $$claims-set-claims //= (iss-label => text)
 $$claims-set-claims //= (sub-label => text)
 $$claims-set-claims //= (aud-label => text)
 $$claims-set-claims //= (exp-label => ˜time)
 $$claims-set-claims //= (nbf-label => ˜time)
 $$claims-set-claims //= (iat-label => ˜time)

 ; TODO: how does the bstr get handled in JSON validation with the
 ; cddl tool? TODO: should this be a text for JSON?
 ; $$claims-set-claims //= (cti-label : bytes)
 $$claims-set-claims //=
 (nonce-label => nonce-type / [2* nonce-type])

 nonce-type = bstr .size (8..64)

 $$claims-set-claims //= (ueid-label => ueid-type)

 ueid-type = bstr .size (7..33)
 $$claims-set-claims //= (sueids-label => sueids-type)

Lundblade, et al. Expires April 26, 2022 [Page 49]

Internet-Draft EAT October 2021

 sueids-type = {
 + tstr => ueid-type
 }

 oemid-pen = int

 oemid-ieee = bstr .size 3

 oemid-random = bstr .size 16

 $$claims-set-claims //= (
 oemid-label =>
 oemid-random / oemid-ieee / oemid-pen
)
 $$claims-set-claims //= (
 chip-version-label => hw-version-type
)

 $$claims-set-claims //= (
 board-version-label => hw-version-type
)

 $$claims-set-claims //= (
 device-version-label => hw-version-type
)

 hw-version-type = [
 version: tstr,
 scheme: $version-scheme
]
 $$claims-set-claims //= (sw-name-label => tstr)

 $$claims-set-claims //= (
 security-level-label =>
 security-level-cbor-type /
 security-level-json-type
)

 security-level-cbor-type = &(
 unrestricted: 1,
 restricted: 2,
 secure-restricted: 3,
 hardware: 4
)

 security-level-json-type =
 "unrestricted" /

Lundblade, et al. Expires April 26, 2022 [Page 50]

Internet-Draft EAT October 2021

 "restricted" /
 "secure-restricted" /
 "hardware"
 $$claims-set-claims //= (secure-boot-label => bool)
 $$claims-set-claims //= (
 debug-status-label =>
 debug-status-cbor-type / debug-status-json-type
)

 debug-status-cbor-type = &(
 enabled: 0,
 disabled: 1,
 disabled-since-boot: 2,
 disabled-permanently: 3,
 disabled-fully-and-permanently: 4
)

 debug-status-json-type =
 "enabled" /
 "disabled" /
 "disabled-since-boot" /
 "disabled-permanently" /
 "disabled-fully-and-permanently"
 $$claims-set-claims //= (location-label => location-type)

 location-type = {
 latitude => number,
 longitude => number,
 ? altitude => number,
 ? accuracy => number,
 ? altitude-accuracy => number,
 ? heading => number,
 ? speed => number,
 ? timestamp => ˜time-int,
 ? age => uint
 }

 latitude = 1 / "latitude"
 longitude = 2 / "longitude"
 altitude = 3 / "altitude"
 accuracy = 4 / "accuracy"
 altitude-accuracy = 5 / "altitude-accuracy"
 heading = 6 / "heading"
 speed = 7 / "speed"
 timestamp = 8 / "timestamp"
 age = 9 / "age"

 $$claims-set-claims //= (uptime-label => uint)

Lundblade, et al. Expires April 26, 2022 [Page 51]

Internet-Draft EAT October 2021

 $$claims-set-claims //= (boot-seed-label => bytes)
 $$claims-set-claims //= (
 intended-use-label =>
 intended-use-cbor-type / intended-use-json-type
)

 intended-use-cbor-type = &(
 generic: 1,
 registration: 2,
 provisioning: 3,
 csr: 4,
 pop: 5
)

 intended-use-json-type =
 "generic" /
 "registration" /
 "provisioning" /
 "csr" /
 "pop"

 $$claims-set-claims //= (
 dloas-label => [+ dloa-type]
)

 dloa-type = [
 dloa_registrar: ˜uri
 dloa_platform_label: text
 ? dloa_application_label: text
]

 $$claims-set-claims //= (profile-label => ˜uri / ˜oid)

 oid = #6.4000(bstr) ; TODO: Replace with CDDL from OID RFC

 $$claims-set-claims //= (
 manifests-label => manifests-type
)

 manifests-type = [+ $$manifest-formats]

 ; Must be a CoSWID payload type
 ; TODO: signed CoSWIDs
 coswid-that-is-a-cbor-tag-xx = tagged-coswid<concise-swid-tag>

 $$manifest-formats /= bytes .cbor coswid-that-is-a-cbor-tag-xx

Lundblade, et al. Expires April 26, 2022 [Page 52]

Internet-Draft EAT October 2021

 ; TODO: make this work too
 ;$$manifest-formats /= bytes .cbor SUIT_Envelope_Tagged

 $$claims-set-claims //= (
 swevidence-label => swevidence-type
)

 swevidence-type = [+ $$swevidence-formats]

 ; Must be a CoSWID evidence type that is a CBOR tag
 ; TODO: fix the CDDL so a signed CoSWID is allowed too
 coswid-that-is-a-cbor-tag = tagged-coswid<concise-swid-tag>
 $$swevidence-formats /= bytes .cbor coswid-that-is-a-cbor-tag

 $$claims-set-claims //= (swresults-label => [+ swresult-type])

 verification-result-cbor-type = &(
 verification-not-run: 1,
 verification-indeterminate: 2,
 verification-failed: 3,
 fully-verified: 4,
 partially-verified: 5,
)

 verification-result-json-type =
 "verification-not-run" /
 "verification-indeterminate" /
 "verification-failed" /
 "fully-verified" /
 "partially-verified"

 verification-objective-cbor-type = &(
 all: 1,
 firmware: 2,
 kernel: 3,
 privileged: 4,
 system-libs: 5,
 partial: 6,
)

 verification-objective-json-type =
 "all" /
 "firmware" /
 "kernel" /
 "privileged" /
 "system-libs" /

Lundblade, et al. Expires April 26, 2022 [Page 53]

Internet-Draft EAT October 2021

 "partial"

 swresult-type = [
 verification-system: tstr,
 objective: verification-objective-cbor-type /
 verification-objective-json-type,
 result: verification-result-cbor-type /
 verification-result-json-type,
 ? objective-name: tstr
]
 ; This is the part of a token that contains all the submodules. It
 ; is a peer with the claims in the token, but not a claim, only a
 ; map/object to hold all the submodules.

 $$claims-set-claims //= (submods-label => { + text => Submodule })

 ; A submodule can be:
 ; - A simple Claims-Set (encoded in the same format as the token)
 ; - A digest of a detached Claims-Set (encoded in the same format as
 ; the token)
 ; - A nested token which may be either CBOR or JSON format. Further,
 ; the mechanism for identifying and containing the nested token
 ; depends on the format of the surrounding token, particularly
 ; because JSON doesn’t have any equivalent of a CBOR tag so a
 ; JSON-specific mechanism is invented. Also, there is the issue
 ; that binary data must be B64 encoded when carried in
 ; JSON. Nested-Token is defined in the format specific CDDL, not
 ; here.

 ; Note that at nested token can either be a signed token like a CWT
 ; or JWT, an unsigned token like a UCCS or UJCS, or a DEB (detached
 ; EAT bundle). The specific encoding of these is format-specific
 ; so it doesn’t appear here.

 Submodule = Claims-Set / Nested-Token / Detached-Submodule-Digest

 ; This is for both JSON and CBOR. JSON uses text label for
 ; algorithm from JOSE registry. CBOR uses integer label for
 ; algorithm from COSE registry. In JSON the digest is base64
 ; encoded.

 Detached-Submodule-Digest = [
 algorithm : int / text,
 digest : bstr
]

Lundblade, et al. Expires April 26, 2022 [Page 54]

Internet-Draft EAT October 2021

 ; Top-level definition of a DEB for CBOR and JSON

 Detached-EAT-Bundle = [
 main-token : Nested-Token,
 detached-claims-sets: {
 + tstr => cbor-wrapped-claims-set / json-wrapped-claims-set
 }
]

 ; text content is a base64url encoded JSON-format Claims-Set

 json-wrapped-claims-set = tstr .regexp "[A-Za-z0-9_=-]+"

 cbor-wrapped-claims-set = bstr .cbor Claims-Set

8.5. Collected CDDL for CBOR

; The top-level definition of a CBOR-encoded token.

CBOR-Token = Tagged-CBOR-Token / Untagged-CBOR-Token

; All forms of a CBOR-encoded token that are a CBOR tag.

Tagged-CBOR-Token = CWT-Tagged-Message
Tagged-CBOR-Token /= UCCS-Tagged-Message
Tagged-CBOR-Token /= DEB-Tagged-Message

; All forms of a CBOR-encoded token that are not a CBOR tag.

Untagged-CBOR-Token = CWT-Untagged-Message
Untagged-CBOR-Token /= UCCS-Untagged-Message
Untagged-CBOR-Token /= DEB-Untagged-Message

; The payload of the COSE message is always a Claims-Set

CWT-Tagged-Message = COSE_Tagged_Message
CWT-Untagged-Message = COSE_Untagged_Message

UCCS-Message = UCCS-Tagged-Message / UCCS-Untagged-Message

Lundblade, et al. Expires April 26, 2022 [Page 55]

Internet-Draft EAT October 2021

UCCS-Tagged-Message = #6.601(UCCS-Untagged-Message)

UCCS-Untagged-Message = Claims-Set

DEB-Tagged-Message = #6.602(DEB-Untagged-Message)

DEB-Untagged-Message = Detached-EAT-Bundle

; This specifies how one fully-formed token is nested inside a
; CBOR-format token. The fully-formed nested token is any valid
; token, CBOR or JSON (JWT, CWT, UCCS, DEB...) The mechanism for
; identifying the type of the nested token is specific to the format
; of the surrounding token, CBOR in this case.
;
; A primary reason this is encoding-specific is that JSON does not
; have an equivalent to CBOR tags.
;
; If the data type here is text, then the nested token is JSON
; format, one of a JWT, UJCS or JSON-encoded DEB. The means for
; distinguishing which is in the definition of JSON-encoded
; Nested-Token. If the data type is bstr, then the nested token
; is CBOR format. It is byte-string wrapped and identified by a
;CBOR tag.

Nested-Token =
 tstr / ; A JSON-encoded Nested-Token (see json-nested-token.cddl)
 bstr .cbor Tagged-CBOR-Token

; This is the CDDL definition of the labels for a CBOR format web
; token, a CWT. The CDDL for the claims is in web-token-claims.cddl

iss-label = 1
sub-label = 2
aud-label = 3
exp-label = 4
nbf-label = 5
iat-label = 6
cti-label = 7; The following Claim Keys (labels) are pre-assigned by IANA.
; They are for CBOR-based tokens (CWT and UCCS).
; They are not expected to change in the final publication as an RFC.

nonce-label = 10
ueid-label = 11
oemid-label = 13
security-level-label = 14

Lundblade, et al. Expires April 26, 2022 [Page 56]

Internet-Draft EAT October 2021

secure-boot-label = 15
debug-status-label = 16
location-label = 17
profile-label = 18
submods-label = 20

; These are not yet assigned in any way and may change.
; These are intentionally above 24 so as to not use up
; single-byte labels.

sueids-label = <TBD25>
chip-version-label = <TBD26>
board-version-label = <TBD27>
device-version-label = <TBD28>
sw-name-label = <TBD29>
sw-version-label = <TBD30>
uptime-label = <TBD31>
boot-seed-label = <TBD32>
intended-use-label = <TBD33>
dloas-label = <TBD34>
manifests-label = <TBD35>
swevidence-label = <TBD36>
swresults-label = <TBD37>

8.6. Collected CDDL for JSON

; A JWT message is either a JWS or JWE in compact serialization form
; with the payload a Claims-Set. Compact serialization is the
; protected headers, payload and signature, each b64url encoded and
; separated by a ".". This CDDL simply matches top-level syntax of of
; a JWS or JWE since it is not possible to do more in CDDL.

JWT-Message = text .regexp [A-Za-z0-9_=-]+\.[A-Za-z0-9_=-]+\.[A-Za-z0-9_=-]+

; This defines the JSON equivalent of a UCCS message, a token with
; no integrity or authenticity protection.

UJCS-Message = Claims-Set

; This describes a nested token that occurs inside a JSON-encoded
; token. It uses an array that is made up of a type indicator and the
; actual token. This is a substitute for the CBOR tag mechanism that
; JSON does not have.

Nested-Token = [
 type : "JWT" / "CBOR" / "UJCS" / "DEB",
 nested-token : JWT-Message /

Lundblade, et al. Expires April 26, 2022 [Page 57]

Internet-Draft EAT October 2021

 B64URL-Tagged-CBOR-Token /
 DEB-JSON-Message /
 UJCS-Message
]

; This text is a Tagged-CBOR-Token (see cbor-token.cddl) that is
; base64url encoded. For example, it is a CWT that is a COSE_Sign1
; that is a CBOR tag that has been base64url encoded.

B64URL-Tagged-CBOR-Token = tstr .regexp "[A-Za-z0-9_=-]+"
; This is the CDDL definition of the labels for a JSON format web
; token, a JWT. The CDDL for the claims is in web-token-claims.cddl

iss-label = "iss"
sub-label = "sub"
aud-label = "aud"
exp-label = "exp"
nbf-label = "nbf"
iat-label = "iat"
cti-label = "cti"; The following are claim names for JSON encoded tokens.

ueid-label /= "ueid"
sueids-label /= "sueids"
nonce-label /= "nonce"
oemid-label /= "oemid"
security-level-label /= "seclevel"
secure-boot-label /= "secboot"
debug-status-label /= "dbgstat"
location-label /= "location"
uptime-label /= "uptime"
profile-label /= "eat-profile"
intended-use-label /= "intuse"
boot-seed-label /= "bootseed"
submods-label /= "submods"
timestamp /= "timestamp"
manifests-label /= "manifests"
swevidence-label /= "swevidence"
dloas-label /= "dloas"
swresults-label /= "swresults"
sw-name-label /= "swname"
sw-version-label /= "swversion"

latitude /= "lat"
longitude /= "long"
altitude /= "alt"
accuracy /= "accry"
altitude-accuracy /= "alt-accry"

Lundblade, et al. Expires April 26, 2022 [Page 58]

Internet-Draft EAT October 2021

heading /= "heading"
speed /= "speed"

9. IANA Considerations

9.1. Reuse of CBOR and JSON Web Token (CWT and JWT) Claims Registries

 Claims defined for EAT are compatible with those of CWT and JWT so
 the CWT and JWT Claims Registries, [IANA.CWT.Claims] and
 [IANA.JWT.Claims], are re used. No new IANA registry is created.

 All EAT claims defined in this document are placed in both
 registries. All new EAT claims defined subsequently should be placed
 in both registries.

9.2. Claim Characteristics

 The following is design guidance for creating new EAT claims,
 particularly those to be registered with IANA.

 Much of this guidance is generic and could also be considered when
 designing new CWT or JWT claims.

9.2.1. Interoperability and Relying Party Orientation

 It is a broad goal that EATs can be processed by Relying Parties in a
 general way regardless of the type, manufacturer or technology of the
 device from which they originate. It is a goal that there be
 general-purpose verification implementations that can verify tokens
 for large numbers of use cases with special cases and configurations
 for different device types. This is a goal of interoperability of
 the semantics of claims themselves, not just of the signing, encoding
 and serialization formats.

 This is a lofty goal and difficult to achieve broadly requiring
 careful definition of claims in a technology neutral way. Sometimes
 it will be difficult to design a claim that can represent the
 semantics of data from very different device types. However, the
 goal remains even when difficult.

9.2.2. Operating System and Technology Neutral

 Claims should be defined such that they are not specific to an
 operating system. They should be applicable to multiple large high-
 level operating systems from different vendors. They should also be
 applicable to multiple small embedded operating systems from multiple
 vendors and everything in between.

Lundblade, et al. Expires April 26, 2022 [Page 59]

Internet-Draft EAT October 2021

 Claims should not be defined such that they are specific to a SW
 environment or programming language.

 Claims should not be defined such that they are specific to a chip or
 particular hardware. For example, they should not just be the
 contents of some HW status register as it is unlikely that the same
 HW status register with the same bits exists on a chip of a different
 manufacturer.

 The boot and debug state claims in this document are an example of a
 claim that has been defined in this neutral way.

9.2.3. Security Level Neutral

 Many use cases will have EATs generated by some of the most secure
 hardware and software that exists. Secure Elements and smart cards
 are examples of this. However, EAT is intended for use in low-
 security use cases the same as high-security use case. For example,
 an app on a mobile device may generate EATs on its own.

 Claims should be defined and registered on the basis of whether they
 are useful and interoperable, not based on security level. In
 particular, there should be no exclusion of claims because they are
 just used only in low-security environments.

9.2.4. Reuse of Extant Data Formats

 Where possible, claims should use already standardized data items,
 identifiers and formats. This takes advantage of the expertise put
 into creating those formats and improves interoperability.

 Often extant claims will not be defined in an encoding or
 serialization format used by EAT. It is preferred to define a CBOR
 and JSON format for them so that EAT implementations do not require a
 plethora of encoders and decoders for serialization formats.

 In some cases, it may be better to use the encoding and serialization
 as is. For example, signed X.509 certificates and CRLs can be
 carried as-is in a byte string. This retains interoperability with
 the extensive infrastructure for creating and processing X.509
 certificates and CRLs.

9.2.5. Proprietary Claims

 EAT allows the definition and use of proprietary claims.

Lundblade, et al. Expires April 26, 2022 [Page 60]

Internet-Draft EAT October 2021

 For example, a device manufacturer may generate a token with
 proprietary claims intended only for verification by a service
 offered by that device manufacturer. This is a supported use case.

 In many cases proprietary claims will be the easiest and most obvious
 way to proceed, however for better interoperability, use of general
 standardized claims is preferred.

9.3. Claims Registered by This Document

 This specification adds the following values to the "JSON Web Token
 Claims" registry established by [RFC7519] and the "CBOR Web Token
 Claims Registry" established by [RFC8392]. Each entry below is an
 addition to both registries (except for the nonce claim which is
 already registered for JWT, but not registered for CWT).

 The "Claim Description", "Change Controller" and "Specification
 Documents" are common and equivalent for the JWT and CWT registries.
 The "Claim Key" and "Claim Value Types(s)" are for the CWT registry
 only. The "Claim Name" is as defined for the CWT registry, not the
 JWT registry. The "JWT Claim Name" is equivalent to the "Claim Name"
 in the JWT registry.

9.3.1. Claims for Early Assignment

 RFC Editor: in the final publication this section should be combined
 with the following section as it will no longer be necessary to
 distinguish claims with early assignment. Also, the following
 paragraph should be removed.

 The claims in this section have been (requested for / given) early
 assignment according to [RFC7120]. They have been assigned values
 and registered before final publication of this document. While
 their semantics is not expected to change in final publication, it is
 possible that they will. The JWT Claim Names and CWT Claim Keys are
 not expected to change.

 o Claim Name: Nonce

 o Claim Description: Nonce

 o JWT Claim Name: "nonce" (already registered for JWT)

 o Claim Key: 10

 o Claim Value Type(s): byte string

 o Change Controller: IESG

Lundblade, et al. Expires April 26, 2022 [Page 61]

Internet-Draft EAT October 2021

 o Specification Document(s): [OpenIDConnectCore], *this document*

 o Claim Name: UEID

 o Claim Description: The Universal Entity ID

 o JWT Claim Name: "ueid"

 o CWT Claim Key: 11

 o Claim Value Type(s): byte string

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: OEMID

 o Claim Description: IEEE-based OEM ID

 o JWT Claim Name: "oemid"

 o Claim Key: 13

 o Claim Value Type(s): byte string

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Security Level

 o Claim Description: Characterization of the security of an Attester
 or submodule

 o JWT Claim Name: "seclevel"

 o Claim Key: 14

 o Claim Value Type(s): integer

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Secure Boot

 o Claim Description: Indicate whether the boot was secure

Lundblade, et al. Expires April 26, 2022 [Page 62]

Internet-Draft EAT October 2021

 o JWT Claim Name: "secboot"

 o Claim Key: 15

 o Claim Value Type(s): Boolean

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Debug Status

 o Claim Description: Indicate status of debug facilities

 o JWT Claim Name: "dbgstat"

 o Claim Key: 16

 o Claim Value Type(s): integer

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Location

 o Claim Description: The geographic location

 o JWT Claim Name: "location"

 o Claim Key: 17

 o Claim Value Type(s): map

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Profile

 o Claim Description: Indicates the EAT profile followed

 o JWT Claim Name: "eat_profile"

 o Claim Key: 18

 o Claim Value Type(s): map

Lundblade, et al. Expires April 26, 2022 [Page 63]

Internet-Draft EAT October 2021

 o Change Controller: IESG

 o Specification Document(s): *this document*

 o Claim Name: Submodules Section

 o Claim Description: The section containing submodules (not actually
 a claim)

 o JWT Claim Name: "submods"

 o Claim Key: 20

 o Claim Value Type(s): map

 o Change Controller: IESG

 o Specification Document(s): *this document*

9.3.2. To be Assigned Claims

 TODO: add the rest of the claims in here

9.3.3. Version Schemes Registered by this Document

 IANA is requested to register a new value in the "Software Tag
 Version Scheme Values" established by [CoSWID].

 The new value is a version scheme a 13-digit European Article Number
 [EAN-13]. An EAN-13 is also known as an International Article Number
 or most commonly as a bar code. This version scheme is the ASCII
 text representation of EAN-13 digits, the same ones often printed
 with a bar code. This version scheme must comply with the EAN
 allocation and assignment rules. For example, this requires the
 manufacturer to obtain a manufacture code from GS1.

 +-------+---------------------+---------------+
 | Index | Version Scheme Name | Specification |
 +-------+---------------------+---------------+
 | 5 | ean-13 | This document |
 +-------+---------------------+---------------+

9.3.4. UEID URN Registered by this Document

 IANA is requested to register the following new subtypes in the "DEV
 URN Subtypes" registry under "Device Identification". See [RFC9039].

Lundblade, et al. Expires April 26, 2022 [Page 64]

Internet-Draft EAT October 2021

 +---------+---+---------------+
 | Subtype | Description | Reference |
 +---------+---+---------------+
ueid	Universal Entity Identifier	This document
sueid	Semi-permanent Universal Entity	This document
	Identifier	
 +---------+---+---------------+

9.3.5. Tag for Detached EAT Bundle

 In the registry [IANA.cbor-tags], IANA is requested to allocate the
 following tag from the FCFS space, with the present document as the
 specification reference.

 +--------+------------+-------------------------------+
 | Tag | Data Items | Semantics |
 +--------+------------+-------------------------------+
 | TBD602 | array | Detached EAT Bundle Section 5 |
 +--------+------------+-------------------------------+

10. Privacy Considerations

 Certain EAT claims can be used to track the owner of an entity and
 therefore, implementations should consider providing privacy-
 preserving options dependent on the intended usage of the EAT.
 Examples would include suppression of location claims for EAT’s
 provided to unauthenticated consumers.

10.1. UEID and SUEID Privacy Considerations

 A UEID is usually not privacy-preserving. Any set of Relying Parties
 that receives tokens that happen to be from a single device will be
 able to know the tokens are all from the same device and be able to
 track the device. Thus, in many usage situations UEID violates
 governmental privacy regulation. In other usage situations a UEID
 will not be allowed for certain products like browsers that give
 privacy for the end user. It will often be the case that tokens will
 not have a UEID for these reasons.

 An SUEID is also usually not privacy-preserving. In some cases it
 may have fewer privacy issues than a UEID depending on when and how
 and when it is generated.

 There are several strategies that can be used to still be able to put
 UEIDs and SUEIDs in tokens:

 o The device obtains explicit permission from the user of the device
 to use the UEID/SUEID. This may be through a prompt. It may also

Lundblade, et al. Expires April 26, 2022 [Page 65]

Internet-Draft EAT October 2021

 be through a license agreement. For example, agreements for some
 online banking and brokerage services might already cover use of a
 UEID/SUEID.

 o The UEID/SUEID is used only in a particular context or particular
 use case. It is used only by one Relying Party.

 o The device authenticates the Relying Party and generates a derived
 UEID/SUEID just for that particular Relying Party. For example,
 the Relying Party could prove their identity cryptographically to
 the device, then the device generates a UEID just for that Relying
 Party by hashing a proofed Relying Party ID with the main device
 UEID/SUEID.

 Note that some of these privacy preservation strategies result in
 multiple UEIDs and SUEIDs per device. Each UEID/SUEID is used in a
 different context, use case or system on the device. However, from
 the view of the Relying Party, there is just one UEID and it is still
 globally universal across manufacturers.

10.2. Location Privacy Considerations

 Geographic location is most always considered personally identifiable
 information. Implementers should consider laws and regulations
 governing the transmission of location data from end user devices to
 servers and services. Implementers should consider using location
 management facilities offered by the operating system on the device
 generating the attestation. For example, many mobile phones prompt
 the user for permission when before sending location data.

11. Security Considerations

 The security considerations provided in Section 8 of [RFC8392] and
 Section 11 of [RFC7519] apply to EAT in its CWT and JWT form,
 respectively. In addition, implementors should consider the
 following.

11.1. Key Provisioning

 Private key material can be used to sign and/or encrypt the EAT, or
 can be used to derive the keys used for signing and/or encryption.
 In some instances, the manufacturer of the entity may create the key
 material separately and provision the key material in the entity
 itself. The manfuacturer of any entity that is capable of producing
 an EAT should take care to ensure that any private key material be
 suitably protected prior to provisioning the key material in the
 entity itself. This can require creation of key material in an
 enclave (see [RFC4949] for definition of "enclave"), secure

Lundblade, et al. Expires April 26, 2022 [Page 66]

Internet-Draft EAT October 2021

 transmission of the key material from the enclave to the entity using
 an appropriate protocol, and persistence of the private key material
 in some form of secure storage to which (preferably) only the entity
 has access.

11.1.1. Transmission of Key Material

 Regarding transmission of key material from the enclave to the
 entity, the key material may pass through one or more intermediaries.
 Therefore some form of protection ("key wrapping") may be necessary.
 The transmission itself may be performed electronically, but can also
 be done by human courier. In the latter case, there should be
 minimal to no exposure of the key material to the human (e.g.
 encrypted portable memory). Moreover, the human should transport the
 key material directly from the secure enclave where it was created to
 a destination secure enclave where it can be provisioned.

11.2. Transport Security

 As stated in Section 8 of [RFC8392], "The security of the CWT relies
 upon on the protections offered by COSE". Similar considerations
 apply to EAT when sent as a CWT. However, EAT introduces the concept
 of a nonce to protect against replay. Since an EAT may be created by
 an entity that may not support the same type of transport security as
 the consumer of the EAT, intermediaries may be required to bridge
 communications between the entity and consumer. As a result, it is
 RECOMMENDED that both the consumer create a nonce, and the entity
 leverage the nonce along with COSE mechanisms for encryption and/or
 signing to create the EAT.

 Similar considerations apply to the use of EAT as a JWT. Although
 the security of a JWT leverages the JSON Web Encryption (JWE) and
 JSON Web Signature (JWS) specifications, it is still recommended to
 make use of the EAT nonce.

11.3. Multiple EAT Consumers

 In many cases, more than one EAT consumer may be required to fully
 verify the entity attestation. Examples include individual consumers
 for nested EATs, or consumers for individual claims with an EAT.
 When multiple consumers are required for verification of an EAT, it
 is important to minimize information exposure to each consumer. In
 addition, the communication between multiple consumers should be
 secure.

 For instance, consider the example of an encrypted and signed EAT
 with multiple claims. A consumer may receive the EAT (denoted as the
 "receiving consumer"), decrypt its payload, verify its signature, but

Lundblade, et al. Expires April 26, 2022 [Page 67]

Internet-Draft EAT October 2021

 then pass specific subsets of claims to other consumers for
 evaluation ("downstream consumers"). Since any COSE encryption will
 be removed by the receiving consumer, the communication of claim
 subsets to any downstream consumer should leverage a secure protocol
 (e.g.one that uses transport-layer security, i.e. TLS),

 However, assume the EAT of the previous example is hierarchical and
 each claim subset for a downstream consumer is created in the form of
 a nested EAT. Then transport security between the receiving and
 downstream consumers is not strictly required. Nevertheless,
 downstream consumers of a nested EAT should provide a nonce unique to
 the EAT they are consuming.

12. References

12.1. Normative References

 [CBOR.OID]
 Bormann, C., "Concise Binary Object Representation (CBOR)
 Tags for Object Identifiers", draft-ietf-cbor-tags-oid-08
 (work in progress), May 2021.

 [CoSWID] Birkholz, H., Fitzgerald-McKay, J., Schmidt, C., and D.
 Waltermire, "Concise Software Identification Tags", draft-
 ietf-sacm-coswid-19 (work in progress), October 2021.

 [DLOA] "Digital Letter of Approval", November 2015,
 <https://globalplatform.org/wp-content/uploads/2015/12/
 GPC_DigitalLetterOfApproval_v1.0.pdf>.

 [EAN-13] GS1, "International Article Number - EAN/UPC barcodes",
 2019, <https://www.gs1.org/standards/barcodes/ean-upc>.

 [FIDO.AROE]
 The FIDO Alliance, "FIDO Authenticator Allowed Restricted
 Operating Environments List", November 2020,
 <https://fidoalliance.org/specs/fido-security-
 requirements/fido-authenticator-allowed-restricted-
 operating-environments-list-v1.2-fd-20201102.html>.

 [IANA.cbor-tags]
 "IANA CBOR Tags Registry", n.d.,
 <https://www.iana.org/assignments/cbor-tags/cbor-
 tags.xhtml>.

 [IANA.CWT.Claims]
 IANA, "CBOR Web Token (CWT) Claims",
 <http://www.iana.org/assignments/cwt>.

Lundblade, et al. Expires April 26, 2022 [Page 68]

Internet-Draft EAT October 2021

 [IANA.JWT.Claims]
 IANA, "JSON Web Token (JWT) Claims",
 <https://www.iana.org/assignments/jwt>.

 [OpenIDConnectCore]
 Sakimura, N., Bradley, J., Jones, M., Medeiros, B. D., and
 C. Mortimore, "OpenID Connect Core 1.0 incorporating
 errata set 1", November 2014,
 <https://openid.net/specs/openid-connect-core-1_0.html>.

 [PEN] "Private Enterprise Number (PEN) Request", n.d.,
 <https://pen.iana.org/pen/PenApplication.page>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

Lundblade, et al. Expires April 26, 2022 [Page 69]

Internet-Draft EAT October 2021

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8747] Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.
 Tschofenig, "Proof-of-Possession Key Semantics for CBOR
 Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March
 2020, <https://www.rfc-editor.org/info/rfc8747>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

 [ThreeGPP.IMEI]
 3GPP, "3rd Generation Partnership Project; Technical
 Specification Group Core Network and Terminals; Numbering,
 addressing and identification", 2019,
 <https://portal.3gpp.org/desktopmodules/Specifications/
 SpecificationDetails.aspx?specificationId=729>.

 [UCCS.Draft]
 Birkholz, H., O’Donoghue, J., Cam-Winget, N., and C.
 Bormann, "A CBOR Tag for Unprotected CWT Claims Sets",
 draft-ietf-rats-uccs-01 (work in progress), July 2021.

 [WGS84] National Geospatial-Intelligence Agency (NGA), "WORLD
 GEODETIC SYSTEM 1984, NGA.STND.0036_1.0.0_WGS84", July
 2014, <https://earth-info.nga.mil/php/
 download.php?file=coord-wgs84>.

12.2. Informative References

 [BirthdayAttack]
 "Birthday attack",
 <https://en.wikipedia.org/wiki/Birthday_attack.>.

Lundblade, et al. Expires April 26, 2022 [Page 70]

Internet-Draft EAT October 2021

 [CBOR.Cert.Draft]
 Mattsson, J. P., Selander, G., Raza, S., Hoeglund, J., and
 M. Furuhed, "CBOR Encoded X.509 Certificates (C509
 Certificates)", draft-ietf-cose-cbor-encoded-cert-02 (work
 in progress), July 2021.

 [Common.Criteria]
 "Common Criteria for Information Technology Security
 Evaluation", April 2017,
 <https://www.commoncriteriaportal.org/cc/>.

 [COSE.X509.Draft]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Header parameters for carrying and referencing X.509
 certificates", draft-ietf-cose-x509-08 (work in progress),
 December 2020.

 [ECMAScript]
 "Ecma International, "ECMAScript Language Specification,
 5.1 Edition", ECMA Standard 262", June 2011,
 <http://www.ecma-international.org/ecma-262/5.1/ECMA-
 262.pdf>.

 [FIPS-140]
 National Institue of Standards, "Security Requirements for
 Cryptographic Modules", May 2001,
 <https://csrc.nist.gov/publications/detail/fips/140/2/
 final>.

 [IEEE.802-2001]
 "IEEE Standard For Local And Metropolitan Area Networks
 Overview And Architecture", 2007,
 <https://webstore.ansi.org/standards/ieee/
 ieee8022001r2007>.

 [IEEE.802.1AR]
 "IEEE Standard, "IEEE 802.1AR Secure Device Identifier"",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [IEEE.RA] "IEEE Registration Authority",
 <https://standards.ieee.org/products-services/regauth/
 index.html>.

Lundblade, et al. Expires April 26, 2022 [Page 71]

Internet-Draft EAT October 2021

 [OUI.Guide]
 "Guidelines for Use of Extended Unique Identifier (EUI),
 Organizationally Unique Identifier (OUI), and Company ID
 (CID)", August 2017,
 <https://standards.ieee.org/content/dam/ieee-
 standards/standards/web/documents/tutorials/eui.pdf>.

 [OUI.Lookup]
 "IEEE Registration Authority Assignments",
 <https://regauth.standards.ieee.org/standards-ra-web/pub/
 view.html#registries>.

 [RATS.Architecture]
 Birkholz, H., Thaler, D., Richardson, M., Smith, N., and
 W. Pan, "Remote Attestation Procedures Architecture",
 draft-ietf-rats-architecture-12 (work in progress), April
 2021.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC7120] Cotton, M., "Early IANA Allocation of Standards Track Code
 Points", BCP 100, RFC 7120, DOI 10.17487/RFC7120, January
 2014, <https://www.rfc-editor.org/info/rfc7120>.

 [RFC9039] Arkko, J., Jennings, C., and Z. Shelby, "Uniform Resource
 Names for Device Identifiers", RFC 9039,
 DOI 10.17487/RFC9039, June 2021,
 <https://www.rfc-editor.org/info/rfc9039>.

 [W3C.GeoLoc]
 Worldwide Web Consortium, "Geolocation API Specification
 2nd Edition", January 2018, <https://www.w3.org/TR/
 geolocation-API/#coordinates_interface>.

Lundblade, et al. Expires April 26, 2022 [Page 72]

Internet-Draft EAT October 2021

Appendix A. Examples

 These examples are either UCCS, shown as CBOR diagnostic, or UJCS
 messages. Full CWT and JWT examples with signing and encryption are
 not given.

 All UCCS examples can be the payload of a CWT. To do so, they must
 be converted from the UCCS message to a Claims-Set, which is achieve
 by "removing" the tag.

 UJCS messages can be directly used as the payload of a JWT.

 WARNING: These examples use tag and label numbers not yet assigned by
 IANA.

A.1. Simple TEE Attestation

 This is a simple attestation of a TEE that includes a manifest that
 is a payload CoSWID to describe the TEE’s software.

 / This is a UCCS EAT that describes a simple TEE. /

 601({
 / nonce / 10: h’948f8860d13a463e’,
 / security-level / 14: 3, / secure-restricted /
 / secure-boot / 15: true,
 / debug-status / 16: 2, / disabled-since-boot /
 / manfests / 35: [
 / This is byte-string wrapped /
 / payload CoSWID. It gives the TEE /
 / software name, the version and /
 / the name of the file it is in. /
 h’ da53574944a60064336132340c01016b
 41636d6520544545204f530d65332e31
 2e340282a2181f6b41636d6520544545
 204f53182101a2181f6b41636d652054
 4545204f5318210206a111a118186e61
 636d655f7465655f332e657865’
]
 })

Lundblade, et al. Expires April 26, 2022 [Page 73]

Internet-Draft EAT October 2021

 / A payload CoSWID created by the SW vendor. All this really does /
 / is name the TEE SW, its version and lists the one file that /
 / makes up the TEE. /

 1398229316({
 / Unique CoSWID ID / 0: "3a24",
 / tag-version / 12: 1,
 / software-name / 1: "Acme TEE OS",
 / software-version / 13: "3.1.4",
 / entity / 2: [
 {
 / entity-name / 31: "Acme TEE OS",
 / role / 33: 1 / tag-creator /
 },
 {
 / entity-name / 31: "Acme TEE OS",
 / role / 33: 2 / software-creator /
 }
],
 / payload / 6: {
 / ...file / 17: {
 / ...fs-name / 24: "acme_tee_3.exe"
 }
 }
 })

A.2. EAT Produced by Attestation Hardware Block

 / This is an example of a token produced by a HW block /
 / purpose-built for attestation. Only the nonce claim changes /
 / from one attestation to the next as the rest either come /
 / directly from the hardware or from one-time-programmable memory /
 / (e.g. a fuse). 47 bytes encoded in CBOR (8 byte nonce, 16 byte /
 / UEID). /

 601({
 / nonce / 10: h’948f8860d13a463e’,
 / UEID / 11: h’0198f50a4ff6c05861c8860d13a638ea’,
 / OEMID / 13: 64242, / Private Enterprise Number /
 / security-level / 14: 4, / hardware level security /
 / secure-boot / 15: true,
 / debug-status / 16: 3, / disabled-permanently /
 / chip-version / 26: ["3.1", 1] / Type is multipartnumeric /
 })

Lundblade, et al. Expires April 26, 2022 [Page 74]

Internet-Draft EAT October 2021

A.3. Detached EAT Bundle

 In this DEB main token is produced by a HW attestation block. The
 detached Claims-Set is produced by a TEE and is largely identical to
 the Simple TEE examples above. The TEE digests its Claims-Set and
 feeds that digest to the HW block.

 In a better example the attestation produced by the HW block would be
 a CWT and thus signed and secured by the HW block. Since the
 signature covers the digest from the TEE that Claims-Set is also
 secured.

 The DEB itself can be assembled by untrusted SW.

 / This is a detached EAT bundle (DEB) tag. /

 602([

 / First part is a full EAT token with claims like nonce and /
 / UEID. Most importantly, it includes a submodule that is a /
 / detached digest which is the hash of the "TEE" claims set /
 / in the next section. /
 / /
 / This token here is in UCCS format (unsigned). In a more /
 / realistic example, it would be a signed CWT. /
 h’d90259a80a48948f8860d13a463e0b500198f50a4ff6c058
 61c8860d13a638ea0d19faf20e040ff51003181a8263332e
 310114a163544545822f5820e5cf95fd24fab71446742dd5
 8d43dae178e55fe2b94291a9291082ffc2635a0b’,

 {
 / A CBOR-encoded byte-string wrapped EAT claims-set. It /
 / contains claims suitable for a TEE /
 "TEE" : h’a50a48948f8860d13a463e0e030ff51002182381
 585dda53574944a60064336132340c01016b4163
 6d6520544545204f530d65332e312e340282a218
 1f6b41636d6520544545204f53182101a2181f6b
 41636d6520544545204f5318210206a111a11818
 6e61636d655f7465655f332e657865’
 }
])

Lundblade, et al. Expires April 26, 2022 [Page 75]

Internet-Draft EAT October 2021

 / This example contains submodule that is a detached digest, /
 / which is the hash of a Claims-Set convey outside this token. /
 / Other than that is is the other example of a token from an /
 / attestation HW block /

 601({
 / nonce / 10: h’948f8860d13a463e’,
 / UEID / 11: h’0198f50a4ff6c05861c8860d13a638ea’,
 / OEMID / 13: 64242, / Private Enterprise Number /
 / security-level / 14: 4, / hardware level security /
 / secure-boot / 15: true,
 / debug-status / 16: 3, / disabled-permanently /
 / chip-version / 26: ["3.1", 1], / multipartnumeric /
 / submods/ 20: {
 "TEE": [/ detached digest submod /
 -16, / SHA-256 /
 h’e5cf95fd24fab7144674
 2dd58d43dae178e55fe2
 b94291a9291082ffc2635
 a0b’
]
 }
 })

A.4. Key / Key Store Attestation

 / This is an attestation of a public key and the key store /
 / implementation that protects and manages it. The key store /
 / implementation is in a security-oriented execution /
 / environment separate from the high-level OS, for example a /
 / TEE. The key store is the Attester. /
 / /
 / There is some attestation of the high-level OS, just version /
 / and boot & debug status. It is a Claims-Set submodule because/
 / it has lower security level than the key store. The key /
 / store’s implementation has access to info about the HLOS, so /
 / it is able to include it. /
 / /
 / A key and an indication of the user authentication given to /
 / allow access to the key is given. The labels for these are /
 / in the private space since this is just a hypothetical /
 / example, not part of a standard protocol. /
 / /
 / This is similar to Android Key Attestation. /

 601({

Lundblade, et al. Expires April 26, 2022 [Page 76]

Internet-Draft EAT October 2021

 / nonce / 10: h’948f8860d13a463e’,
 / security-level / 14: 3, / secure-restricted /
 / debug-status / 16: 2, / disabled-since-boot /
 / secure-boot / 15: true,
 / manifests / 35: [
 h’da53574944a600683762623334383766
 0c000169436172626f6e6974650d6331
 2e320e0102a2181f75496e6475737472
 69616c204175746f6d6174696f6e1821
 02’
 / Above is an encoded CoSWID /
 / with the following data /
 / SW Name: "Carbonite" /
 / SW Vers: "1.2" /
 / SW Creator: /
 / "Industrial Automation" /
],
 / expiration / 4: 1634324274, / 2021-10-15T18:57:54Z /
 / creation time / 6: 1634317080, / 2021-10-15T16:58:00Z /
 -80000 : "fingerprint",
 -80001 : { / The key -- A COSE_Key /
 / kty / 1: 2, / EC2, eliptic curve with x & y /
 / kid / 2: h’36675c206f96236c3f51f54637b94ced’,
 / curve / -1: 2, / curve is P-256 /
 / x-coord / -2: h’65eda5a12577c2bae829437fe338701a
 10aaa375e1bb5b5de108de439c08551d’,
 / y-coord / -3: h’1e52ed75701163f7f9e40ddf9f341b3d
 c9ba860af7e0ca7ca7e9eecd0084d19c’
 },

 / submods / 20 : {
 "HLOS" : { / submod for high-level OS /
 / nonce / 10: h’948f8860d13a463e’,
 / security-level / 14: 1, / unrestricted /
 / secure-boot / 15: true,
 / manifests / 35: [
 h’da53574944a600687337
 6537346b78380c000168
 44726f6964204f530d65
 52322e44320e0302a218
 1F75496E647573747269
 616c204175746f6d6174
 696f6e182102’
 / Above is an encoded CoSWID /
 / with the following data: /
 / SW Name: "Droid OS" /
 / SW Vers: "R2.D2" /
 / SW Creator: /

Lundblade, et al. Expires April 26, 2022 [Page 77]

Internet-Draft EAT October 2021

 / "Industrial Automation"/
]
 }
 }
 })

A.5. SW Measurements of an IoT Device

 This is a simple token that might be for and IoT device. It includes
 CoSWID format measurments of the SW. The CoSWID is in byte-string
 wrapped in the token and also shown in diagnostic form.

Lundblade, et al. Expires April 26, 2022 [Page 78]

Internet-Draft EAT October 2021

 / This EAT UCCS is for an IoT device with a TEE. The attestation /
 / is produced by the TEE. There is a submodule for the IoT OS (the /
 / main OS of the IoT device that is not as secure as the TEE). The /
 / submodule contains claims for the IoT OS. The TEE also measures /
 / the IoT OS and puts the measurements in the submodule. /

 601({
 / nonce / 10: h’948f8860d13a463e’,
 / security-level / 14: 3, / secure-restricted /
 / secure-boot / 15: true,
 / debug-status / 16: 2, / disabled-since-boot /
 / OEMID / 13: h’8945ad’, / IEEE CID based /
 / UEID / 11: h’0198f50a4ff6c05861c8860d13a638ea’,
 / sumods / 20: {
 "OS" : {
 / security-level / 14: 2, / restricted /
 / secure-boot / 15: true,
 / debug-status / 16: 2, / disabled-since-boot /
 / swevidence / 36: [
 / This is a byte-string wrapped /
 / evidence CoSWID. It has /
 / hashes of the main files of /
 / the IoT OS. /
 h’da53574944a600663463613234350c
 17016d41636d6520522d496f542d4f
 530d65332e312e3402a2181f724163
 6d6520426173652041747465737465
 7218210103a11183a318187161636d
 655f725f696f745f6f732e65786514
 1a0044b349078201582005f6b327c1
 73b4192bd2c3ec248a292215eab456
 611bf7a783e25c1782479905a31818
 6d7265736f75726365732e72736314
 1a000c38b10782015820c142b9aba4
 280c4bb8c75f716a43c99526694caa
 be529571f5569bb7dc542f98a31818
 6a636f6d6d6f6e2e6c6962141a0023
 3d3b0782015820a6a9dcdfb3884da5
 f884e4e1e8e8629958c2dbc7027414
 43a913e34de9333be6’
]
 }
 }
 })

 / An evidence CoSWID created for the "Acme R-IoT-OS" created by /
 / the "Acme Base Attester" (both fictious names). It provides /

Lundblade, et al. Expires April 26, 2022 [Page 79]

Internet-Draft EAT October 2021

 / measurements of the SW (other than the attester SW) on the /
 / device. /

 1398229316({
 / Unique CoSWID ID / 0: "4ca245",
 / tag-version / 12: 23, / Attester-maintained counter /
 / software-name / 1: "Acme R-IoT-OS",
 / software-version / 13: "3.1.4",
 / entity / 2: {
 / entity-name / 31: "Acme Base Attester",
 / role / 33: 1 / tag-creator /
 },
 / evidence / 3: {
 / ...file / 17: [
 {
 / ...fs-name / 24: "acme_r_iot_os.exe",
 / ...size / 20: 4502345,
 / ...hash / 7: [
 1, / SHA-256 /
 h’05f6b327c173b419
 2bd2c3ec248a2922
 15eab456611bf7a7
 83e25c1782479905’
]
 },
 {
 / ...fs-name / 24: "resources.rsc",
 / ...size / 20: 800945,
 / ...hash / 7: [
 1, / SHA-256 /
 h’c142b9aba4280c4b
 b8c75f716a43c995
 26694caabe529571
 f5569bb7dc542f98’
]
 },
 {
 / ...fs-name / 24: "common.lib",
 / ...size / 20: 2309435,
 / ...hash / 7: [
 1, / SHA-256 /
 h’a6a9dcdfb3884da5
 f884e4e1e8e86299
 58c2dbc702741443
 a913e34de9333be6’
]
 }
]

Lundblade, et al. Expires April 26, 2022 [Page 80]

Internet-Draft EAT October 2021

 }
 })

A.6. Attestation Results in JSON format

 This is a UJCS format token that might be the output of a Verifier
 that evaluated the IoT Attestation example immediately above.

 This particular Verifier knows enough about the TEE Attester to be
 able to pass claims like security level directly through to the
 Relying Party. The Verifier also knows the Reference Values for the
 measured SW components and is able to check them. It informs the
 Relying Party that they were correct in the swresults claim.
 "Trustus Verifications" is the name of the services that verifies the
 SW component measurements.

 This UJCS is identical to JSON-encoded Claims-Set that could be a JWT
 payload.

 {
 "nonce" : "lI+IYNE6Rj4=",
 "seclevel" : "secure-restricted",
 "secboot" : true,
 "dbgstat" : "disabled-since-boot",
 "OEMID" : "iUWt",
 "UEID" : "AZj1Ck/2wFhhyIYNE6Y4",
 "submods" : {
 "seclevel" : "restricted",
 "secboot" : true,
 "dbgstat" : "disabled-since-boot",
 "swname" : "Acme R-IoT-OS",
 "sw-version" : [
 "3.1.4"
],
 "swresults" : [
 [
 "Trustus Verifications",
 "all",
 "fully-verified"
]
]
 }

Lundblade, et al. Expires April 26, 2022 [Page 81]

Internet-Draft EAT October 2021

Appendix B. UEID Design Rationale

B.1. Collision Probability

 This calculation is to determine the probability of a collision of
 UEIDs given the total possible entity population and the number of
 entities in a particular entity management database.

 Three different sized databases are considered. The number of
 devices per person roughly models non-personal devices such as
 traffic lights, devices in stores they shop in, facilities they work
 in and so on, even considering individual light bulbs. A device may
 have individually attested subsystems, for example parts of a car or
 a mobile phone. It is assumed that the largest database will have at
 most 10% of the world’s population of devices. Note that databases
 that handle more than a trillion records exist today.

 The trillion-record database size models an easy-to-imagine reality
 over the next decades. The quadrillion-record database is roughly at
 the limit of what is imaginable and should probably be accommodated.
 The 100 quadrillion datadbase is highly speculative perhaps involving
 nanorobots for every person, livestock animal and domesticated bird.
 It is included to round out the analysis.

 Note that the items counted here certainly do not have IP address and
 are not individually connected to the network. They may be connected
 to internal buses, via serial links, Bluetooth and so on. This is
 not the same problem as sizing IP addresses.

 +---------+------------+--------------+------------+----------------+
 | People | Devices / | Subsystems / | Database | Database Size |
 | | Person | Device | Portion | |
 +---------+------------+--------------+------------+----------------+
10	100	10	10%	trillion
billion				(10^12)
10	100,000	10	10%	quadrillion
billion				(10^15)
100	1,000,000	10	10%	100
billion				quadrillion
				(10^17)
 +---------+------------+--------------+------------+----------------+

 This is conceptually similar to the Birthday Problem where m is the
 number of possible birthdays, always 365, and k is the number of
 people. It is also conceptually similar to the Birthday Attack where
 collisions of the output of hash functions are considered.

 The proper formula for the collision calculation is

Lundblade, et al. Expires April 26, 2022 [Page 82]

Internet-Draft EAT October 2021

 p = 1 - e^{-k^2/(2n)}

 p Collision Probability
 n Total possible population
 k Actual population

 However, for the very large values involved here, this formula
 requires floating point precision higher than commonly available in
 calculators and SW so this simple approximation is used. See
 [BirthdayAttack].

 p = k^2 / 2n

 For this calculation:

 p Collision Probability
 n Total population based on number of bits in UEID
 k Population in a database

 +----------------------+--------------+--------------+--------------+
 | Database Size | 128-bit UEID | 192-bit UEID | 256-bit UEID |
 +----------------------+--------------+--------------+--------------+
trillion (10^12)	2 * 10^-15	8 * 10^-35	5 * 10^-55
quadrillion (10^15)	2 * 10^-09	8 * 10^-29	5 * 10^-49
100 quadrillion	2 * 10^-05	8 * 10^-25	5 * 10^-45
(10^17)			
 +----------------------+--------------+--------------+--------------+

 Next, to calculate the probability of a collision occurring in one
 year’s operation of a database, it is assumed that the database size
 is in a steady state and that 10% of the database changes per year.
 For example, a trillion record database would have 100 billion states
 per year. Each of those states has the above calculated probability
 of a collision.

 This assumption is a worst-case since it assumes that each state of
 the database is completely independent from the previous state. In
 reality this is unlikely as state changes will be the addition or
 deletion of a few records.

 The following tables gives the time interval until there is a
 probability of a collision based on there being one tenth the number
 of states per year as the number of records in the database.

Lundblade, et al. Expires April 26, 2022 [Page 83]

Internet-Draft EAT October 2021

 t = 1 / ((k / 10) * p)

 t Time until a collision
 p Collision probability for UEID size
 k Database size

 +---------------------+---------------+--------------+--------------+
 | Database Size | 128-bit UEID | 192-bit UEID | 256-bit UEID |
 +---------------------+---------------+--------------+--------------+
trillion (10^12)	60,000 years	10^24 years	10^44 years
quadrillion (10^15)	8 seconds	10^14 years	10^34 years
100 quadrillion	8	10^11 years	10^31 years
(10^17)	microseconds		
 +---------------------+---------------+--------------+--------------+

 Clearly, 128 bits is enough for the near future thus the requirement
 that UEIDs be a minimum of 128 bits.

 There is no requirement for 256 bits today as quadrillion-record
 databases are not expected in the near future and because this time-
 to-collision calculation is a very worst case. A future update of
 the standard may increase the requirement to 256 bits, so there is a
 requirement that implementations be able to receive 256-bit UEIDs.

B.2. No Use of UUID

 A UEID is not a UUID [RFC4122] by conscious choice for the following
 reasons.

 UUIDs are limited to 128 bits which may not be enough for some future
 use cases.

 Today, cryptographic-quality random numbers are available from common
 CPUs and hardware. This hardware was introduced between 2010 and
 2015. Operating systems and cryptographic libraries give access to
 this hardware. Consequently, there is little need for
 implementations to construct such random values from multiple sources
 on their own.

 Version 4 UUIDs do allow for use of such cryptographic-quality random
 numbers, but do so by mapping into the overall UUID structure of time
 and clock values. This structure is of no value here yet adds
 complexity. It also slightly reduces the number of actual bits with
 entropy.

 UUIDs seem to have been designed for scenarios where the implementor
 does not have full control over the environment and uniqueness has to
 be constructed from identifiers at hand. UEID takes the view that

Lundblade, et al. Expires April 26, 2022 [Page 84]

Internet-Draft EAT October 2021

 hardware, software and/or manufacturing process directly implement
 UEID in a simple and direct way. It takes the view that
 cryptographic quality random number generators are readily available
 as they are implemented in commonly used CPU hardware.

Appendix C. EAT Relation to IEEE.802.1AR Secure Device Identity (DevID)

 This section describes several distinct ways in which an IEEE IDevID
 [IEEE.802.1AR] relates to EAT, particularly to UEID and SUEID.

 [IEEE.802.1AR] orients around the definition of an implementation
 called a "DevID Module." It describes how IDevIDs and LDevIDs are
 stored, protected and accessed using a DevID Module. A particular
 level of defense against attack that should be achieved to be a DevID
 is defined. The intent is that IDevIDs and LDevIDs are used with an
 open set of network protocols for authentication and such. In these
 protocols the DevID secret is used to sign a nonce or similar to
 proof the association of the DevID certificates with the device.

 By contrast, EAT defines network protocol for proving trustworthiness
 to a Relying Party, the very thing that is not defined in
 [IEEE.802.1AR]. Nor does not give details on how keys, data and such
 are stored protected and accessed. EAT is intended to work with a
 variety of different on-device implementations ranging from minimal
 protection of assets to the highest levels of asset protection. It
 does not define any particular level of defense against attack,
 instead providing a set of security considerations.

 EAT and DevID can be viewed as complimentary when used together or as
 competing to provide a device identity service.

C.1. DevID Used With EAT

 As just described, EAT defines a network protocol and [IEEE.802.1AR]
 doesn’t. Vice versa, EAT doesn’t define a an device implementation
 and DevID does.

 Hence, EAT can be the network protocol that a DevID is used with.
 The DevID secret becomes the attestation key used to sign EATs. The
 DevID and its certificate chain become the Endorsement sent to the
 Verifier.

 In this case the EAT and the DevID are likely to both provide a
 device identifier (e.g. a serial number). In the EAT it is the UEID
 (or SUEID). In the DevID (used as an endorsement), it is a device
 serial number included in the subject field of the DevID certificate.
 It is probably a good idea in this use for them to be the same serial
 number or for the UEID to be a hash of the DevID serial number.

Lundblade, et al. Expires April 26, 2022 [Page 85]

Internet-Draft EAT October 2021

C.2. How EAT Provides an Equivalent Secure Device Identity

 The UEID, SUEID and other claims like OEM ID are equivalent to the
 secure device identity put into the subject field of a DevID
 certificate. These EAT claims can represent all the same fields and
 values that can be put in a DevID certificate subject. EAT
 explicitly and carefully defines a variety of useful claims.

 EAT secures the conveyance of these claims by having them signed on
 the device by the attestation key when the EAT is generated. EAT
 also signs the nonce that gives freshness at this time. Since these
 claims are signed for every EAT generated, they can include things
 that vary over time like GPS location.

 DevID secures the device identity fields by having them signed by the
 manufacturer of the device sign them into a certificate. That
 certificate is created once during the manufacturing of the device
 and never changes so the fields cannot change.

 So in one case the signing of the identity happens on the device and
 the other in a manufacturing facility, but in both cases the signing
 of the nonce that proves the binding to the actual device happens on
 the device.

 While EAT does not specify how the signing keys, signature process
 and storage of the identity values should be secured against attack,
 an EAT implementation may have equal defenses against attack. One
 reason EAT uses CBOR is because it is simple enough that a basic EAT
 implementation can be constructed entirely in hardware. This allows
 EAT to be implemented with the strongest defenses possible.

C.3. An X.509 Format EAT

 It is possible to define a way to encode EAT claims in an X.509
 certificate. For example, the EAT claims might be mapped to X.509 v3
 extensions. It is even possible to stuff a whole CBOR-encoded
 unsigned EAT token into a X.509 certificate.

 If that X.509 certificate is an IDevID or LDevID, this becomes
 another way to use EAT and DevID together.

 Note that the DevID must still be used with an authentication
 protocol that has a nonce or equivalent. The EAT here is not being
 used as the protocol to interact with the rely party.

Lundblade, et al. Expires April 26, 2022 [Page 86]

Internet-Draft EAT October 2021

C.4. Device Identifier Permanence

 In terms of permanence, an IDevID is similar to a UEID in that they
 do not change over the life of the device. They cease to exist only
 when the device is destroyed.

 An SUEID is similar to an LDevID. They change on device life-cycle
 events.

 [IEEE.802.1AR] describes much of this permanence as resistant to
 attacks that seek to change the ID. IDevID permanence can be
 described this way because [IEEE.802.1AR] is oriented around the
 definition of an implementation with a particular level of defense
 against attack.

 EAT is not defined around a particular implementation and must work
 on a range of devices that have a range of defenses against attack.
 EAT thus can’t be defined permanence in terms of defense against
 attack. EAT’s definition of permanence is in terms of operations and
 device lifecycle.

Appendix D. Changes from Previous Drafts

 The following is a list of known changes from the previous drafts.
 This list is non-authoritative. It is meant to help reviewers see
 the significant differences.

D.1. From draft-rats-eat-01

 o Added UEID design rationale appendix

D.2. From draft-mandyam-rats-eat-00

 This is a fairly large change in the orientation of the document, but
 no new claims have been added.

 o Separate information and data model using CDDL.

 o Say an EAT is a CWT or JWT

 o Use a map to structure the boot_state and location claims

D.3. From draft-ietf-rats-eat-01

 o Clarifications and corrections for OEMID claim

 o Minor spelling and other fixes

Lundblade, et al. Expires April 26, 2022 [Page 87]

Internet-Draft EAT October 2021

 o Add the nonce claim, clarify jti claim

D.4. From draft-ietf-rats-eat-02

 o Roll all EUIs back into one UEID type

 o UEIDs can be one of three lengths, 128, 192 and 256.

 o Added appendix justifying UEID design and size.

 o Submods part now includes nested eat tokens so they can be named
 and there can be more tha one of them

 o Lots of fixes to the CDDL

 o Added security considerations

D.5. From draft-ietf-rats-eat-03

 o Split boot_state into secure-boot and debug-disable claims

 o Debug disable is an enumerated type rather than Booleans

D.6. From draft-ietf-rats-eat-04

 o Change IMEI-based UEIDs to be encoded as a 14-byte string

 o CDDL cleaned up some more

 o CDDL allows for JWTs and UCCSs

 o CWT format submodules are byte string wrapped

 o Allows for JWT nested in CWT and vice versa

 o Allows UCCS (unsigned CWTs) and JWT unsecured tokens

 o Clarify tag usage when nesting tokens

 o Add section on key inclusion

 o Add hardware version claims

 o Collected CDDL is now filled in. Other CDDL corrections.

 o Rename debug-disable to debug-status; clarify that it is not
 extensible

Lundblade, et al. Expires April 26, 2022 [Page 88]

Internet-Draft EAT October 2021

 o Security level claim is not extensible

 o Improve specification of location claim and added a location
 privacy section

 o Add intended use claim

D.7. From draft-ietf-rats-eat-05

 o CDDL format issues resolved

 o Corrected reference to Location Privacy section

D.8. From draft-ietf-rats-eat-06

 o Added boot-seed claim

 o Rework CBOR interoperability section

 o Added profiles claim and section

D.9. From draft-ietf-rats-eat-07

 o Filled in IANA and other sections for possible preassignment of
 Claim Keys for well understood claims

D.10. From draft-ietf-rats-eat-08

 o Change profile claim to be either a URL or an OID rather than a
 test string

D.11. From draft-ietf-rats-eat-09

 o Add SUEIDs

 o Add appendix comparing IDevID to EAT

 o Added section on use for Evidence and Attestation Results

 o Fill in the key ID and endorsements identificaiton section

 o Remove origination claim as it is replaced by key IDs and
 endorsements

 o Added manifests and software evidence claims

 o Add string labels non-claim labels for use with JSON (e.g. labels
 for members of location claim)

Lundblade, et al. Expires April 26, 2022 [Page 89]

Internet-Draft EAT October 2021

 o EAN-13 HW versions are no longer a separate claim. Now they are
 folded in as a CoSWID version scheme.

D.12. From draft-ietf-rats-eat-10

 o Hardware version is made into an array of two rather than two
 claims

 o Corrections and wording improvements for security levels claim

 o Add swresults claim

 o Add dloas claim - Digitial Letter of Approvals, a list of
 certifications

 o CDDL for each claim no longer in a separate sub section

 o Consistent use of terminology from RATS architecture document

 o Consistent use of terminology from CWT and JWT documents

 o Remove operating model and procedures; refer to CWT, JWT and RATS
 architecture instead

 o Some reorganization of Section 1

 o Moved a few references, including RATS Architecture, to
 informative.

 o Add detached submodule digests and detached eat bundles (DEBs)

 o New simpler and more universal scheme for identifying the encoding
 of a nested token

 o Made clear that CBOR and JSON are only mixed when nesting a token
 in another token

 o Clearly separate CDDL for JSON and CBOR-specific data items

 o Define UJCS (unsigned JWTs)

 o Add CDDL for a general Claims-Set used by UCCS, UJCS, CWT, JWT and
 EAT

 o Top level CDDL for CWT correctly refers to COSE

 o OEM ID is specifically for HW, not for SW

Lundblade, et al. Expires April 26, 2022 [Page 90]

Internet-Draft EAT October 2021

 o HW OEM ID can now be a PEN

 o HW OEM ID can now be a 128-bit random number

 o Expand the examples section

 o Add software and version claims as easy / JSON alternative to
 CoSWID

Authors’ Addresses

 Laurence Lundblade
 Security Theory LLC

 EMail: lgl@securitytheory.com

 Giridhar Mandyam
 Qualcomm Technologies Inc.
 5775 Morehouse Drive
 San Diego, California
 USA

 Phone: +1 858 651 7200
 EMail: mandyam@qti.qualcomm.com

 Jeremy O’Donoghue
 Qualcomm Technologies Inc.
 279 Farnborough Road
 Farnborough GU14 7LS
 United Kingdom

 Phone: +44 1252 363189
 EMail: jodonogh@qti.qualcomm.com

Lundblade, et al. Expires April 26, 2022 [Page 91]

