
Network Working Group S. Cantor
Internet-Draft Shibboleth Consortium
Intended status: Standards Track S. Josefsson
Expires: November 07, 2013 SJD AB
 May 06, 2013

 SAML Enhanced Client SASL and GSS-API Mechanisms
 draft-ietf-kitten-sasl-saml-ec-08.txt

Abstract

 Security Assertion Markup Language (SAML) 2.0 is a generalized
 framework for the exchange of security-related information between
 asserting and relying parties. Simple Authentication and Security
 Layer (SASL) and the Generic Security Service Application Program
 Interface (GSS-API) are application frameworks to facilitate an
 extensible authentication model. This document specifies a SASL and
 GSS-API mechanism for SAML 2.0 that leverages the capabilities of a
 SAML-aware "enhanced client" to address significant barriers to
 federated authentication in a manner that encourages reuse of
 existing SAML bindings and profiles designed for non-browser
 scenarios.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 07, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Cantor & Josefsson Expires November 07, 2013 [Page 1]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Applicability for Non-HTTP Use Cases 5
 4. SAML SASL Mechanism Specification 7
 4.1. Advertisement . 8
 4.2. Initiation . 8
 4.3. Server Response . 9
 4.4. User Authentication with Identity Provider 9
 4.5. Client Response . 9
 4.6. Outcome . 9
 4.7. Additional Notes . 9
 5. SAML EC GSS-API Mechanism Specification 10
 5.1. GSS-API Credential Delegation 11
 5.2. GSS-API Channel Binding 12
 5.3. Session Key Derivation 12
 5.3.1. Generated by Identity Provider 13
 5.3.2. Alternate Key Derivation Mechanisms 14
 5.4. Per-Message Tokens 14
 5.5. Pseudo-Random Function (PRF) 15
 5.6. GSS-API Principal Name Types for SAML EC 15
 5.6.1. User Naming Considerations 16
 5.6.2. Service Naming Considerations 16
 6. Example . 17
 7. Security Considerations 24
 7.1. Risks Left Unaddressed 24
 7.2. User Privacy . 25
 7.3. Collusion between RPs 25
 8. IANA Considerations . 26
 8.1. GSS-API and SASL Mechanism Registration 26
 8.2. XML Namespace Name for SAML-EC 26
 9. References . 26
 9.1. Normative References 26
 9.2. Normative References for GSS-API Implementers 28
 9.3. Informative References 29
 Appendix A. XML Schema . 29
 Appendix B. Acknowledgments 30
 Appendix C. Changes . 31
 Authors’ Addresses . 31

Cantor & Josefsson Expires November 07, 2013 [Page 2]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

1. Introduction

 Security Assertion Markup Language (SAML) 2.0
 [OASIS.saml-core-2.0-os] is a modular specification that provides
 various means for a user to be identified to a relying party (RP)
 through the exchange of (typically signed) assertions issued by an
 identity provider (IdP). It includes a number of protocols, protocol
 bindings [OASIS.saml-bindings-2.0-os], and interoperability profiles
 [OASIS.saml-profiles-2.0-os] designed for different use cases.
 Additional profiles and extensions are also routinely developed and
 published.

 Simple Authentication and Security Layer (SASL) [RFC4422] is a
 generalized mechanism for identifying and authenticating a user and
 for optionally negotiating a security layer for subsequent protocol
 interactions. SASL is used by application protocols like IMAP, POP
 and XMPP [RFC3920]. The effect is to make authentication modular, so
 that newer authentication mechanisms can be added as needed.

 The Generic Security Service Application Program Interface (GSS-API)
 [RFC2743] provides a framework for applications to support multiple
 authentication mechanisms through a unified programming interface.
 This document defines a pure SASL mechanism for SAML, but it conforms
 to the bridge between SASL and the GSS-API called GS2 [RFC5801].
 This means that this document defines both a SASL mechanism and a
 GSS-API mechanism. The GSS-API interface is optional for SASL
 implementers, and the GSS-API considerations can be avoided in
 environments that use SASL directly without GSS-API.

 The mechanisms specified in this document allow a SASL- or GSS-API-
 enabled server to act as a SAML relying party, or service provider
 (SP), by advertising this mechanism as an option for SASL or GSS-API
 clients that support the use of SAML to communicate identity and
 attribute information. Clients supporting this mechanism are termed
 "enhanced clients" in SAML terminology because they understand the
 federated authentication model and have specific knowledge of the
 IdP(s) associated with the user. This knowledge, and the ability to
 act on it, addresses a significant problem with browser-based SAML
 profiles known as the "discovery", or "where are you from?" (WAYF)
 problem. Obviating the need for the RP to interact with the client
 to determine the right IdP (and its network location) is both a user
 interface and security improvement.

Cantor & Josefsson Expires November 07, 2013 [Page 3]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 The SAML mechanism described in this document is an adaptation of an
 existing SAML profile, the Enhanced Client or Proxy (ECP) Profile
 (V2.0) [SAMLECP20], and therefore does not establish a separate
 authentication, integrity and confidentiality mechanism. It is
 anticipated that existing security layers, such as Transport Layer
 Security (TLS) or Secure Shell (SSH), will continued to be used.

 Figure 1 describes the interworking between SAML and SASL: this
 document requires enhancements to the RP and to the client (as the
 two SASL communication endpoints) but no changes to the SAML IdP are
 assumed apart from its support for the applicable SAML profile. To
 accomplish this, a SAML protocol exchange between the RP and the IdP,
 brokered by the client, is tunneled within SASL. There is no assumed
 communication between the RP and the IdP, but such communication may
 occur in conjunction with additional SAML-related profiles not in
 scope for this document.

 +-----------+
 | SAML |
 | Relying |
 | Party |
 | |
 +-----------+
 ^
 +--|--+
 | S| |
 S | A| |
 A | M| |
 S | L| |
 L | | |
 | | |
 +--|--+
 +------------+ v
 | | +----------+
 | SAML | SAML SOAP | |
 | Identity |<--------------->| Client |
 | Provider | Binding | |
 +------------+ +----------+

 Figure 1: Interworking Architecture

2. Terminology

Cantor & Josefsson Expires November 07, 2013 [Page 4]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The reader is also assumed to be familiar with the terms used in the
 SAML 2.0 specification, and an understanding of the Enhanced Client
 or Proxy (ECP) Profile (V2.0) [SAMLECP20] is necessary, as part of
 this mechanism explicitly reuses and references it.

 This document can be implemented without knowledge of GSS-API since
 the normative aspects of the GS2 protocol syntax have been duplicated
 in this document. The document may also be implemented to provide a
 GSS-API mechanism, and then knowledge of GSS-API is essential. To
 faciliate these two variants, the references has been split into two
 parts, one part that provides normative references for all readers,
 and one part that adds additional normative references required for
 implementers that wish to implement the GSS-API portion.

3. Applicability for Non-HTTP Use Cases

 While SAML is designed to support a variety of application scenarios,
 the profiles for authentication defined in the original standard are
 designed around HTTP [RFC2616] applications. They are not, however,
 limited to browsers, because it was recognized that browsers suffer
 from a variety of functional and security deficiencies that would be
 useful to avoid where possible. Specifically, the notion of an
 "Enhanced Client" (or a proxy acting as one on behalf of a browser,
 thus the term "ECP") was specified for a software component that acts
 somewhat like a browser from an application perspective, but includes
 limited, but sufficient, awareness of SAML to play a more conscious
 role in the authentication exchange between the RP and the IdP. What
 follows is an outline of the Enhanced Client or Proxy (ECP) Profile
 (V2.0) [SAMLECP20], as applied to the web/HTTP service use case:

 1. The Enhanced Client requests a resource of a Relying Party (RP)
 (via an HTTP request). In doing so, it advertises its "enhanced"
 capability using HTTP headers.

 2. The RP, desiring SAML authentication and noting the client’s
 capabilities, responds not with an HTTP redirect or form, but
 with a SOAP [W3C.soap11] envelope containing a SAML
 <AuthnRequest> along with some supporting headers. This request
 identifies the RP (and may be signed), and may provide hints to
 the client as to what IdPs the RP finds acceptable, but the
 choice of IdP is generally left to the client.

 3. The client is then responsible for delivering the body of the
 SOAP message to the IdP it is instructed to use (often via

Cantor & Josefsson Expires November 07, 2013 [Page 5]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 configuration ahead of time). The user authenticates to the IdP
 ahead of, during, or after the delivery of this message, and
 perhaps explicitly authorizes the response to the RP.

 4. Whether authentication succeeds or fails, the IdP responds with
 its own SOAP envelope, generally containing a SAML <Response>
 message for delivery to the RP. In a successful case, the
 message will include one or more SAML <Assertion> elements
 containing authentication, and possibly attribute, statements
 about the subject. Either the response or each assertion is
 signed, and the assertion(s) may be encrypted to a key negotiated
 with or known to belong to the RP.

 5. The client then delivers the SOAP envelope containing the
 <Response> to the RP at a location the IdP directs (which acts as
 an additional, though limited, defense against MITM attacks).
 This completes the SAML exchange.

 6. The RP now has sufficient identity information to approve the
 original HTTP request or not, and acts accordingly. Everything
 between the original request and this response can be thought of
 as an "interruption" of the original HTTP exchange.

 When considering this flow in the context of an arbitrary application
 protocol and SASL, the RP and the client both must change their code
 to implement this SASL mechanism, but the IdP can remain untouched.
 The existing RP/client exchange that is tunneled through HTTP maps
 well to the tunneling of that same exchange in SASL. In the parlance
 of SASL [RFC4422], this mechanism is "client-first" for consistency
 with GS2. The steps are shown below:

 1. The server MAY advertise the SAML20EC and/or SAML20EC-PLUS
 mechanisms.

 2. The client initiates a SASL authentication with SAML20EC or
 SAML20EC-PLUS.

 3. The server sends the client a challenge consisting of a SOAP
 envelope containing its SAML <AuthnRequest>.

 4. The SASL client unpacks the SOAP message and communicates with
 its chosen IdP to relay the SAML <AuthnRequest> to it. This
 communication, and the authentication with the IdP, proceeds
 separately from the SASL process.

 5. Upon completion of the exchange with the IdP, the client responds
 to the SASL server with a SOAP envelope containing the SAML
 <Response> it obtained, or a SOAP fault, as warranted.

Cantor & Josefsson Expires November 07, 2013 [Page 6]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 6. The SASL Server indicates success or failure.

 Note: The details of the SAML processing, which are consistent with
 the Enhanced Client or Proxy (ECP) Profile (V2.0) [SAMLECP20], are
 such that the client MUST interact with the IdP in order to complete
 any SASL exchange with the RP. The assertions issued by the IdP for
 the purposes of the profile, and by extension this SASL mechanism,
 are short lived, and therefore cannot be cached by the client for
 later use.

 Encompassed in step four is the client-driven selection of the IdP,
 authentication to it, and the acquisition of a response to provide to
 the SASL server. These processes are all external to SASL.

 With all of this in mind, the typical flow appears as follows:

 SASL Serv. Client IdP
 |>-----(1)----->| | Advertisement
 | | |
 |<-----(2)-----<| | Initiation
 | | |
 |>-----(3)----->| | SASL Server Response
 | | |
 | |<- - -(4)- - >| SOAP AuthnRequest + user authn
 | | |
 |<-----(5)-----<| | SASL Client Response
 | | |
 |>-----(6)----->| | Server sends Outcome
 | | |

 ----- = SASL
 - - - = SOAP over HTTPS (external to SASL)

 Figure 2: Authentication flow

4. SAML SASL Mechanism Specification

 Based on the previous figures, the following operations are defined
 by the SAML SASL mechanism:

Cantor & Josefsson Expires November 07, 2013 [Page 7]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

4.1. Advertisement

 To advertise that a server supports this mechanism, during
 application session initiation, it displays the name "SAML20EC" and/
 or "SAML20EC-PLUS" in the list of supported SASL mechanisms (the
 latter indicating support for channel binding).

4.2. Initiation

 A client initiates "SAML20EC" or "SAML20EC-PLUS" authentication. If
 supported by the application protocol, the client MAY include an
 initial response, otherwise it waits until the server has issued an
 empty challenge (because the mechanism is client-first).

 The format of the initial client response ("init-resp") is as
 follows:

 hok = "urn:oasis:names:tc:SAML:2.0:cm:holder-of-key"

 mut = "urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp:2.0:" \
 "WantAuthnRequestsSigned"

 del = "y"

 init-resp = gs2-cb-flag "," [gs2-authzid] "," [hok] "," [mut] "," [del]

 The gs2-cb-flag flag MUST be set as defined in [RFC5801] to indicate
 whether the client supports channel binding. This takes the place of
 the PAOS HTTP header extension used in [SAMLECP20] to indicate
 channel binding support.

 The optional "gs2-authzid" field holds the authorization identity, as
 requested by the client.

 The optional "hok" field is a constant that signals the client’s
 support for stronger security by means of a locally held key. This
 takes the place of the PAOS HTTP header extension used in [SAMLECP20]
 to indicate "holder of key" support.

 The optional "mut" field is a constant that signals the client’s
 desire for mutual authentication. If set, the SASL server MUST
 digitally sign its SAML <AuthnRequest> message. The URN constant
 above is a single string; the linefeed is shown for RFC formatting
 reasons.

Cantor & Josefsson Expires November 07, 2013 [Page 8]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 The optional "del" field is a constant that signals the client’s
 desire for the acceptor to request an assertion usable for delegation
 of the client’s identity to the acceptor.

4.3. Server Response

 The SASL server responds with a SOAP envelope constructed in
 accordance with section 2.3.2 of [SAMLECP20]. This includes adhering
 to the SOAP header requirements of the SAML PAOS Binding
 [OASIS.saml-bindings-2.0-os], for compatibility with the existing
 profile. Various SOAP headers are also consumed by the client in
 exactly the same manner prescribed by that section.

4.4. User Authentication with Identity Provider

 Upon receipt of the Server Response (Section 4.3), the steps
 described in sections 2.3.3 through 2.3.6 of [SAMLECP20] are
 performed between the client and the chosen IdP. The means by which
 the client determines the IdP to use, and where it is located, are
 out of scope of this mechanism.

 The exact means of authentication to the IdP are also out of scope,
 but clients supporting this mechanism MUST support HTTP Basic
 Authentication as defined in [RFC2617] and TLS client authentication
 as defined in [RFC5246].

4.5. Client Response

 Assuming a response is obtained from the IdP, the client responds to
 the SASL server with a SOAP envelope constructed in accordance with
 section 2.3.7 of [SAMLECP20]. This includes adhering to the SOAP
 header requirements of the SAML PAOS Binding
 [OASIS.saml-bindings-2.0-os], for compatibility with the existing
 profile. If the client is unable to obtain a response from the IdP,
 or must otherwise signal, failure, it responds to the SASL server
 with a SOAP envelope containing a SOAP fault.

4.6. Outcome

 The SAML protocol exchange having completed, the SASL server will
 transmit the outcome to the client depending on local validation of
 the client responses. This outcome is transmitted in accordance with
 the application protocol in use.

4.7. Additional Notes

 Because this mechanism is an adaptation of an HTTP-based profile,
 there are a few requirements outlined in [SAMLECP20] that make

Cantor & Josefsson Expires November 07, 2013 [Page 9]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 reference to a response URL that is normally used to regulate where
 the client returns information to the RP. There are also security-
 related checks built into the profile that involve this location.

 For compatibility with existing IdP and profile behavior, and to
 provide for mutual authentication, the SASL server MUST populate the
 responseConsumerURL and AssertionConsumerServiceURL attributes with
 its service name. The parties then perform the steps described in
 [SAMLECP20] as usual.

 Similarly, the use of HTTP status signaling between the RP and client
 mandated by [SAMLECP20] may not be applicable.

5. SAML EC GSS-API Mechanism Specification

 This section and its sub-sections and all normative references of it
 not referenced elsewhere in this document are INFORMATIONAL for SASL
 implementors, but they are NORMATIVE for GSS-API implementors.

 The SAML SASL Enhanced Clients mechanism is also a GSS-API mechanism.
 The messages are the same, but a) the GS2 header on the client’s
 first message is excluded when SAML EC is used as a GSS-API
 mechanism, and b) the [RFC2743] section 3.1 initial context token
 header is prefixed to the client’s first authentication message
 (context token).

 The GSS-API mechanism OID for SAML EC is OID-TBD (IANA to assign: see
 IANA considerations). The DER encoding of the OID is TBD.

 The mutual_state request flag (GSS_C_MUTUAL_FLAG) MAY be set to TRUE,
 resulting in the "mutual-auth" option set in the initial client
 response. The security context mutual_state flag is set to TRUE only
 if the server digitally signs its SAML <AuthnRequest> message, and
 the identity provider signals this to the client in an
 <ecp:RequestAuthenticated> SOAP header block.

 If the mutual_state flag is not requested, or is not set, then the
 security layer managed by the application outside of the GSS-API
 mechanism is responsible for authenticating the acceptor. In this
 case, applications MUST match the server identity from the existing
 security layer with the target name. For TLS, this matching MUST be
 performed as discussed in [RFC6125]. For SSH, this matching MUST be
 performed as discussed in [RFC4462].

 The lifetime of a security context established with this mechanism
 SHOULD be limited by the value of a SessionNotOnOrAfter attribute, if
 any, in the <AuthnStatement> element(s) of the SAML assertion(s)
 received by the RP. By convention, in the rare case that multiple

Cantor & Josefsson Expires November 07, 2013 [Page 10]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 valid/confirmed assertions containing <AuthnStatement> elements are
 received, the most restrictive SessionNotOnOrAfter is generally
 applied.

5.1. GSS-API Credential Delegation

 This mechanism supports credential delegation through the issuance of
 SAML assertions that the issuing identity provider will accept as
 proof of authentication by a service on behalf of a subject. An
 initiator may request delegation of its credentials by setting the
 "del" option field in the initial client response to "y".

 An acceptor, upon receipt of this flag, requests a delegated
 assertion by including in its <AuthnRequest> message a <Conditions>
 element containing an <AudienceRestriction> identifying the IdP as a
 desired audience for the assertion(s) to be issued. Upon receipt of
 an assertion satisfying this property, and containing a
 <SubjectConfirmation> element that the acceptor can satisfy, the
 security context may have its deleg_state flag (GSS_C_DELEG_FLAG) set
 to TRUE.

 The identity provider, if it issues a delegated assertion to the
 acceptor, MUST include in the SOAP response to the initiator a
 <samlec:Delegated> SOAP header block, indicating that delegation was
 enabled. It has no content, other than mandatory SOAP attributes (an
 example follows):

 <samlec:Delegated xmlns:samlec="urn:ietf:params:xml:ns:samlec"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 S:mustUnderstand="1"
 S:actor="http://schemas.xmlsoap.org/soap/actor/next" />

 Upon receipt of such a header block, the initiator MUST fail the
 establishment of the security context if it did not request
 delegation in its initial client response to the acceptor. It SHOULD
 signal this failure to the acceptor with a SOAP fault message in its
 final client response.

 As noted previously, the exact means of client authentication to the
 IdP is formally out of scope of this mechanism. This extends to the
 use of a delegation assertion as a means of authentication by an
 acceptor acting as an initiator. In practice, some profile of
 [WSS-SAML] is used to attach the assertion and a confirmation proof
 to the SOAP message from the client to the IdP.

Cantor & Josefsson Expires November 07, 2013 [Page 11]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

5.2. GSS-API Channel Binding

 GSS-API channel binding [RFC5554] is a protected facility for
 exchanging a cryptographic name for an enclosing channel between the
 initiator and acceptor. The initiator sends channel binding data and
 the acceptor confirms that channel binding data has been checked.

 The acceptor SHOULD accept any channel binding provided by the
 initiator if null channel bindings are passed into
 gss_accept_sec_context. Protocols such as HTTP Negotiate [RFC4559]
 depend on this behavior of some Kerberos implementations.

 The exchange and verification of channel binding information is
 described by [SAMLECP20].

5.3. Session Key Derivation

 Some GSS-API features (discussed in the following sections) require a
 session key be established as a result of security context
 establishment. In the common case of a "bearer" assertion in SAML, a
 mechanism is defined to communicate a key to both parties via the
 identity provider. In other cases such as assertions based on
 "holder of key" confirmation bound to a client-controlled key, there
 may be additional methods defined in the future, and extension points
 are provided for this purpose.

 Information defining or describing the session key, or a process for
 deriving one, is communicated between the initiator and acceptor
 using a <samlec:SessionKey> element, defined by the XML schema in
 Appendix A. This element is a SOAP header block. The content of the
 element further depends on the specific use in the mechanism. The
 Algorithm XML attribute identifies a mechanism for key derivation.
 It is omitted to identify the use of an Identity Provider-generated
 key (see following section) or will contain a URI value identifying a
 derivation mechanism defined outside this specification. Each header
 block’s mustUnderstand and actor attributes MUST be set to "1" and
 "http://schemas.xmlsoap.org/soap/actor/next" respectively.

 In the acceptor’s first response message containing its SAML request,
 one or more <samlec:SessionKey> SOAP header blocks MUST be included.
 The element MUST contain one or more <EncType> elements containing
 the name of a supported encryption type defined in accordance with
 [RFC3961]. Encryption types should be provided in order of
 preference by the acceptor.

Cantor & Josefsson Expires November 07, 2013 [Page 12]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 In the final client response message, a single <samlec:SessionKey>
 SOAP header block MUST be included. A single <EncType> element MUST
 be included to identify the chosen encryption type used by the
 initiator.

 All parties MUST support the "aes128-cts-hmac-sha1-96" encryption
 type, defined by [RFC3962].

 Further details depend on the mechanism used, one of which is
 described in the following section.

5.3.1. Generated by Identity Provider

 The identity provider, if issuing a bearer assertion for use with
 this mechanism, SHOULD provide a generated key for use by the
 initiator and acceptor. This key is used as pseudorandom input to
 the "random-to-key" function for a specific encryption type defined
 in accordance with [RFC3961]. The key is base64-encoded and placed
 inside a <samlec:GeneratedKey> element. The identity provider does
 not participate in the selection of the encryption type and simply
 generates enough pseudorandom bits to supply key material to the
 other parties.

 The resulting <samlec:GeneratedKey> element is placed within the
 <saml:Advice> element of the assertion issued. The identity provider
 SHOULD encrypt the assertion; if channel binding is not used, the
 assertion MUST be encrypted. If multiple assertions are issued
 (allowed, but not typical), the element need only be included in one
 of the assertions issued for use by the relying party.

 A copy of the element is also added as a SOAP header block in the
 response from the identity provider to the client (and then removed
 when constructing the response to the acceptor).

 If this mechanism is used by the initiator, then the
 <samlec:SessionKey> SOAP header block attached to the final client
 response message will identify this via the omission of the Algorithm
 attribute and will identify the chosen encryption type using the
 <samlec:EncType> element:

Cantor & Josefsson Expires November 07, 2013 [Page 13]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 <samlec:SessionKey xmlns:samlec="urn:ietf:params:xml:ns:samlec"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 S:mustUnderstand="1"
 S:actor="http://schemas.xmlsoap.org/soap/actor/next">
 <samlec:EncType>aes128-cts-hmac-sha1-96</samlec:EncType>
 <samlec:SessionKey>

 Both the initiator and acceptor MUST execute the chosen encryption
 type’s random-to-key function over the pseudorandom value provided by
 the <samlec:GeneratedKey> element. The result of that function is
 used as the protocol key.

5.3.2. Alternate Key Derivation Mechanisms

 In the event that a client is proving possession of a secret or
 private key, a formal key agreement algorithm might be supported.
 This specification does not define such a mechanism, but the
 <samlec:SessionKey> element is extensible to allow for future work in
 this space by means of the Algorithm attribute and an optional
 <ds:KeyInfo> child element to carry extensible content related to key
 establishment.

 However a key is derived, the <samlec:EncType> element will identify
 the chosen encrytion type, and both the initiator and acceptor MUST
 execute the encryption type’s random-to-key function over the result
 of the key agreement or derivation process. The result of that
 function is used as the protocol key.

5.4. Per-Message Tokens

 The per-message tokens SHALL be the same as those for the Kerberos V5
 GSS-API mechanism [RFC4121] (see Section 4.2 and sub-sections).

 The replay_det_state (GSS_C_REPLAY_FLAG), sequence_state
 (GSS_C_SEQUENCE_FLAG), conf_avail (GSS_C_CONF_FLAG) and integ_avail
 (GSS_C_INTEG_FLAG) security context flags are always set to TRUE.

 The "protocol key" SHALL be a key established in a manner described
 in the previous section. "Specific keys" are then derived as usual
 as described in Section 2 of [RFC4121], [RFC3961], and [RFC3962].

 The terms "protocol key" and "specific key" are Kerberos V5 terms
 [RFC3961].

 SAML20EC is PROT_READY as soon as the SAML response message has been
 seen.

Cantor & Josefsson Expires November 07, 2013 [Page 14]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

5.5. Pseudo-Random Function (PRF)

 The GSS-API has been extended with a Pseudo-Random Function (PRF)
 interface in [RFC4401]. The purpose is to enable applications to
 derive a cryptographic key from an established GSS-API security
 context. This section defines a GSS_Pseudo_random that is applicable
 for the SAML20EC GSS-API mechanism.

 The GSS_Pseudo_random() [RFC4401] SHALL be the same as for the
 Kerberos V5 GSS-API mechanism [RFC4402]. There is no acceptor-
 asserted sub-session key, thus GSS_C_PRF_KEY_FULL and
 GSS_C_PRF_KEY_PARTIAL are equivalent. The protocol key to be used
 for the GSS_Pseudo_random() SHALL be the same as the key defined in
 the previous section.

5.6. GSS-API Principal Name Types for SAML EC

 Services that act as SAML relying parties are typically identified by
 means of a URI called an "entityID". Clients that are named in the
 <Subject> element of a SAML assertion are typically identified by
 means of a <NameID> element, which is an extensible XML structure
 containing, at minimum, an element value that names the subject and a
 Format attribute.

 In practice, a GSS-API client and server are unlikely to know in
 advance the name of the initiator as it will be expressed by the SAML
 identity provider upon completion of authentication. It is also
 generally incorrect to assume that a particular acceptor name will
 directly map into a particular RP entityID, because there is often a
 layer of naming indirection between particular services on hosts and
 the identity of a relying party in SAML terms.

 To avoid complexity, and avoid unnecessary use of XML within the
 naming layer, the SAML EC mechanism relies on the common/expected
 name types used for acceptors and initiators,
 GSS_C_NT_HOSTBASED_SERVICE and GSS_C_NT_USER_NAME. The mechanism
 provides for validation of the host-based service name in conjunction
 with the SAML exchange. It does not attempt to solve the problem of
 mapping between an initiator "username", the user’s identity while
 authenticating to the identity provider, and the information supplied
 by the identity provider to the acceptor. These relationships must
 be managed through local policy at the initiator and acceptor.

 SAML-based information associated with the initiator SHOULD be
 expressed to the acceptor using GSS-API naming extensions [RFC6680],
 in accordance with [I-D.ietf-abfab-gss-eap-naming].

Cantor & Josefsson Expires November 07, 2013 [Page 15]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

5.6.1. User Naming Considerations

 The GSS_C_NT_USER_NAME form represents the name of an individual
 user. Clients often rely on this value to determine the appropriate
 credentials to use in authenticating to the identity provider, and
 supply it to the server for use by the acceptor.

 Upon successful completion of this mechanism, the server MUST
 construct the authenticated initiator name based on the <saml:NameID>
 element in the assertion it successfully validated. The name is
 constructed as a UTF-8 string in the following form:

 name = element-value "!" Format "!" NameQualifier
 "!" SPNameQualifier "!" SPProvidedID

 The "element-value" token refers to the content of the <saml:NameID>
 element. The other tokens refer to the identically named XML
 attributes defined for use with the element. If an attribute is not
 present, which is common, it is omitted (i.e., replaced with the
 empty string). The Format value is never omitted; if not present,
 the SAML-equivalent value of "urn:oasis:names:tc:SAML:1.1:nameid-
 format:unspecified" is used.

 Not all SAML assertions contain a <saml:NameID> element. In the
 event that no such element is present, including the exceptional
 cases of a <saml:BaseID> element or a <saml:EncryptedID> element that
 cannot be decrypted, the GSS_C_NT_ANONYMOUS name type MUST be used
 for the initiator name.

 As noted in the previous section, it is expected that most
 applications able to rely on SAML authentication would make use of
 naming extensions to obtain additional information about the user
 based on the assertion. This is particularly true in the anonymous
 case, or in cases in which the SAML name is pseudonymous or transient
 in nature. The ability to express the SAML name in
 GSS_C_NT_USER_NAME form is intended for compatibility with
 applications that cannot make use of additional information.

5.6.2. Service Naming Considerations

 The GSS_C_NT_HOSTBASED_SERVICE name form represents a service running
 on a host; it is textually represented as "service@host". This name
 form is required by most SASL profiles and is used by many existing
 applications that use the Kerberos GSS-API mechanism. Such a name is
 used directly by this mechanism as the effective
 AssertionConsumerService "location" associated with the service.

Cantor & Josefsson Expires November 07, 2013 [Page 16]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 This value is used in the construction of the responseConsumerURL and
 AssertionConsumerServiceURL attributes, and for eventual comparison
 and validation by the client before completing the exchange. The
 value MUST be securely associated with the SAML entityID claimed by
 the server by the identity provider, such as through the use of SAML
 metadata [OASIS.saml-metadata-2.0-os].

6. Example

 Suppose the user has an identity at the SAML IdP saml.example.org and
 a Jabber Identifier (jid) "somenode@example.com", and wishes to
 authenticate his XMPP connection to xmpp.example.com (and example.com
 and example.org have established a SAML-capable trust relationship).
 The authentication on the wire would then look something like the
 following:

 Step 1: Client initiates stream to server:

 <stream:stream xmlns=’jabber:client’
 xmlns:stream=’http://etherx.jabber.org/streams’
 to=’example.com’ version=’1.0’>

 Step 2: Server responds with a stream tag sent to client:

 <stream:stream
 xmlns=’jabber:client’ xmlns:stream=’http://etherx.jabber.org/streams’
 id=’some_id’ from=’example.com’ version=’1.0’>

 Step 3: Server informs client of available authentication mechanisms:

 <stream:features>
 <mechanisms xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 <mechanism>SAML20EC</mechanism>
 </mechanisms>
 </stream:features>

Cantor & Josefsson Expires November 07, 2013 [Page 17]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 Step 4: Client selects an authentication mechanism and sends the
 initial client response (it is base64 encoded as specified by the
 XMPP SASL protocol profile):

 <auth xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’ mechanism=’SAML20EC’>
 biwsLCw=
 </auth>

 The initial response is "n,,,," which signals that channel binding is
 not used, there is no authorization identity, and the client does not
 support key-based confirmation, or want mutual authentication or
 delegation.

 Step 5: Server sends a challenge to client in the form of a SOAP
 envelope containing its SAML <AuthnRequest>:

 <challenge xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
 PFM6RW52ZWxvcGUKICAgIHhtbG5zOnNhbWw9InVybjpvYXNpczpuYW1lczp0YzpT
 QU1MOjIuMDphc3NlcnRpb24iCiAgICB4bWxuczpzYW1scD0idXJuOm9hc2lzOm5h
 bWVzOnRjOlNBTUw6Mi4wOnByb3RvY29sIgogICAgeG1sbnM6Uz0iaHR0cDovL3Nj
 aGVtYXMueG1sc29hcC5vcmcvc29hcC9lbnZlbG9wZS8iPgogIDxTOkhlYWRlcj4K
 ICAgIDxwYW9zOlJlcXVlc3QgeG1sbnM6cGFvcz0idXJuOmxpYmVydHk6cGFvczoy
 MDAzLTA4IgogICAgICBtZXNzYWdlSUQ9ImMzYTRmOGI5YzJkIiBTOm11c3RVbmRl
 cnN0YW5kPSIxIgogICAgICBTOmFjdG9yPSJodHRwOi8vc2NoZW1hcy54bWxzb2Fw
 Lm9yZy9zb2FwL2FjdG9yL25leHQiCiAgICAgIHJlc3BvbnNlQ29uc3VtZXJVUkw9
 InhtcHBAeG1wcC5leGFtcGxlLmNvbSIKICAgICAgc2VydmljZT0idXJuOm9hc2lz
 Om5hbWVzOnRjOlNBTUw6Mi4wOnByb2ZpbGVzOlNTTzplY3AiLz4KICAgIDxlY3A6
 UmVxdWVzdAogICAgICB4bWxuczplY3A9InVybjpvYXNpczpuYW1lczp0YzpTQU1M
 OjIuMDpwcm9maWxlczpTU086ZWNwIgogICAgICBTOmFjdG9yPSJodHRwOi8vc2No
 ZW1hcy54bWxzb2FwLm9yZy9zb2FwL2FjdG9yL25leHQiCiAgICAgIFM6bXVzdFVu
 ZGVyc3RhbmQ9IjEiIFByb3ZpZGVyTmFtZT0iSmFiYmVyIGF0IGV4YW1wbGUuY29t
 Ij4KICAgICAgPHNhbWw6SXNzdWVyPmh0dHBzOi8veG1wcC5leGFtcGxlLmNvbTwv
 c2FtbDpJc3N1ZXI+CiAgICA8L2VjcDpSZXF1ZXN0PgogICAgPHNhbWxlYzpTZXNz
 aW9uS2V5IHhtbG5zOnNhbWxlYz0idXJuOmlldGY6cGFyYW1zOnhtbDpuczpzYW1s
 ZWMiCiAgICAgIHhtbG5zOlM9Imh0dHA6Ly9zY2hlbWFzLnhtbHNvYXAub3JnL3Nv
 YXAvZW52ZWxvcGUvIgogICAgICBTOm11c3RVbmRlcnN0YW5kPSIxIgogICAgICBT
 OmFjdG9yPSJodHRwOi8vc2NoZW1hcy54bWxzb2FwLm9yZy9zb2FwL2FjdG9yL25l
 eHQiPgogICAgICA8c2FtbGVjOkVuY1R5cGU+YWVzMTI4LWN0cy1obWFjLXNoYTEt
 OTY8L3NhbWxlYzpFbmNUeXBlPgogICAgICA8c2FtbGVjOkVuY1R5cGU+YWVzMjU2
 LWN0cy1obWFjLXNoYTEtOTY8L3NhbWxlYzpFbmNUeXBlPgogICAgPHNhbWxlYzpT
 ZXNzaW9uS2V5PgogIDwvUzpIZWFkZXI+CiAgPFM6Qm9keT4KICAgIDxzYW1scDpB
 dXRoblJlcXVlc3QKICAgICAgSUQ9ImMzYTRmOGI5YzJkIiBWZXJzaW9uPSIyLjAi
 IElzc3VlSW5zdGFudD0iMjAwNy0xMi0xMFQxMTozOTozNFoiCiAgICAgIFByb3Rv
 Y29sQmluZGluZz0idXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6Mi4wOmJpbmRpbmdz

Cantor & Josefsson Expires November 07, 2013 [Page 18]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 OlBBT1MiCiAgICAgIEFzc2VydGlvbkNvbnN1bWVyU2VydmljZVVSTD0ieG1wcEB4
 bXBwLmV4YW1wbGUuY29tIj4KICAgICAgPHNhbWw6SXNzdWVyIHhtbG5zOnNhbWw9
 InVybjpvYXNpczpuYW1lczp0YzpTQU1MOjIuMDphc3NlcnRpb24iPgogICAgICAg
 aHR0cHM6Ly94bXBwLmV4YW1wbGUuY29tCiAgICAgIDwvc2FtbDpJc3N1ZXI+CiAg
 ICAgIDxzYW1scDpOYW1lSURQb2xpY3kgQWxsb3dDcmVhdGU9InRydWUiCiAgICAg
 ICAgRm9ybWF0PSJ1cm46b2FzaXM6bmFtZXM6dGM6U0FNTDoyLjA6bmFtZWlkLWZv
 cm1hdDpwZXJzaXN0ZW50Ii8+CiAgICAgIDxzYW1scDpSZXF1ZXN0ZWRBdXRobkNv
 bnRleHQgQ29tcGFyaXNvbj0iZXhhY3QiPgogICAgICAgPHNhbWw6QXV0aG5Db250
 ZXh0Q2xhc3NSZWY+CiAgICAgICB1cm46b2FzaXM6bmFtZXM6dGM6U0FNTDoyLjA6
 YWM6Y2xhc3NlczpQYXNzd29yZFByb3RlY3RlZFRyYW5zcG9ydAogICAgICAgPC9z
 YW1sOkF1dGhuQ29udGV4dENsYXNzUmVmPgogICAgICA8L3NhbWxwOlJlcXVlc3Rl
 ZEF1dGhuQ29udGV4dD4gCiAgICA8L3NhbWxwOkF1dGhuUmVxdWVzdD4KICA8L1M6
 Qm9keT4KPC9TOkVudmVsb3BlPg==
 </challenge>

 The Base64 [RFC4648] decoded envelope:

 <S:Envelope
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <paos:Request xmlns:paos="urn:liberty:paos:2003-08"
 messageID="c3a4f8b9c2d" S:mustUnderstand="1"
 S:actor="http://schemas.xmlsoap.org/soap/actor/next"
 responseConsumerURL="xmpp@xmpp.example.com"
 service="urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp"/>
 <ecp:Request
 xmlns:ecp="urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp"
 S:actor="http://schemas.xmlsoap.org/soap/actor/next"
 S:mustUnderstand="1" ProviderName="Jabber at example.com">
 <saml:Issuer>https://xmpp.example.com</saml:Issuer>
 </ecp:Request>
 <samlec:SessionKey xmlns:samlec="urn:ietf:params:xml:ns:samlec"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 S:mustUnderstand="1"
 S:actor="http://schemas.xmlsoap.org/soap/actor/next">
 <samlec:EncType>aes128-cts-hmac-sha1-96</samlec:EncType>
 <samlec:EncType>aes256-cts-hmac-sha1-96</samlec:EncType>
 <samlec:SessionKey>
 </S:Header>
 <S:Body>
 <samlp:AuthnRequest
 ID="c3a4f8b9c2d" Version="2.0" IssueInstant="2007-12-10T11:39:34Z"
 ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:PAOS"

Cantor & Josefsson Expires November 07, 2013 [Page 19]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 AssertionConsumerServiceURL="xmpp@xmpp.example.com">
 <saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 https://xmpp.example.com
 </saml:Issuer>
 <samlp:NameIDPolicy AllowCreate="true"
 Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"/>
 <samlp:RequestedAuthnContext Comparison="exact">
 <saml:AuthnContextClassRef>
 urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
 </saml:AuthnContextClassRef>
 </samlp:RequestedAuthnContext>
 </samlp:AuthnRequest>
 </S:Body>
 </S:Envelope>

 Step 5 (alt): Server returns error to client:

 <failure xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
 <incorrect-encoding/>
 </failure>
 </stream:stream>

 Step 6: Client relays the request to IdP in a SOAP message
 transmitted over HTTP (over TLS). HTTP portion not shown, use of
 Basic Authentication is assumed. The body of the SOAP envelope is
 exactly the same as received in the previous step.

 <S:Envelope
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <samlp:AuthnRequest>
 <!-- same as above -->
 </samlp:AuthnRequest>
 </S:Body>
 </S:Envelope>

 Step 7: IdP responds to client with a SOAP response containing a SAML
 <Response> containing a short-lived SSO assertion (shown as an

Cantor & Josefsson Expires November 07, 2013 [Page 20]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 encrypted variant in the example). A generated key is included in
 the assertion and in a header for the client.

 <S:Envelope
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <ecp:Response S:mustUnderstand="1"
 S:actor="http://schemas.xmlsoap.org/soap/actor/next"
 AssertionConsumerServiceURL="xmpp@xmpp.example.com"/>
 <samlec:GeneratedKey xmlns:samlec="urn:ietf:params:xml:ns:samlec">
 3w1wSBKUosRLsU69xGK7dg==
 </samlec:GeneratedKey>
 </S:Header>
 <S:Body>
 <samlp:Response ID="d43h94r389309r" Version="2.0"
 IssueInstant="2007-12-10T11:42:34Z" InResponseTo="c3a4f8b9c2d"
 Destination="xmpp@xmpp.example.com">
 <saml:Issuer>https://saml.example.org</saml:Issuer>
 <samlp:Status>
 <samlp:StatusCode
 Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
 </samlp:Status>
 <saml:EncryptedAssertion>
 <!-- contents elided, copy of samlec:GeneratedKey in Advice -->
 </saml:EncryptedAssertion>
 </samlp:Response>
 </S:Body>
 </S:Envelope>

 Step 8: Client sends SOAP envelope containing the SAML <Response> as
 a response to the SASL server’s challenge:

 <response xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
 PFM6RW52ZWxvcGUKICAgIHhtbG5zOnNhbWw9InVybjpvYXNpczpuYW1lczp0YzpT
 QU1MOjIuMDphc3NlcnRpb24iCiAgICB4bWxuczpzYW1scD0idXJuOm9hc2lzOm5h
 bWVzOnRjOlNBTUw6Mi4wOnByb3RvY29sIgogICAgeG1sbnM6Uz0iaHR0cDovL3Nj
 aGVtYXMueG1sc29hcC5vcmcvc29hcC9lbnZlbG9wZS8iPgogIDxTOkhlYWRlcj4K
 ICAgIDxwYW9zOlJlc3BvbnNlIHhtbG5zOnBhb3M9InVybjpsaWJlcnR5OnBhb3M6
 MjAwMy0wOCIKICAgICAgUzphY3Rvcj0iaHR0cDovL3NjaGVtYXMueG1sc29hcC5v
 cmcvc29hcC9hY3Rvci9uZXh0IgogICAgICBTOm11c3RVbmRlcnN0YW5kPSIxIiBy
 ZWZUb01lc3NhZ2VJRD0iNmMzYTRmOGI5YzJkIi8+CiAgICA8c2FtbGVjOlNlc3Np
 b25LZXkgeG1sbnM6c2FtbGVjPSJ1cm46aWV0ZjpwYXJhbXM6eG1sOm5zOnNhbWxl

Cantor & Josefsson Expires November 07, 2013 [Page 21]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 YyIKICAgICAgeG1sbnM6Uz0iaHR0cDovL3NjaGVtYXMueG1sc29hcC5vcmcvc29h
 cC9lbnZlbG9wZS8iCiAgICAgIFM6bXVzdFVuZGVyc3RhbmQ9IjEiCiAgICAgIFM6
 YWN0b3I9Imh0dHA6Ly9zY2hlbWFzLnhtbHNvYXAub3JnL3NvYXAvYWN0b3IvbmV4
 dCI+CiAgICAgIDxzYW1sZWM6RW5jVHlwZT5hZXMxMjgtY3RzLWhtYWMtc2hhMS05
 Njwvc2FtbGVjOkVuY1R5cGU+CiAgICA8c2FtbGVjOlNlc3Npb25LZXk+CiAgPC9T
 OkhlYWRlcj4KICA8UzpCb2R5PgogICAgPHNhbWxwOlJlc3BvbnNlIElEPSJkNDNo
 OTRyMzg5MzA5ciIgVmVyc2lvbj0iMi4wIgogICAgICAgIElzc3VlSW5zdGFudD0i
 MjAwNy0xMi0xMFQxMTo0MjozNFoiIEluUmVzcG9uc2VUbz0iYzNhNGY4YjljMmQi
 CiAgICAgICAgRGVzdGluYXRpb249InhtcHBAeG1wcC5leGFtcGxlLmNvbSI+CiAg
 ICAgIDxzYW1sOklzc3Vlcj5odHRwczovL3NhbWwuZXhhbXBsZS5vcmc8L3NhbWw6
 SXNzdWVyPgogICAgICA8c2FtbHA6U3RhdHVzPgogICAgICAgIDxzYW1scDpTdGF0
 dXNDb2RlCiAgICAgICAgICAgIFZhbHVlPSJ1cm46b2FzaXM6bmFtZXM6dGM6U0FN
 TDoyLjA6c3RhdHVzOlN1Y2Nlc3MiLz4KICAgICAgPC9zYW1scDpTdGF0dXM+CiAg
 ICAgIDxzYW1sOkVuY3J5cHRlZEFzc2VydGlvbj4KICAgICAgICA8IS0tIGNvbnRl
 bnRzIGVsaWRlZCwgY29weSBvZiBzYW1sZWM6R2VuZXJhdGVkS2V5IGluIEFkdmlj
 ZSAtLT4KICAgICAgPC9zYW1sOkVuY3J5cHRlZEFzc2VydGlvbj4KICAgIDwvc2Ft
 bHA6UmVzcG9uc2U+CiAgPC9TOkJvZHk+CjwvUzpFbnZlbG9wZT4K
 </response>

 The Base64 [RFC4648] decoded envelope:

 <S:Envelope
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <paos:Response xmlns:paos="urn:liberty:paos:2003-08"
 S:actor="http://schemas.xmlsoap.org/soap/actor/next"
 S:mustUnderstand="1" refToMessageID="6c3a4f8b9c2d"/>
 <samlec:SessionKey xmlns:samlec="urn:ietf:params:xml:ns:samlec"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 S:mustUnderstand="1"
 S:actor="http://schemas.xmlsoap.org/soap/actor/next">
 <samlec:EncType>aes128-cts-hmac-sha1-96</samlec:EncType>
 <samlec:SessionKey>
 </S:Header>
 <S:Body>
 <samlp:Response ID="d43h94r389309r" Version="2.0"
 IssueInstant="2007-12-10T11:42:34Z" InResponseTo="c3a4f8b9c2d"
 Destination="xmpp@xmpp.example.com">
 <saml:Issuer>https://saml.example.org</saml:Issuer>
 <samlp:Status>
 <samlp:StatusCode
 Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
 </samlp:Status>

Cantor & Josefsson Expires November 07, 2013 [Page 22]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 <saml:EncryptedAssertion>
 <!-- contents elided, copy of samlec:GeneratedKey in Advice -->
 </saml:EncryptedAssertion>
 </samlp:Response>
 </S:Body>
 </S:Envelope>

 Step 9: Server informs client of successful authentication:

 <success xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’/>

 Step 9 (alt): Server informs client of failed authentication:

 <failure xmlns=’urn:ietf:params:xml:ns:xmpp-sasl’>
 <temporary-auth-failure/>
 </failure>
 </stream:stream>

 Step 10: Client initiates a new stream to server:

 <stream:stream xmlns=’jabber:client’
 xmlns:stream=’http://etherx.jabber.org/streams’
 to=’example.com’ version=’1.0’>

 Step 11: Server responds by sending a stream header to client along
 with any additional features (or an empty features element):

 <stream:stream xmlns=’jabber:client’
 xmlns:stream=’http://etherx.jabber.org/streams’
 id=’c2s_345’ from=’example.com’ version=’1.0’>
 <stream:features>
 <bind xmlns=’urn:ietf:params:xml:ns:xmpp-bind’/>
 <session xmlns=’urn:ietf:params:xml:ns:xmpp-session’/>
 </stream:features>

Cantor & Josefsson Expires November 07, 2013 [Page 23]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 Step 12: Client binds a resource:

 <iq type=’set’ id=’bind_1’>
 <bind xmlns=’urn:ietf:params:xml:ns:xmpp-bind’>
 <resource>someresource</resource>
 </bind>
 </iq>

 Step 13: Server informs client of successful resource binding:

 <iq type=’result’ id=’bind_1’>
 <bind xmlns=’urn:ietf:params:xml:ns:xmpp-bind’>
 <jid>somenode@example.com/someresource</jid>
 </bind>
 </iq>

 Please note: line breaks were added to the base64 for clarity.

7. Security Considerations

 This section will address only security considerations associated
 with the use of SAML with SASL applications. For considerations
 relating to SAML in general, the reader is referred to the SAML
 specification and to other literature. Similarly, for general SASL
 Security Considerations, the reader is referred to that
 specification.

 Version 2.0 of the Enhanced Client or Proxy Profile [SAMLECP20] adds
 optional support for channel binding and use of "Holder of Key"
 subject confirmation. The former is strongly recommended for use
 with this mechanism to detect "Man in the Middle" attacks between the
 client and the RP without relying on flawed commercial TLS
 infrastructure. The latter may be impractical in many cases, but is
 a valuable way of strengthening client authentication, protecting
 against phishing, and improving the overall mechanism.

7.1. Risks Left Unaddressed

Cantor & Josefsson Expires November 07, 2013 [Page 24]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 The adaptation of a web-based profile that is largely designed around
 security-oblivious clients and a bearer model for security token
 validation results in a number of basic security exposures that
 should be weighed against the compatibility and client simplification
 benefits of this mechanism.

 When channel binding is not used, protection against "Man in the
 Middle" attacks is left to lower layer protocols such as TLS, and the
 development of user interfaces able to implement that has not been
 effectively demonstrated. Failure to detect a MITM can result in
 phishing of the user’s credentials if the attacker is between the
 client and IdP, or the theft and misuse of a short-lived credential
 (the SAML assertion) if the attacker is able to impersonate a RP.
 SAML allows for source address checking as a minor mitigation to the
 latter threat, but this is often impractical. IdPs can mitigate to
 some extent the exposure of personal information to RP attackers by
 encrypting assertions with authenticated keys.

7.2. User Privacy

 The IdP is aware of each RP that a user logs into. There is nothing
 in the protocol to hide this information from the IdP. It is not a
 requirement to track the activity, but there is nothing technically
 that prohibits the collection of this information. Servers should be
 aware that SAML IdPs will track - to some extent - user access to
 their services. This exposure extends to the use of session keys
 generated by the IdP to secure messages between the parties, but note
 that when bearer assertions are involved, the IdP can freely
 impersonate the user to any relying party in any case.

 It is also out of scope of the mechanism to determine under what
 conditions an IdP will release particular information to a relying
 party, and it is generally unclear in what fashion user consent could
 be established in real time for the release of particular
 information. The SOAP exchange with the IdP does not preclude such
 interaction, but neither does it define that interoperably.

7.3. Collusion between RPs

 Depending on the information supplied by the IdP, it may be possible
 for RPs to correlate data that they have collected. By using the
 same identifier to log into every RP, collusion between RPs is
 possible. SAML supports the notion of pairwise, or targeted/
 directed, identity. This allows the IdP to manage opaque, pairwise
 identifiers for each user that are specific to each RP. However,
 correlation is often possible based on other attributes supplied, and
 is generally a topic that is beyond the scope of this mechanism. It
 is sufficient to say that this mechanism does not introduce new

Cantor & Josefsson Expires November 07, 2013 [Page 25]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 correlation opportunities over and above the use of SAML in web-based
 use cases.

8. IANA Considerations

8.1. GSS-API and SASL Mechanism Registration

 The IANA is requested to assign a new entry for this GSS mechanism in
 the sub-registry for SMI Security for Mechanism Codes, whose prefix
 is iso.org.dod.internet.security.mechanisms (1.3.6.1.5.5) and to
 reference this specification in the registry.

 The IANA is requested to register the following SASL profile:

 SASL mechanism profiles: SAML20EC and SAML20EC-PLUS

 Security Considerations: See this document

 Published Specification: See this document

 For further information: Contact the authors of this document.

 Owner/Change controller: the IETF

 Note: None

8.2. XML Namespace Name for SAML-EC

 A URN sub-namespace for XML constructs introduced by this mechanism
 is defined as follows:

 URI: urn:ietf:params:xml:ns:samlec

 Specification: See Appendix A of this document.

 Description: This is the XML namespace name for XML constructs
 introduced by the SAML Enhanced Client SASL and GSS-API Mechanisms.

 Registrant Contact: the IESG

9. References

9.1. Normative References

 [OASIS.saml-bindings-2.0-os]

Cantor & Josefsson Expires November 07, 2013 [Page 26]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 Cantor, S., Hirsch, F., Kemp, J., Philpott, R., and E.
 Maler, "Bindings for the OASIS Security Assertion Markup
 Language (SAML) V2.0", OASIS Standard saml-
 bindings-2.0-os, March 2005.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-
 core-2.0-os, March 2005.

 [OASIS.saml-profiles-2.0-os]
 Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra,
 P., Philpott, R., and E. Maler, "Profiles for the OASIS
 Security Assertion Markup Language (SAML) V2.0", OASIS
 Standard OASIS.saml-profiles-2.0-os, March 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2617] Franks, J., Hallam-Baker, P.M., Hostetler, J.L., Lawrence,
 S.D., Leach, P.J., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617, June 1999.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
 "Generic Security Service Application Program Interface
 (GSS-API) Authentication and Key Exchange for the Secure
 Shell (SSH) Protocol", RFC 4462, May 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [SAMLECP20]

Cantor & Josefsson Expires November 07, 2013 [Page 27]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 Cantor, S., "SAML V2.0 Enhanced Client or Proxy Profile
 Version 2.0", OASIS Working Draft OASIS.sstc-saml-
 ecp-v2.0-wd07, April 2013.

 [W3C.soap11]
 Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
 Mendelsohn, N., Nielsen, H., Thatte, S., and D. Winer,
 "Simple Object Access Protocol (SOAP) 1.1", W3C Note
 soap11, May 2000, <http://www.w3.org/TR/SOAP/>.

9.2. Normative References for GSS-API Implementers

 [I-D.ietf-abfab-gss-eap-naming]
 Hartman, S. and J. Howlett, "Name Attributes for the GSS-
 API EAP mechanism", draft-ietf-abfab-gss-eap-naming-07
 (work in progress), November 2012.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC3962] Raeburn, K., "Advanced Encryption Standard (AES)
 Encryption for Kerberos 5", RFC 3962, February 2005.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121, July
 2005.

 [RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
 Extension for the Generic Security Service Application
 Program Interface (GSS-API)", RFC 4401, February 2006.

 [RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
 Kerberos V Generic Security Service Application Program
 Interface (GSS-API) Mechanism", RFC 4402, February 2006.

 [RFC5554] Williams, N., "Clarifications and Extensions to the
 Generic Security Service Application Program Interface
 (GSS-API) for the Use of Channel Bindings", RFC 5554, May
 2009.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

Cantor & Josefsson Expires November 07, 2013 [Page 28]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 [RFC6680] Williams, N., Johansson, L., Hartman, S., and S.
 Josefsson, "Generic Security Service Application
 Programming Interface (GSS-API) Naming Extensions", RFC
 6680, August 2012.

9.3. Informative References

 [OASIS.saml-metadata-2.0-os]
 Cantor, S., Moreh, J., Philpott, R., and E. Maler,
 "Metadata for the Security Assertion Markup Language
 (SAML) V2.0", OASIS Standard saml-metadata-2.0-os, March
 2005.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3920] Saint-Andre, P., Ed., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 3920, October 2004.

 [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
 Kerberos and NTLM HTTP Authentication in Microsoft
 Windows", RFC 4559, June 2006.

 [W3C.REC-xmlschema-1]
 Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
 "XML Schema Part 1: Structures", W3C REC-xmlschema-1, May
 2001, <http://www.w3.org/TR/xmlschema-1/>.

 [WSS-SAML]
 Monzillo, R., "Web Services Security SAML Token Profile
 Version 1.1.1", OASIS Standard OASIS.wss-SAMLTokenProfile,
 May 2012.

Appendix A. XML Schema

 The following schema formally defines the
 "urn:ietf:params:xml:ns:samlec" namespace used in this document, in
 conformance with [W3C.REC-xmlschema-1] While XML validation is
 optional, the schema that follows is the normative definition of the
 constructs it defines. Where the schema differs from any prose in
 this specification, the schema takes precedence.

 <schema
 targetNamespace="urn:ietf:params:xml:ns:samlec"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

Cantor & Josefsson Expires November 07, 2013 [Page 29]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:samlec="urn:ietf:params:xml:ns:samlec"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 blockDefault="substitution"
 version="1.0">

 <import namespace="http://www.w3.org/2000/09/xmldsig#"/>
 <import namespace="http://schemas.xmlsoap.org/soap/envelope/"/>

 <element name="SessionKey" type="samlec:SessionKeyType"/>
 <complexType name="SessionKeyType">
 <sequence>
 <element ref="samlec:EncType" maxOccurs="unbounded"/>
 <element ref="ds:KeyInfo" minOccurs="0"/>
 </sequence>
 <attribute ref="S:mustUnderstand" use="required"/>
 <attribute ref="S:actor" use="required"/>
 <attribute name="Algorithm"/>
 </complexType>

 <element name="EncType" type="string"/>

 <element name="GeneratedKey" type="samlec:GeneratedKeyType"/>
 <complexType name="GeneratedKeyType">
 <simpleContent>
 <extension base="base64Binary">
 <attribute ref="S:mustUnderstand"/>
 <attribute ref="S:actor"/>
 </extension>
 </simpleContent>
 </complexType>

 <element name="Delegated" type="samlec:DelegatedType"/>
 <complexType name="DelegatedType">
 <sequence/>
 <attribute ref="S:mustUnderstand" use="required"/>
 <attribute ref="S:actor" use="required"/>
 </complexType>

 </schema>

Appendix B. Acknowledgments

 The authors would like to thank Klaas Wierenga, Sam Hartman, Nico
 Williams, Jim Basney, and Venkat Yekkirala for their contributions.

Cantor & Josefsson Expires November 07, 2013 [Page 30]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

Appendix C. Changes

 This section to be removed prior to publication.

 o 08, more corrections, added a delegation signaling header

 o 07, corrections, revised section on delegation

 o 06, simplified session key schema, moved responsibility for
 random-to-key to the endpoints, and defined advertisement of
 session key algorithm and enctypes by acceptor

 o 05, revised session key material, added requirement for random-to-
 key, revised XML schema to capture enctype name, updated GSS
 naming reference

 o 04, stripped down the session key material to simplify it, and
 define an IdP-brokered keying approach, moved session key XML
 constructs from OASIS draft into this one

 o 03, added TLS key export as a session key option, revised GSS
 naming material based on list discussion

 o 02, major revision of GSS-API material and updated references

 o 01, SSH language added, noted non-assumption of HTTP error
 handling, added guidance on life of security context.

 o 00, Initial Revision, first WG-adopted draft. Removed support for
 unsolicited SAML responses.

Authors’ Addresses

 Scott Cantor
 Shibboleth Consortium
 2740 Airport Drive
 Columbus, Ohio 43219
 United States

 Phone: +1 614 247 6147
 Email: cantor.2@osu.edu

Cantor & Josefsson Expires November 07, 2013 [Page 31]

Internet-Draft SAML ECP SASL & GSS-API Mechanisms May 2013

 Simon Josefsson
 SJD AB
 Hagagatan 24
 Stockholm 113 47
 SE

 Email: simon@josefsson.org
 URI: http://josefsson.org/

Cantor & Josefsson Expires November 07, 2013 [Page 32]

