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Abstract

JSON Web Encryption (JWE) is a means of representing encrypted content using JSON data
structures. Cryptographic algorithms and identifiers used with this specification are
enumerated in the separate JSON Web Algorithms (JWA) specification. Related digital
signature and HMAC capabilities are described in the separate JSON Web Signature (JWS)
specification.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in  [RFC2119].
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1.  Introduction

JSON Web Encryption (JWE) is a compact encryption format intended for space constrained
environments such as HTTP Authorization headers and URI query parameters. It provides a
wrapper for encrypted content using JSON  [RFC4627] data structures. The JWE
encryption mechanisms are independent of the type of content being encrypted.
Cryptographic algorithms and identifiers used with this specification are enumerated in the
separate JSON Web Algorithms (JWA)  specification. Related digital signature and HMAC
capabilities are described in the separate JSON Web Signature (JWS)  specification.

2.  Terminology

JSON Web Encryption (JWE)
A data structure representing an encrypted version of a Plaintext. The structure
consists of four parts: the JWE Header, the JWE Encrypted Key, the JWE Ciphertext,
and the JWE Integrity Value.

Plaintext
The bytes to be encrypted - a.k.a., the message.

Ciphertext
The encrypted version of the Plaintext.

Content Encryption Key (CEK)
A symmetric key used to encrypt the Plaintext for the recipient to produce the
Ciphertext.

Content Integrity Key (CIK)
A key used with an HMAC function to ensure the integrity of the Ciphertext and the
parameters used to create it.

Content Master Key (CMK)
A randomly generated key from which the CEK and CIK are derived, which is
encrypted to the recipient as the JWE Encrypted Key.

JWE Header
A string representing a JSON object that describes the encryption operations
applied to create the JWE Encrypted Key and the JWE Ciphertext.

JWE Encrypted Key

RFC 4627

[JWA]
[JWS]
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The Content Encryption Key (CEK) is encrypted with the intended recipient's key
and the resulting encrypted content is recorded as a byte array, which is referred
to as the JWE Encrypted Key.

JWE Ciphertext
A byte array containing the Ciphertext.

JWE Integrity Value
A byte array containing a HMAC value that ensures the integrity of the Ciphertext
and the parameters used to create it.

Encoded JWE Header
Base64url encoding of the bytes of the UTF-8  [RFC3629]
representation of the JWE Header.

Encoded JWE Encrypted Key
Base64url encoding of the JWE Encrypted Key.

Encoded JWE Ciphertext
Base64url encoding of the JWE Ciphertext.

Encoded JWE Integrity Value
Base64url encoding of the JWE Integrity Value.

Header Parameter Names
The names of the members within the JWE Header.

Header Parameter Values
The values of the members within the JWE Header.

JWE Compact Serialization
A representation of the JWE as the concatenation of the Encoded JWE Header, the
Encoded JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE
Integrity Value in that order, with the four strings being separated by period ('.')
characters.

AEAD Algorithm
An Authenticated Encryption with Associated Data (AEAD)  encryption
algorithm is one that provides an integrated content integrity check. AES
Galois/Counter Mode (GCM) is one such algorithm.

Base64url Encoding
For the purposes of this specification, this term always refers to the URL- and
filename-safe Base64 encoding described in  [RFC4648], Section 5, with
the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2.
(See Appendix B of  for notes on implementing base64url encoding without
padding.)

3.  JSON Web Encryption (JWE) Overview

JWE represents encrypted content using JSON data structures and base64url encoding. The
representation consists of four parts: the JWE Header, the JWE Encrypted Key, the JWE
Ciphertext, and the JWE Integrity Value. In the Compact Serialization, the four parts are
base64url-encoded for transmission, and represented as the concatenation of the encoded
strings in that order, with the four strings being separated by period ('.') characters. (A JSON
Serialization for this information is defined in the separate JSON Web Encryption JSON
Serialization (JWE-JS)  specification.)

JWE utilizes encryption to ensure the confidentiality of the contents of the Plaintext. JWE adds
a content integrity check if not provided by the underlying encryption algorithm.

3.1.  Example JWE with an Integrated Integrity Check

The following example JWE Header declares that:

the Content Master Key is encrypted to the recipient using the RSA-PKCS1_1.5
algorithm to produce the JWE Encrypted Key,
the Plaintext is encrypted using the AES-256-GCM algorithm to produce the JWE
Ciphertext,
the specified 64-bit Initialization Vector with the base64url encoding __79_Pv6-
fg was used, and
a JSON Web Key (JWK) representation of the public key used to encrypt the JWE is
located at https://example.com/public_key.jwk.

RFC 3629

[RFC5116]

RFC 4648

[JWS]

[JWE‑JS]
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{"alg":"RSA1_5",
 "enc":"A256GCM",
 "iv":"__79_Pv6-fg",
 "jku":"https://example.com/public_key.jwk"}

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value (with line breaks for display purposes only):

eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2R0NNIiwNCiAiaXYiOiJfXzc5
X1B2Ni1mZyIsDQogImprdSI6Imh0dHBzOi8vZXhhbXBsZS5jb20vcHVibGljX2tl
eS5qd2sifQ

TBD: Finish this example by showing generation of a Content Master Key (CMK), saying that
the CMK is used as the CEK and there is no separate integrity check since AES GCM is an
AEAD algorithm, using the CEK to encrypt the Plaintext to produce the Ciphertext, using the
recipient's key to encrypt the CMK to produce the JWE Encrypted Key, base64url encoding
these values, and assembling the result.

Concatenating these parts in the order Header.EncryptedKey.Ciphertext.IntegrityValue with
period characters between the parts yields this complete JWE representation (with line breaks
for display purposes only):

eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2R0NNIiwNCiAiaXYiOiJfXzc5
X1B2Ni1mZyIsDQogImprdSI6Imh0dHBzOi8vZXhhbXBsZS5jb20vcHVibGljX2tl
eS5qd2sifQ
.
TBD_encrypted_key_value_TBD
.
TBD_ciphertext_value_TBD
.

3.2.  Example JWE with a Separate Integrity Check

The following example JWE Header declares that:

the Content Master Key is encrypted to the recipient using the RSA-PKCS1_1.5
algorithm to produce the JWE Encrypted Key,
the Plaintext is encrypted using the AES-256-CBC algorithm to produce the JWE
Ciphertext,
the JWE Integrity Value safeguarding the integrity of the Ciphertext and the
parameters used to create it was computed with the HMAC SHA-256 algorithm,
the specified 64-bit Initialization Vector with the base64url encoding Mz-
mW_4JHfg was used, and
the thumbprint of the X.509 certificate that corresponds to the key used to
encrypt the JWE has the base64url encoding 7noOPq-hJ1_hCnvWh6IeYI2w9Q0.

{"alg":"RSA1_5",
 "enc":"A256CBC",
 "int":"HS256",
 "iv":"Mz-mW_4JHfg",
 "x5t":"7noOPq-hJ1_hCnvWh6IeYI2w9Q0"}

Because AES CBC is not an AEAD algorithm (and so provides no integrated content integrity
check), a separate integrity check value is used.

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value (with line breaks for display purposes only):
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eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2Q0JDIiwNCiAiaW50IjoiSFMy
NTYiLA0KICJpdiI6Ik16LW1XXzRKSGZnIiwNCiAieDV0IjoiN25vT1BxLWhKMV9o
Q252V2g2SWVZSTJ3OVEwIn0

TBD: Finish this example by showing generation of a Content Master Key (CMK), showing the
derivation of the CEK and the CEK from the CMK, using the CEK to encrypt the Plaintext to
produce the Ciphertext, using the recipient's key to encrypt the CMK to produce the JWE
Encrypted Key, showing the computation of the JWE Integrity Value, base64url encoding these
values, and assembling the result.

eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2Q0JDIiwNCiAiaW50IjoiSFMy
NTYiLA0KICJpdiI6Ik16LW1XXzRKSGZnIiwNCiAieDV0IjoiN25vT1BxLWhKMV9o
Q252V2g2SWVZSTJ3OVEwIn0
.
TBD_encrypted_key_value_TBD
.
TBD_ciphertext_value_TBD
.
TBD_integrity_value_TBD

4.  JWE Header

The members of the JSON object represented by the JWE Header describe the encryption
applied to the Plaintext and optionally additional properties of the JWE. The Header Parameter
Names within this object MUST be unique. Implementations MUST understand the entire
contents of the header; otherwise, the JWE MUST be rejected.

4.1.  Reserved Header Parameter Names

The following header parameter names are reserved. All the names are short because a core
goal of JWE is for the representations to be compact.

Header
Parameter
Name

JSON
Value
Type

Header
Parameter
Syntax

Header Parameter Semantics

alg string StringOrURI

The alg (algorithm) header parameter identifies the
cryptographic algorithm used to secure the JWE Encrypted Key.
A list of defined encryption alg values is presented in Section 4,
Table 2 of the JSON Web Algorithms (JWA)  specification.
The processing of the alg (algorithm) header parameter
requires that the value MUST be one that is both supported and
for which there exists a key for use with that algorithm
associated with the intended recipient. The alg value is case
sensitive. This header parameter is REQUIRED.

enc string StringOrURI

The enc (encryption method) header parameter identifies the
symmetric encryption algorithm used to secure the Ciphertext.
A list of defined enc values is presented in Section 4, Table 3 of
the JSON Web Algorithms (JWA)  specification. The
processing of the enc (encryption method) header parameter
requires that the value MUST be one that is supported. The enc
value is case sensitive. This header parameter is REQUIRED.

int string StringOrURI

The int (integrity algorithm) header parameter identifies the
cryptographic algorithm used to safeguard the integrity of the
Ciphertext and the parameters used to create it. The int
parameter uses the same values as the JWS alg parameter; a

[JWA]

[JWA]



int string StringOrURI list of defined JWS alg values is presented in Section 3, Table 1
of the JSON Web Algorithms (JWA)  specification. This
header parameter is REQUIRED when an AEAD algorithm is not
used to encrypt the Plaintext and MUST NOT be present when
an AEAD algorithm is used.

iv string String
Initialization Vector (iv) value for algorithms requiring it,
represented as a base64url encoded string. This header
parameter is OPTIONAL.

epk object
JWK Key
Object

Ephemeral Public Key (epk) value created by the originator for
the use in ECDH-ES  [RFC6090] encryption. This key
is represented in the same manner as a JSON Web Key 
JWK Key Object value, containing crv (curve), x, and y members.
The inclusion of the JWK Key Object alg (algorithm) member is
OPTIONAL. This header parameter is OPTIONAL.

zip string String

Compression algorithm (zip) applied to the Plaintext before
encryption, if any. This specification defines the value GZIP to
refer to the encoding format produced by the file compression
program "gzip" (GNU zip) as described in ; this
format is a Lempel-Ziv coding (LZ77) with a 32 bit CRC. If no zip
parameter is present, or its value is none, no compression is
applied to the Plaintext before encryption. The zip value is case
sensitive. This header parameter is OPTIONAL.

jku string URL

The jku (JSON Web Key URL) header parameter is an absolute
URL that refers to a resource for a set of JSON-encoded public
keys, one of which corresponds to the key that was used to
encrypt the JWE. The keys MUST be encoded as described in the
JSON Web Key (JWK)  specification. The protocol used to
acquire the resource MUST provide integrity protection. An HTTP
GET request to retrieve the certificate MUST use TLS 
[RFC2818]  [RFC5246] with server authentication 

 [RFC6125]. This header parameter is OPTIONAL.

kid string String

The kid (key ID) header parameter is a hint indicating which key
was used to encrypt the JWE. This allows originators to explicitly
signal a change of key to recipients. The interpretation of the
contents of the kid parameter is unspecified. This header
parameter is OPTIONAL.

jpk object JWK Key
Object

The jpk (JSON Public Key) header parameter is a public key that
corresponds to the key that was used to encrypt the JWE. This
key is represented in the same manner as a JSON Web Key

 JWK Key Object value. This header parameter is
OPTIONAL.

x5u string URL

The x5u (X.509 URL) header parameter is an absolute URL that
refers to a resource for the X.509 public key certificate or
certificate chain corresponding to the key used to encrypt the
JWE. The identified resource MUST provide a representation of
the certificate or certificate chain that conforms to 
[RFC5280] in PEM encoded form  [RFC1421]. The
certificate containing the public key of the entity encrypting the
JWE MUST be the first certificate. This MAY be followed by
additional certificates, with each subsequent certificate being
the one used to certify the previous one. The protocol used to
acquire the resource MUST provide integrity protection. An HTTP
GET request to retrieve the certificate MUST use TLS 
[RFC2818]  [RFC5246] with server authentication 

 [RFC6125]. This header parameter is OPTIONAL.

x5t string String

The x5t (x.509 certificate thumbprint) header parameter
provides a base64url encoded SHA-1 thumbprint (a.k.a. digest)
of the DER encoding of the X.509 certificate that corresponds to
the key that was used to encrypt the JWE. This header
parameter is OPTIONAL.

The x5c (x.509 certificate chain) header parameter contains the
X.509 public key certificate or certificate chain corresponding to
the key used to encrypt the JWE. The certificate or certificate
chain is represented as an array of certificate values. Each value

[JWA]

RFC 6090
[JWK]

[RFC1952]

[JWK]

RFC 2818
RFC 5246 RFC

6125

[JWK]

RFC 5280
RFC 1421

RFC 2818
RFC 5246 RFC

6125
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x5c array ArrayOfStrings

is a base64-encoded (not base64url encoded) DER/BER PKIX
certificate value. The certificate containing the public key of the
entity encrypting the JWE MUST be the first certificate. This MAY
be followed by additional certificates, with each subsequent
certificate being the one used to certify the previous one. The
recipient MUST verify the certificate chain according to

 and reject the JWE if any validation failure occurs.
This header parameter is OPTIONAL.

typ string String
The typ (type) header parameter is used to declare the type of
the encrypted content. The typ value is case sensitive. This
header parameter is OPTIONAL.

 Table 1: Reserved Header Parameter Definitions 

Additional reserved header parameter names MAY be defined via the IANA JSON Web
Encryption Header Parameters registry, as per . The syntax values used above
are defined as follows:

Syntax
Name

Syntax Definition

String Any string value MAY be used.

StringOrURI Any string value MAY be used but a value containing a ":" character MUST be a URI
as defined in  [RFC3986].

URL A URL as defined in  [RFC1738].

ArrayOfStrings An array of string values.

 Table 2: Header Parameter Syntax Definitions 

4.2.  Public Header Parameter Names

Additional header parameter names can be defined by those using JWE. However, in order to
prevent collisions, any new header parameter name or algorithm value SHOULD either be
defined in the IANA JSON Web Encryption Header Parameters registry or be defined as a URI
that contains a collision resistant namespace. In each case, the definer of the name or value
needs to take reasonable precautions to make sure they are in control of the part of the
namespace they use to define the header parameter name.

New header parameters should be introduced sparingly since an implementation that does
not understand a parameter MUST reject the JWE.

4.3.  Private Header Parameter Names

A producer and consumer of a JWE may agree to any header parameter name that is not a
Reserved Name  or a Public Name . Unlike Public Names, these
private names are subject to collision and should be used with caution.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWEs.

5.  Message Encryption

The message encryption process is as follows. The order of the steps is not significant in
cases where there are no dependencies between the inputs and outputs of the steps.

1. Generate a random Content Master Key (CMK). The CMK MUST have a length at

[RFC5280]

Section 11

RFC 3986

RFC 1738

Section 4.1 Section 4.2
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least equal to that of the larger of the required encryption or integrity keys and
MUST be generated randomly. See  [RFC4086] for considerations on
generating random values.

2. Encrypt the CMK for the recipient (see ) and let the result be the JWE
Encrypted Key.

3. Base64url encode the JWE Encrypted Key to create the Encoded JWE Encrypted
Key.

4. Generate a random Initialization Vector (IV) (if required for the algorithm).
5. If not using an AEAD algorithm, run the key derivation algorithm (see )

to generate the Content Encryption Key (CEK) and the Content Integrity Key
(CIK); otherwise (when using an AEAD algorithm), set the CEK to be the CMK.

6. Compress the Plaintext if a zip parameter was included.
7. Serialize the (compressed) Plaintext into a bitstring M.
8. Encrypt M using the CEK and IV to form the bitstring C.
9. Base64url encode C to create the Encoded JWE Ciphertext.

10. Create a JWE Header containing the encryption parameters used. Note that
white space is explicitly allowed in the representation and no canonicalization
need be performed before encoding.

11. Base64url encode the bytes of the UTF-8 representation of the JWE Header to
create the Encoded JWE Header.

12. If not using an AEAD algorithm, run the integrity algorithm (see ) using
the CIK to compute the JWE Integrity Value; otherwise (when using an AEAD
algorithm), set the JWE Integrity Value to be the empty byte string.

13. Base64url encode the JWE Integrity Value to create the Encoded JWE Integrity
Value.

14. The four encoded parts, taken together, are the result. The Compact
Serialization of this result is the concatenation of the Encoded JWE Header, the
Encoded JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE
Integrity Value in that order, with the four strings being separated by period ('.')
characters.

6.  Message Decryption

The message decryption process is the reverse of the encryption process. The order of the
steps is not significant in cases where there are no dependencies between the inputs and
outputs of the steps. If any of these steps fails, the JWE MUST be rejected.

1. Parse the four parts of the input (which are separated by period characters when
using the JWE Compact Serialization) into the Encoded JWE Header, the Encoded
JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE Integrity
Value.

2. The Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE
Ciphertext, and the Encoded JWE Integrity Value MUST be successfully base64url
decoded following the restriction that no padding characters have been used.

3. The resulting JWE Header MUST be completely valid JSON syntax conforming to
 [RFC4627].

4. The resulting JWE Header MUST be validated to only include parameters and
values whose syntax and semantics are both understood and supported.

5. Verify that the JWE Header references a key known to the recipient.
6. Decrypt the JWE Encrypted Key to produce the Content Master Key (CMK).
7. If not using an AEAD algorithm, run the key derivation algorithm (see )

to generate the Content Encryption Key (CEK) and the Content Integrity Key
(CIK); otherwise (when using an AEAD algorithm), set the CEK to be the CMK.

8. If not using an AEAD algorithm, run the integrity algorithm (see ) using
the CIK to compute an integrity value for the input received. This computed value
MUST match the received JWE Integrity Value; otherwise (when using an AEAD
algorithm), the received JWE Integrity Value MUST be empty.

9. Decrypt the binary representation of the JWE Ciphertext using the CEK.
10. Remove the Initialization Vector (IV) value from the decrypted result (if an IV was

used).
11. Uncompress the result of the previous step, if a zip parameter was included.
12. Output the resulting Plaintext.

RFC 4086

Section 8

Section 7

Section 9

RFC 4627

Section 7

Section 9
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7.  Key Derivation

The key derivation process converts the CMK into a CEK and a CIK. It assumes as a primitive
a Key Derivation Function (KDF) which notionally takes three arguments:

MasterKey:
The master key used to compute the individual use keys

Label:
The use key label, used to differentiate individual use keys

Length:
The length of the desired use key

The only KDF used in this document is the Concat KDF, as defined in , where
the Digest Method is SHA-256, the SuppPubInfo parameter is the Label, and the remaining
OtherInfo parameters are the empty bit string.

To compute the CEK from the CMK, the ASCII label "Encryption" is used.

To compute the CIK from the CMK, the ASCII label "Integrity" is used.

When AEAD algorithms are used the KDF element MUST NOT be present. When they are not
used, it MUST be present.

8.  CMK Encryption

JWE supports two forms of CMK encryption:

Asymmetric encryption under the recipient's public key.
Symmetric encryption under a shared key.

8.1.  Asymmetric Encryption

In the asymmetric encryption mode, the CMK is encrypted under the recipient's public key.
The asymmetric encryption modes defined for use with this in this specification are listed in
Section 4, Table 2 of the JSON Web Algorithms (JWA)  specification.

8.2.  Symmetric Encryption

In the symmetric encryption mode, the CMK is encrypted under a symmetric key shared
between the sender and receiver. The symmetric encryption modes defined for use with this
in this specification are listed in Section 4, Table 2 of the JSON Web Algorithms (JWA) 
specification. For GCM, the random 64-bit IV is prepended to the ciphertext.

9.  Integrity Value Calculation

When a non-AEAD algorithm is used (an algorithm without an integrated content check), JWE
adds an explicit integrity check value to the representation. This value is computed in the
manner described in the JSON Web Signature (JWS)  specification, with these
modifications:

The algorithm used is taken from the int (integrity algorithm) header parameter
rather than the alg header parameter.
The algorithm MUST be an HMAC algorithm (normally HMAC SHA-256).
The JWS Secured Input used is the concatenation of the Encoded JWE Header, a
period ('.') character, the Encoded JWE Encrypted Key, a period ('.') character,
and the Encoded JWE Ciphertext.
The CIK is used as the HMAC key.

[NIST‑800‑56A]

[JWA]

[JWA]

[JWS]
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The computed JWS Signature value is the resulting integrity value.

10.  Encrypting JWEs with Cryptographic Algorithms

JWE uses cryptographic algorithms to encrypt the Content Encryption Key (CMK) and the
Plaintext. The JSON Web Algorithms (JWA)  specification enumerates a set of
cryptographic algorithms and identifiers to be used with this specification. Specifically,
Section 4, Table 2 enumerates a set of alg (algorithm) header parameter values and
Section 4, Table 3 enumerates a set of enc (encryption method) header parameter values
intended for use this specification. It also describes the semantics and operations that are
specific to these algorithms and algorithm families.

Public keys employed for encryption can be identified using the Header Parameter methods
described in  or can be distributed using methods that are outside the scope of
this specification.

11.  IANA Considerations

This specification calls for:

A new IANA registry entitled "JSON Web Encryption Header Parameters" for
reserved header parameter names is defined in . Inclusion in the
registry is RFC Required in the  [RFC5226] sense for reserved JWE
header parameter names that are intended to be interoperable between
implementations. The registry will just record the reserved header parameter
name and a pointer to the RFC that defines it. This specification defines inclusion
of the header parameter names defined in .

12.  Security Considerations

TBD: Lots of work to do here. We need to remember to look into any issues relating to
security and JSON parsing. One wonders just how secure most JSON parsing libraries are.
Were they ever hardened for security scenarios? If not, what kind of holes does that open up?
Also, we need to walk through the JSON standard and see what kind of issues we have
especially around comparison of names. For instance, comparisons of header parameter
names and other parameters must occur after they are unescaped. Need to also put in text
about: Importance of keeping secrets secret. Rotating keys. Strengths and weaknesses of
the different algorithms.

TBD: Need to put in text about why strict JSON validation is necessary. Basically, that if
malformed JSON is received then the intent of the sender is impossible to reliably discern.
One example of malformed JSON that MUST be rejected is an object in which the same
member name occurs multiple times.

TBD: We need a section on generating randomness in browsers - it's easy to screw up.

When utilizing TLS to retrieve information, the authority providing the resource MUST be
authenticated and the information retrieved MUST be free from modification.

12.1.  Unicode Comparison Security Issues

Header parameter names in JWEs are Unicode strings. For security reasons, the
representations of these names must be compared verbatim after performing any escape
processing (as per  [RFC4627], Section 2.5).

This means, for instance, that these JSON strings must compare as being equal ("enc",
"\u0065nc"), whereas these must all compare as being not equal to the first set or to each

[JWA]

Section 4.1

Section 4.1
RFC 5226

Table 1

RFC 4627
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other ("ENC", "Enc", "en\u0043").

JSON strings MAY contain characters outside the Unicode Basic Multilingual Plane. For
instance, the G clef character (U+1D11E) may be represented in a JSON string as
"\uD834\uDD1E". Ideally, JWE implementations SHOULD ensure that characters outside the
Basic Multilingual Plane are preserved and compared correctly; alternatively, if this is not
possible due to these characters exercising limitations present in the underlying JSON
implementation, then input containing them MUST be rejected.

13.  Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft:

EDITORIAL: Give each header parameter definition its own section. This will let
them appear in the index, will give space for examples when needed, and will get
rid of the way-too-cramped tables.
Consider adding the DEFLATE compression algorithm (which omits the ZLIB
header and checksum fields) and so produces smaller results than GZIP.
Provide a more robust description of the use of the Initialization Vector (IV),
including listing which algorithms require an IV. (This list may belong in the JWA
spec.) The current statement "For GCM, the random 64-bit IV is prepended to
the ciphertext" in the Symmetric Encryption section is almost certainly out of
place and insufficiently general.
Finish the Security Considerations section.
Consider which of the open issues from the JWS and JWT specs also apply here.
Should the JWE Encrypted Key be moved to the header (which would add about
20 bytes to every JWE) or left in a separate period-separated segment to prevent
double base64 encoding?
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Appendix A.  JWE Examples

This section provides several examples of JWEs.

A.1.  JWE Example using TBD Algorithm

A.1.1.  Encrypting

TBD: Demonstrate encryption steps with this algorithm

A.1.2.  Decrypting

TBD: Demonstrate decryption steps with this algorithm
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