PCE Working Group D. Dhody Internet-Draft Huawei Technologies Updates: 5440 (if approved) April 21, 2016 Intended status: Standards Track Expires: October 23, 2016 Update to Include Route Object (IRO) specification in Path Computation Element communication Protocol (PCEP) draft-ietf-pce-iro-update-07 Abstract The Path Computation Element Communication Protocol (PCEP) provides for communications between a Path Computation Client (PCC) and a PCE, or between two PCEs. RFC 5440 defines the Include Route Object (IRO) to specify network elements to be traversed in the computed path. The specification did not specify if the IRO contains an ordered or un-ordered list of sub-objects. During recent discussions, it was determined that there was a need to define a standard representation to ensure interoperability. It was also noted that there is a benefit in handling of an attribute of the IRO's sub-object, the Loose hop bit (L bit). This document updates RFC 5440 regarding the IRO specification. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on October 23, 2016. Copyright Notice Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved. Dhody Expires October 23, 2016 [Page 1] Internet-Draft IRO-UPDATE April 2016 This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Update in the IRO specification . . . . . . . . . . . . . . . 3 2.1. Update to RFC 5440 . . . . . . . . . . . . . . . . . . . 3 3. Operational Considerations . . . . . . . . . . . . . . . . . 3 4. Security Considerations . . . . . . . . . . . . . . . . . . . 4 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 4 6. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 4 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 4 7.1. Normative References . . . . . . . . . . . . . . . . . . 4 7.2. Informative References . . . . . . . . . . . . . . . . . 5 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 5 1. Introduction The Path Computation Element Communication Protocol (PCEP) provides for communications between a Path Computation Client (PCC) and a PCE, or between two PCEs. [RFC5440] defines the Include Route Object (IRO) to specify network elements to be traversed in the computed path. The specification did not define if the IRO is an ordered or un-ordered list of sub-objects. In addition, it defined the Loose hop bit (L bit) to have no meaning within an IRO. [RFC5441] describes the use of an IRO to indicate the sequence of domains to be traversed during inter-domain path computation. Dhody Expires October 23, 2016 [Page 2] Internet-Draft IRO-UPDATE April 2016 During recent discussions, it was determined that there was a need to define a standard representation to ensure interoperability. This document updates the IRO specifications in section 7.12 of [RFC5440]. 2. Update in the IRO specification Section 7.12 of [RFC5440] describes the IRO as an optional object used to specify a set of network elements to be traversed in the computed path. It stated that the Loose hop bit (L bit) in the sub- object has no meaning within an IRO. It did not mention if the IRO contains an ordered or un-ordered list of sub-objects. 2.1. Update to RFC 5440 Section 7.12 of [RFC5440] regarding the IRO specification is updated to remove the last line in the section 7.12 of [RFC5440], that states : "The L bit of such sub-object has no meaning within an IRO." Further, the Section 7.12 of [RFC5440] is updated to add the following two statements at the end of the first paragraph. - The content of an IRO is an ordered list of sub-objects representing a series of abstract nodes (refer to section 4.3.2 of [RFC3209]). - The L Bit of an IRO sub-object is set based on the loose or strict hop property of the sub-object; it is set if the sub-object represents a loose hop. If the bit is not set, the sub-object represents a strict hop. The interpretation of the Loose bit (L bit) is as per section 4.3.3.1 of [RFC3209]. 3. Operational Considerations Because of the lack of clarity in [RFC5440], it is possible to encounter implementations that always interpret the IRO sub-objects as loose. When these implementations interwork with an implementation conforming to this document, the following impact might be seen: o If a non-conforming (to this document) PCC sends an IRO to a conforming (to this document) PCE, then the PCE may unexpectedly fail to find a path (since the PCC may think of the IRO sub- objects as loose hops, but the PCE interprets them as strict hops). Dhody Expires October 23, 2016 [Page 3] Internet-Draft IRO-UPDATE April 2016 o If a conforming PCC sends an IRO containing strict hops to a non- conforming PCE, then the PCE may erroneously return a path that does not comply with the requested strict hops (since the PCE interprets them all as loose hops). The PCC may check the returned path and find the issue or it may end up using an incorrect path. 4. Security Considerations This update in the IRO specification does not introduce any new security considerations, apart from those mentioned in [RFC5440]. Clarification in the supported IRO ordering or Loose hop bit handling will not have any negative security impact. It is worth noting that PCEP operates over TCP. An analysis of the security issues for routing protocols that use TCP (including PCEP) is provided in [RFC6952]. 5. IANA Considerations This document makes no requests to IANA for action. 6. Acknowledgments A special thanks to PCE chairs for guidance regarding this work. Thanks to Francesco Fondelli for his suggestions in clarifying the L bit usage. Thanks to Adrian Farrel for his review and comments. Thanks to Jonathan Hardwick for document shepherding and providing text in Section 3. Thanks to Deborah Brungard for her comments and being the responsible AD. Thanks to Peter Yee for Gen-ART review. Thanks to Alvaro Retana for comments during the IESG review. 7. References 7.1. Normative References Dhody Expires October 23, 2016 [Page 4] Internet-Draft IRO-UPDATE April 2016 [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001, . [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation Element (PCE) Communication Protocol (PCEP)", RFC 5440, DOI 10.17487/RFC5440, March 2009, . 7.2. Informative References [RFC5441] Vasseur, JP., Ed., Zhang, R., Bitar, N., and JL. Le Roux, "A Backward-Recursive PCE-Based Computation (BRPC) Procedure to Compute Shortest Constrained Inter-Domain Traffic Engineering Label Switched Paths", RFC 5441, DOI 10.17487/RFC5441, April 2009, . [RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013, . Author's Address Dhruv Dhody Huawei Technologies Divyashree Techno Park, Whitefield Bangalore, Karnataka 560066 India EMail: dhruv.ietf@gmail.com Dhody Expires October 23, 2016 [Page 5]