
 TOC JOSE Working Group M. Jones

Internet-Draft Microsoft

Intended status: Standards Track E. Rescorla

Expires: September 13, 2012 RTFM, Inc.

 J. Hildebrand

 Cisco Systems, Inc.

 March 12, 2012

JSON Web Encryption (JWE)
draft-ietf-jose-json-web-encryption-01

Abstract

JSON Web Encryption (JWE) is a means of representing encrypted content using JSON data
structures. Cryptographic algorithms and identifiers used with this specification are
enumerated in the separate JSON Web Algorithms (JWA) specification. Related digital
signature and HMAC capabilities are described in the separate JSON Web Signature (JWS)
specification.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on September 13, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Terminology
3. JSON Web Encryption (JWE) Overview
 3.1. Example JWE with an Integrated Integrity Check

RFC 2119

 TOC

 TOC

 3.2. Example JWE with a Separate Integrity Check
4. JWE Header
 4.1. Reserved Header Parameter Names
 4.2. Public Header Parameter Names
 4.3. Private Header Parameter Names
5. Message Encryption
6. Message Decryption
7. Key Derivation
8. CMK Encryption
 8.1. Asymmetric Encryption
 8.2. Symmetric Encryption
9. Integrity Value Calculation
10. Encrypting JWEs with Cryptographic Algorithms
11. IANA Considerations
12. Security Considerations
 12.1. Unicode Comparison Security Issues
13. Open Issues and Things To Be Done (TBD)
14. References
 14.1. Normative References
 14.2. Informative References
Appendix A. JWE Examples
 A.1. JWE Example using TBD Algorithm
 A.1.1. Encrypting
 A.1.2. Decrypting
Appendix B. Acknowledgements
Appendix C. Document History
§ Authors' Addresses

1. Introduction

JSON Web Encryption (JWE) is a compact encryption format intended for space constrained
environments such as HTTP Authorization headers and URI query parameters. It provides a
wrapper for encrypted content using JSON [RFC4627] data structures. The JWE
encryption mechanisms are independent of the type of content being encrypted.
Cryptographic algorithms and identifiers used with this specification are enumerated in the
separate JSON Web Algorithms (JWA) specification. Related digital signature and HMAC
capabilities are described in the separate JSON Web Signature (JWS) specification.

2. Terminology

JSON Web Encryption (JWE)
A data structure representing an encrypted version of a Plaintext. The structure
consists of four parts: the JWE Header, the JWE Encrypted Key, the JWE Ciphertext,
and the JWE Integrity Value.

Plaintext
The bytes to be encrypted - a.k.a., the message.

Ciphertext
The encrypted version of the Plaintext.

Content Encryption Key (CEK)
A symmetric key used to encrypt the Plaintext for the recipient to produce the
Ciphertext.

Content Integrity Key (CIK)
A key used with an HMAC function to ensure the integrity of the Ciphertext and the
parameters used to create it.

Content Master Key (CMK)
A randomly generated key from which the CEK and CIK are derived, which is
encrypted to the recipient as the JWE Encrypted Key.

JWE Header
A string representing a JSON object that describes the encryption operations
applied to create the JWE Encrypted Key and the JWE Ciphertext.

JWE Encrypted Key

RFC 4627

[JWA]
[JWS]

 TOC

 TOC

The Content Encryption Key (CEK) is encrypted with the intended recipient's key
and the resulting encrypted content is recorded as a byte array, which is referred
to as the JWE Encrypted Key.

JWE Ciphertext
A byte array containing the Ciphertext.

JWE Integrity Value
A byte array containing a HMAC value that ensures the integrity of the Ciphertext
and the parameters used to create it.

Encoded JWE Header
Base64url encoding of the bytes of the UTF-8 [RFC3629]
representation of the JWE Header.

Encoded JWE Encrypted Key
Base64url encoding of the JWE Encrypted Key.

Encoded JWE Ciphertext
Base64url encoding of the JWE Ciphertext.

Encoded JWE Integrity Value
Base64url encoding of the JWE Integrity Value.

Header Parameter Names
The names of the members within the JWE Header.

Header Parameter Values
The values of the members within the JWE Header.

JWE Compact Serialization
A representation of the JWE as the concatenation of the Encoded JWE Header, the
Encoded JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE
Integrity Value in that order, with the four strings being separated by period ('.')
characters.

AEAD Algorithm
An Authenticated Encryption with Associated Data (AEAD) encryption
algorithm is one that provides an integrated content integrity check. AES
Galois/Counter Mode (GCM) is one such algorithm.

Base64url Encoding
For the purposes of this specification, this term always refers to the URL- and
filename-safe Base64 encoding described in [RFC4648], Section 5, with
the (non URL-safe) '=' padding characters omitted, as permitted by Section 3.2.
(See Appendix B of for notes on implementing base64url encoding without
padding.)

3. JSON Web Encryption (JWE) Overview

JWE represents encrypted content using JSON data structures and base64url encoding. The
representation consists of four parts: the JWE Header, the JWE Encrypted Key, the JWE
Ciphertext, and the JWE Integrity Value. In the Compact Serialization, the four parts are
base64url-encoded for transmission, and represented as the concatenation of the encoded
strings in that order, with the four strings being separated by period ('.') characters. (A JSON
Serialization for this information is defined in the separate JSON Web Encryption JSON
Serialization (JWE-JS) specification.)

JWE utilizes encryption to ensure the confidentiality of the contents of the Plaintext. JWE adds
a content integrity check if not provided by the underlying encryption algorithm.

3.1. Example JWE with an Integrated Integrity Check

The following example JWE Header declares that:

the Content Master Key is encrypted to the recipient using the RSA-PKCS1_1.5
algorithm to produce the JWE Encrypted Key,
the Plaintext is encrypted using the AES-256-GCM algorithm to produce the JWE
Ciphertext,
the specified 64-bit Initialization Vector with the base64url encoding __79_Pv6-
fg was used, and
a JSON Web Key (JWK) representation of the public key used to encrypt the JWE is
located at https://example.com/public_key.jwk.

RFC 3629

[RFC5116]

RFC 4648

[JWS]

[JWE‑JS]

 TOC

{"alg":"RSA1_5",
 "enc":"A256GCM",
 "iv":"__79_Pv6-fg",
 "jku":"https://example.com/public_key.jwk"}

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value (with line breaks for display purposes only):

eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2R0NNIiwNCiAiaXYiOiJfXzc5
X1B2Ni1mZyIsDQogImprdSI6Imh0dHBzOi8vZXhhbXBsZS5jb20vcHVibGljX2tl
eS5qd2sifQ

TBD: Finish this example by showing generation of a Content Master Key (CMK), saying that
the CMK is used as the CEK and there is no separate integrity check since AES GCM is an
AEAD algorithm, using the CEK to encrypt the Plaintext to produce the Ciphertext, using the
recipient's key to encrypt the CMK to produce the JWE Encrypted Key, base64url encoding
these values, and assembling the result.

Concatenating these parts in the order Header.EncryptedKey.Ciphertext.IntegrityValue with
period characters between the parts yields this complete JWE representation (with line breaks
for display purposes only):

eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2R0NNIiwNCiAiaXYiOiJfXzc5
X1B2Ni1mZyIsDQogImprdSI6Imh0dHBzOi8vZXhhbXBsZS5jb20vcHVibGljX2tl
eS5qd2sifQ
.
TBD_encrypted_key_value_TBD
.
TBD_ciphertext_value_TBD
.

3.2. Example JWE with a Separate Integrity Check

The following example JWE Header declares that:

the Content Master Key is encrypted to the recipient using the RSA-PKCS1_1.5
algorithm to produce the JWE Encrypted Key,
the Plaintext is encrypted using the AES-256-CBC algorithm to produce the JWE
Ciphertext,
the JWE Integrity Value safeguarding the integrity of the Ciphertext and the
parameters used to create it was computed with the HMAC SHA-256 algorithm,
the specified 64-bit Initialization Vector with the base64url encoding Mz-
mW_4JHfg was used, and
the thumbprint of the X.509 certificate that corresponds to the key used to
encrypt the JWE has the base64url encoding 7noOPq-hJ1_hCnvWh6IeYI2w9Q0.

{"alg":"RSA1_5",
 "enc":"A256CBC",
 "int":"HS256",
 "iv":"Mz-mW_4JHfg",
 "x5t":"7noOPq-hJ1_hCnvWh6IeYI2w9Q0"}

Because AES CBC is not an AEAD algorithm (and so provides no integrated content integrity
check), a separate integrity check value is used.

Base64url encoding the bytes of the UTF-8 representation of the JWE Header yields this
Encoded JWE Header value (with line breaks for display purposes only):

 TOC

 TOC

eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2Q0JDIiwNCiAiaW50IjoiSFMy
NTYiLA0KICJpdiI6Ik16LW1XXzRKSGZnIiwNCiAieDV0IjoiN25vT1BxLWhKMV9o
Q252V2g2SWVZSTJ3OVEwIn0

TBD: Finish this example by showing generation of a Content Master Key (CMK), showing the
derivation of the CEK and the CEK from the CMK, using the CEK to encrypt the Plaintext to
produce the Ciphertext, using the recipient's key to encrypt the CMK to produce the JWE
Encrypted Key, showing the computation of the JWE Integrity Value, base64url encoding these
values, and assembling the result.

eyJhbGciOiJSU0ExXzUiLA0KICJlbmMiOiJBMjU2Q0JDIiwNCiAiaW50IjoiSFMy
NTYiLA0KICJpdiI6Ik16LW1XXzRKSGZnIiwNCiAieDV0IjoiN25vT1BxLWhKMV9o
Q252V2g2SWVZSTJ3OVEwIn0
.
TBD_encrypted_key_value_TBD
.
TBD_ciphertext_value_TBD
.
TBD_integrity_value_TBD

4. JWE Header

The members of the JSON object represented by the JWE Header describe the encryption
applied to the Plaintext and optionally additional properties of the JWE. The Header Parameter
Names within this object MUST be unique. Implementations MUST understand the entire
contents of the header; otherwise, the JWE MUST be rejected.

4.1. Reserved Header Parameter Names

The following header parameter names are reserved. All the names are short because a core
goal of JWE is for the representations to be compact.

Header
Parameter
Name

JSON
Value
Type

Header
Parameter
Syntax

Header Parameter Semantics

alg string StringOrURI

The alg (algorithm) header parameter identifies the
cryptographic algorithm used to secure the JWE Encrypted Key.
A list of defined encryption alg values is presented in Section 4,
Table 2 of the JSON Web Algorithms (JWA) specification.
The processing of the alg (algorithm) header parameter
requires that the value MUST be one that is both supported and
for which there exists a key for use with that algorithm
associated with the intended recipient. The alg value is case
sensitive. This header parameter is REQUIRED.

enc string StringOrURI

The enc (encryption method) header parameter identifies the
symmetric encryption algorithm used to secure the Ciphertext.
A list of defined enc values is presented in Section 4, Table 3 of
the JSON Web Algorithms (JWA) specification. The
processing of the enc (encryption method) header parameter
requires that the value MUST be one that is supported. The enc
value is case sensitive. This header parameter is REQUIRED.

int string StringOrURI

The int (integrity algorithm) header parameter identifies the
cryptographic algorithm used to safeguard the integrity of the
Ciphertext and the parameters used to create it. The int
parameter uses the same values as the JWS alg parameter; a

[JWA]

[JWA]

int string StringOrURI list of defined JWS alg values is presented in Section 3, Table 1
of the JSON Web Algorithms (JWA) specification. This
header parameter is REQUIRED when an AEAD algorithm is not
used to encrypt the Plaintext and MUST NOT be present when
an AEAD algorithm is used.

iv string String
Initialization Vector (iv) value for algorithms requiring it,
represented as a base64url encoded string. This header
parameter is OPTIONAL.

epk object
JWK Key
Object

Ephemeral Public Key (epk) value created by the originator for
the use in ECDH-ES [RFC6090] encryption. This key
is represented in the same manner as a JSON Web Key
JWK Key Object value, containing crv (curve), x, and y members.
The inclusion of the JWK Key Object alg (algorithm) member is
OPTIONAL. This header parameter is OPTIONAL.

zip string String

Compression algorithm (zip) applied to the Plaintext before
encryption, if any. This specification defines the value GZIP to
refer to the encoding format produced by the file compression
program "gzip" (GNU zip) as described in ; this
format is a Lempel-Ziv coding (LZ77) with a 32 bit CRC. If no zip
parameter is present, or its value is none, no compression is
applied to the Plaintext before encryption. The zip value is case
sensitive. This header parameter is OPTIONAL.

jku string URL

The jku (JSON Web Key URL) header parameter is an absolute
URL that refers to a resource for a set of JSON-encoded public
keys, one of which corresponds to the key that was used to
encrypt the JWE. The keys MUST be encoded as described in the
JSON Web Key (JWK) specification. The protocol used to
acquire the resource MUST provide integrity protection. An HTTP
GET request to retrieve the certificate MUST use TLS
[RFC2818] [RFC5246] with server authentication

 [RFC6125]. This header parameter is OPTIONAL.

kid string String

The kid (key ID) header parameter is a hint indicating which key
was used to encrypt the JWE. This allows originators to explicitly
signal a change of key to recipients. The interpretation of the
contents of the kid parameter is unspecified. This header
parameter is OPTIONAL.

jpk object JWK Key
Object

The jpk (JSON Public Key) header parameter is a public key that
corresponds to the key that was used to encrypt the JWE. This
key is represented in the same manner as a JSON Web Key

 JWK Key Object value. This header parameter is
OPTIONAL.

x5u string URL

The x5u (X.509 URL) header parameter is an absolute URL that
refers to a resource for the X.509 public key certificate or
certificate chain corresponding to the key used to encrypt the
JWE. The identified resource MUST provide a representation of
the certificate or certificate chain that conforms to
[RFC5280] in PEM encoded form [RFC1421]. The
certificate containing the public key of the entity encrypting the
JWE MUST be the first certificate. This MAY be followed by
additional certificates, with each subsequent certificate being
the one used to certify the previous one. The protocol used to
acquire the resource MUST provide integrity protection. An HTTP
GET request to retrieve the certificate MUST use TLS
[RFC2818] [RFC5246] with server authentication

 [RFC6125]. This header parameter is OPTIONAL.

x5t string String

The x5t (x.509 certificate thumbprint) header parameter
provides a base64url encoded SHA-1 thumbprint (a.k.a. digest)
of the DER encoding of the X.509 certificate that corresponds to
the key that was used to encrypt the JWE. This header
parameter is OPTIONAL.

The x5c (x.509 certificate chain) header parameter contains the
X.509 public key certificate or certificate chain corresponding to
the key used to encrypt the JWE. The certificate or certificate
chain is represented as an array of certificate values. Each value

[JWA]

RFC 6090
[JWK]

[RFC1952]

[JWK]

RFC 2818
RFC 5246 RFC

6125

[JWK]

RFC 5280
RFC 1421

RFC 2818
RFC 5246 RFC

6125

 TOC

 TOC

 TOC

x5c array ArrayOfStrings

is a base64-encoded (not base64url encoded) DER/BER PKIX
certificate value. The certificate containing the public key of the
entity encrypting the JWE MUST be the first certificate. This MAY
be followed by additional certificates, with each subsequent
certificate being the one used to certify the previous one. The
recipient MUST verify the certificate chain according to

 and reject the JWE if any validation failure occurs.
This header parameter is OPTIONAL.

typ string String
The typ (type) header parameter is used to declare the type of
the encrypted content. The typ value is case sensitive. This
header parameter is OPTIONAL.

 Table 1: Reserved Header Parameter Definitions

Additional reserved header parameter names MAY be defined via the IANA JSON Web
Encryption Header Parameters registry, as per . The syntax values used above
are defined as follows:

Syntax
Name

Syntax Definition

String Any string value MAY be used.

StringOrURI Any string value MAY be used but a value containing a ":" character MUST be a URI
as defined in [RFC3986].

URL A URL as defined in [RFC1738].

ArrayOfStrings An array of string values.

 Table 2: Header Parameter Syntax Definitions

4.2. Public Header Parameter Names

Additional header parameter names can be defined by those using JWE. However, in order to
prevent collisions, any new header parameter name or algorithm value SHOULD either be
defined in the IANA JSON Web Encryption Header Parameters registry or be defined as a URI
that contains a collision resistant namespace. In each case, the definer of the name or value
needs to take reasonable precautions to make sure they are in control of the part of the
namespace they use to define the header parameter name.

New header parameters should be introduced sparingly since an implementation that does
not understand a parameter MUST reject the JWE.

4.3. Private Header Parameter Names

A producer and consumer of a JWE may agree to any header parameter name that is not a
Reserved Name or a Public Name . Unlike Public Names, these
private names are subject to collision and should be used with caution.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWEs.

5. Message Encryption

The message encryption process is as follows. The order of the steps is not significant in
cases where there are no dependencies between the inputs and outputs of the steps.

1. Generate a random Content Master Key (CMK). The CMK MUST have a length at

[RFC5280]

Section 11

RFC 3986

RFC 1738

Section 4.1 Section 4.2

 TOC

least equal to that of the larger of the required encryption or integrity keys and
MUST be generated randomly. See [RFC4086] for considerations on
generating random values.

2. Encrypt the CMK for the recipient (see) and let the result be the JWE
Encrypted Key.

3. Base64url encode the JWE Encrypted Key to create the Encoded JWE Encrypted
Key.

4. Generate a random Initialization Vector (IV) (if required for the algorithm).
5. If not using an AEAD algorithm, run the key derivation algorithm (see)

to generate the Content Encryption Key (CEK) and the Content Integrity Key
(CIK); otherwise (when using an AEAD algorithm), set the CEK to be the CMK.

6. Compress the Plaintext if a zip parameter was included.
7. Serialize the (compressed) Plaintext into a bitstring M.
8. Encrypt M using the CEK and IV to form the bitstring C.
9. Base64url encode C to create the Encoded JWE Ciphertext.

10. Create a JWE Header containing the encryption parameters used. Note that
white space is explicitly allowed in the representation and no canonicalization
need be performed before encoding.

11. Base64url encode the bytes of the UTF-8 representation of the JWE Header to
create the Encoded JWE Header.

12. If not using an AEAD algorithm, run the integrity algorithm (see) using
the CIK to compute the JWE Integrity Value; otherwise (when using an AEAD
algorithm), set the JWE Integrity Value to be the empty byte string.

13. Base64url encode the JWE Integrity Value to create the Encoded JWE Integrity
Value.

14. The four encoded parts, taken together, are the result. The Compact
Serialization of this result is the concatenation of the Encoded JWE Header, the
Encoded JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE
Integrity Value in that order, with the four strings being separated by period ('.')
characters.

6. Message Decryption

The message decryption process is the reverse of the encryption process. The order of the
steps is not significant in cases where there are no dependencies between the inputs and
outputs of the steps. If any of these steps fails, the JWE MUST be rejected.

1. Parse the four parts of the input (which are separated by period characters when
using the JWE Compact Serialization) into the Encoded JWE Header, the Encoded
JWE Encrypted Key, the Encoded JWE Ciphertext, and the Encoded JWE Integrity
Value.

2. The Encoded JWE Header, the Encoded JWE Encrypted Key, the Encoded JWE
Ciphertext, and the Encoded JWE Integrity Value MUST be successfully base64url
decoded following the restriction that no padding characters have been used.

3. The resulting JWE Header MUST be completely valid JSON syntax conforming to
 [RFC4627].

4. The resulting JWE Header MUST be validated to only include parameters and
values whose syntax and semantics are both understood and supported.

5. Verify that the JWE Header references a key known to the recipient.
6. Decrypt the JWE Encrypted Key to produce the Content Master Key (CMK).
7. If not using an AEAD algorithm, run the key derivation algorithm (see)

to generate the Content Encryption Key (CEK) and the Content Integrity Key
(CIK); otherwise (when using an AEAD algorithm), set the CEK to be the CMK.

8. If not using an AEAD algorithm, run the integrity algorithm (see) using
the CIK to compute an integrity value for the input received. This computed value
MUST match the received JWE Integrity Value; otherwise (when using an AEAD
algorithm), the received JWE Integrity Value MUST be empty.

9. Decrypt the binary representation of the JWE Ciphertext using the CEK.
10. Remove the Initialization Vector (IV) value from the decrypted result (if an IV was

used).
11. Uncompress the result of the previous step, if a zip parameter was included.
12. Output the resulting Plaintext.

RFC 4086

Section 8

Section 7

Section 9

RFC 4627

Section 7

Section 9

 TOC

 TOC

 TOC

 TOC

 TOC

7. Key Derivation

The key derivation process converts the CMK into a CEK and a CIK. It assumes as a primitive
a Key Derivation Function (KDF) which notionally takes three arguments:

MasterKey:
The master key used to compute the individual use keys

Label:
The use key label, used to differentiate individual use keys

Length:
The length of the desired use key

The only KDF used in this document is the Concat KDF, as defined in , where
the Digest Method is SHA-256, the SuppPubInfo parameter is the Label, and the remaining
OtherInfo parameters are the empty bit string.

To compute the CEK from the CMK, the ASCII label "Encryption" is used.

To compute the CIK from the CMK, the ASCII label "Integrity" is used.

When AEAD algorithms are used the KDF element MUST NOT be present. When they are not
used, it MUST be present.

8. CMK Encryption

JWE supports two forms of CMK encryption:

Asymmetric encryption under the recipient's public key.
Symmetric encryption under a shared key.

8.1. Asymmetric Encryption

In the asymmetric encryption mode, the CMK is encrypted under the recipient's public key.
The asymmetric encryption modes defined for use with this in this specification are listed in
Section 4, Table 2 of the JSON Web Algorithms (JWA) specification.

8.2. Symmetric Encryption

In the symmetric encryption mode, the CMK is encrypted under a symmetric key shared
between the sender and receiver. The symmetric encryption modes defined for use with this
in this specification are listed in Section 4, Table 2 of the JSON Web Algorithms (JWA)
specification. For GCM, the random 64-bit IV is prepended to the ciphertext.

9. Integrity Value Calculation

When a non-AEAD algorithm is used (an algorithm without an integrated content check), JWE
adds an explicit integrity check value to the representation. This value is computed in the
manner described in the JSON Web Signature (JWS) specification, with these
modifications:

The algorithm used is taken from the int (integrity algorithm) header parameter
rather than the alg header parameter.
The algorithm MUST be an HMAC algorithm (normally HMAC SHA-256).
The JWS Secured Input used is the concatenation of the Encoded JWE Header, a
period ('.') character, the Encoded JWE Encrypted Key, a period ('.') character,
and the Encoded JWE Ciphertext.
The CIK is used as the HMAC key.

[NIST‑800‑56A]

[JWA]

[JWA]

[JWS]

 TOC

 TOC

 TOC

 TOC

The computed JWS Signature value is the resulting integrity value.

10. Encrypting JWEs with Cryptographic Algorithms

JWE uses cryptographic algorithms to encrypt the Content Encryption Key (CMK) and the
Plaintext. The JSON Web Algorithms (JWA) specification enumerates a set of
cryptographic algorithms and identifiers to be used with this specification. Specifically,
Section 4, Table 2 enumerates a set of alg (algorithm) header parameter values and
Section 4, Table 3 enumerates a set of enc (encryption method) header parameter values
intended for use this specification. It also describes the semantics and operations that are
specific to these algorithms and algorithm families.

Public keys employed for encryption can be identified using the Header Parameter methods
described in or can be distributed using methods that are outside the scope of
this specification.

11. IANA Considerations

This specification calls for:

A new IANA registry entitled "JSON Web Encryption Header Parameters" for
reserved header parameter names is defined in . Inclusion in the
registry is RFC Required in the [RFC5226] sense for reserved JWE
header parameter names that are intended to be interoperable between
implementations. The registry will just record the reserved header parameter
name and a pointer to the RFC that defines it. This specification defines inclusion
of the header parameter names defined in .

12. Security Considerations

TBD: Lots of work to do here. We need to remember to look into any issues relating to
security and JSON parsing. One wonders just how secure most JSON parsing libraries are.
Were they ever hardened for security scenarios? If not, what kind of holes does that open up?
Also, we need to walk through the JSON standard and see what kind of issues we have
especially around comparison of names. For instance, comparisons of header parameter
names and other parameters must occur after they are unescaped. Need to also put in text
about: Importance of keeping secrets secret. Rotating keys. Strengths and weaknesses of
the different algorithms.

TBD: Need to put in text about why strict JSON validation is necessary. Basically, that if
malformed JSON is received then the intent of the sender is impossible to reliably discern.
One example of malformed JSON that MUST be rejected is an object in which the same
member name occurs multiple times.

TBD: We need a section on generating randomness in browsers - it's easy to screw up.

When utilizing TLS to retrieve information, the authority providing the resource MUST be
authenticated and the information retrieved MUST be free from modification.

12.1. Unicode Comparison Security Issues

Header parameter names in JWEs are Unicode strings. For security reasons, the
representations of these names must be compared verbatim after performing any escape
processing (as per [RFC4627], Section 2.5).

This means, for instance, that these JSON strings must compare as being equal ("enc",
"\u0065nc"), whereas these must all compare as being not equal to the first set or to each

[JWA]

Section 4.1

Section 4.1
RFC 5226

Table 1

RFC 4627

 TOC

 TOC

 TOC

other ("ENC", "Enc", "en\u0043").

JSON strings MAY contain characters outside the Unicode Basic Multilingual Plane. For
instance, the G clef character (U+1D11E) may be represented in a JSON string as
"\uD834\uDD1E". Ideally, JWE implementations SHOULD ensure that characters outside the
Basic Multilingual Plane are preserved and compared correctly; alternatively, if this is not
possible due to these characters exercising limitations present in the underlying JSON
implementation, then input containing them MUST be rejected.

13. Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft:

EDITORIAL: Give each header parameter definition its own section. This will let
them appear in the index, will give space for examples when needed, and will get
rid of the way-too-cramped tables.
Consider adding the DEFLATE compression algorithm (which omits the ZLIB
header and checksum fields) and so produces smaller results than GZIP.
Provide a more robust description of the use of the Initialization Vector (IV),
including listing which algorithms require an IV. (This list may belong in the JWA
spec.) The current statement "For GCM, the random 64-bit IV is prepended to
the ciphertext" in the Symmetric Encryption section is almost certainly out of
place and insufficiently general.
Finish the Security Considerations section.
Consider which of the open issues from the JWS and JWT specs also apply here.
Should the JWE Encrypted Key be moved to the header (which would add about
20 bytes to every JWE) or left in a separate period-separated segment to prevent
double base64 encoding?

14. References

14.1. Normative References

[JWA] Jones, M., “JSON Web Algorithms (JWA),” January 2012.

[JWK] Jones, M., “JSON Web Key (JWK),” March 2012.

[JWS] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Signature (JWS),” January 2012.

[NIST-800-
38D]

National Institute of Standards and Technology (NIST), “Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC,” NIST PUB 800-38D, December 2001.

[NIST-800-
56A]

National Institute of Standards and Technology (NIST), “Recommendation for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography (Revised),” NIST PUB 800-56A, March 2007.

[RFC1421] Linn, J., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures,” RFC 1421, February 1993 (TXT).

[RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, “Uniform Resource Locators (URL),” RFC 1738,
December 1994 (TXT).

[RFC1952] Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L., and G. Randers-Pehrson, “GZIP file format specification
version 4.3,” RFC 1952, May 1996 (TXT, PS, PDF).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106, RFC 4086,
June 2005 (TXT).

[RFC4627] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC4648] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5116] McGrew, D., “An Interface and Algorithms for Authenticated Encryption,” RFC 5116, January 2008 (TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” BCP 26,
RFC 5226, May 2008 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,

mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
mailto:104-8456@mcimail.com
http://tools.ietf.org/html/rfc1421
http://www.rfc-editor.org/rfc/rfc1421.txt
mailto:timbl@info.cern.ch
mailto:masinter@parc.xerox.com
mailto:mpm@boombox.micro.umn.edu
http://tools.ietf.org/html/rfc1738
http://www.rfc-editor.org/rfc/rfc1738.txt
mailto:ghost@aladdin.com
mailto:gzip@prep.ai.mit.edu
mailto:madler@alumni.caltech.edu
mailto:ghost@aladdin.com
mailto:randeg@alumni.rpi.edu
http://tools.ietf.org/html/rfc1952
http://www.rfc-editor.org/rfc/rfc1952.txt
http://www.rfc-editor.org/rfc/rfc1952.ps
http://www.rfc-editor.org/rfc/rfc1952.pdf
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4086
http://www.rfc-editor.org/rfc/rfc4086.txt
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5116
http://www.rfc-editor.org/rfc/rfc5116.txt
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc5246

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[RFC6090] McGrew, D., Igoe, K., and M. Salter, “Fundamental Elliptic Curve Cryptography Algorithms,” RFC 6090,
February 2011 (TXT).

[RFC6125] Saint-Andre, P. and J. Hodges, “Representation and Verification of Domain-Based Application Service
Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of
Transport Layer Security (TLS),” RFC 6125, March 2011 (TXT).

14.2. Informative References

[I-D.rescorla-jsms] Rescorla, E. and J. Hildebrand, “JavaScript Message Security Format,” draft-rescorla-jsms-00 (work in
progress), March 2011 (TXT).

[JSE] Bradley, J. and N. Sakimura (editor), “JSON Simple Encryption,” September 2010.

[JWE-JS] Jones, M., “JSON Web Encryption JSON Serialization (JWE-JS),” March 2012.

[RFC5652] Housley, R., “Cryptographic Message Syntax (CMS),” STD 70, RFC 5652, September 2009 (TXT).

[W3C.CR-xmlenc-
core1-20110303]

Hirsch, F., Roessler, T., Reagle, J., and D. Eastlake, “XML Encryption Syntax and Processing Version
1.1,” World Wide Web Consortium CR CR-xmlenc-core1-20110303, March 2011 (HTML).

Appendix A. JWE Examples

This section provides several examples of JWEs.

A.1. JWE Example using TBD Algorithm

A.1.1. Encrypting

TBD: Demonstrate encryption steps with this algorithm

A.1.2. Decrypting

TBD: Demonstrate decryption steps with this algorithm

Appendix B. Acknowledgements

Solutions for encrypting JSON content were also explored by [JSE]
and [I‑D.rescorla‑jsms], both of which significantly
influenced this draft. This draft attempts to explicitly reuse as many of the relevant concepts
from [W3C.CR‑xmlenc‑core1‑20110303] and [RFC5652] as
possible, while utilizing simple compact JSON-based data structures.

Special thanks are due to John Bradley and Nat Sakimura for the discussions that helped
inform the content of this specification and to Eric Rescorla and Joe Hildebrand for allowing
the reuse of text from in this document.

Appendix C. Document History

-01

Added an integrity check for non-AEAD algorithms.
Added jpk and x5c header parameters for including JWK public keys and X.509

JSON Simple Encryption
JavaScript Message Security Format

XML Encryption 1.1 RFC 5652

[I‑D.rescorla‑jsms]

http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
http://tools.ietf.org/html/rfc6090
http://www.rfc-editor.org/rfc/rfc6090.txt
http://tools.ietf.org/html/rfc6125
http://www.rfc-editor.org/rfc/rfc6125.txt
http://tools.ietf.org/html/draft-rescorla-jsms-00
http://www.ietf.org/internet-drafts/draft-rescorla-jsms-00.txt
http://jsonenc.info/enc/1.0/
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-jones-json-web-encryption-json-serialization
http://tools.ietf.org/html/rfc5652
http://www.rfc-editor.org/rfc/rfc5652.txt
http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303
http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303

 TOC

certificate chains directly in the header.
Clarified that this specification is defining the JWE Compact Serialization.
Referenced the new JWE-JS spec, which defines the JWE JSON Serialization.
Added text "New header parameters should be introduced sparingly since an
implementation that does not understand a parameter MUST reject the JWE".
Clarified that the order of the encryption and decryption steps is not significant in
cases where there are no dependencies between the inputs and outputs of the
steps.
Made other editorial improvements suggested by JOSE working group
participants.

-00

Created the initial IETF draft based upon draft-jones-json-web-encryption-02 with
no normative changes.
Changed terminology to no longer call both digital signatures and HMACs
"signatures".

Authors' Addresses

 Michael B. Jones
 Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

 Eric Rescorla
 RTFM, Inc.

Email: ekr@rtfm.com

 Joe Hildebrand
 Cisco Systems, Inc.

Email: jhildebr@cisco.com

mailto:mbj@microsoft.com
http://self-issued.info/
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com

	JSON Web Encryption (JWE) draft-ietf-jose-json-web-encryption-01
	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. JSON Web Encryption (JWE) Overview
	3.1. Example JWE with an Integrated Integrity Check
	3.2. Example JWE with a Separate Integrity Check
	4. JWE Header
	4.1. Reserved Header Parameter Names
	4.2. Public Header Parameter Names
	4.3. Private Header Parameter Names
	5. Message Encryption
	6. Message Decryption
	7. Key Derivation
	8. CMK Encryption
	8.1. Asymmetric Encryption
	8.2. Symmetric Encryption
	9. Integrity Value Calculation
	10. Encrypting JWEs with Cryptographic Algorithms
	11. IANA Considerations
	12. Security Considerations
	12.1. Unicode Comparison Security Issues
	13. Open Issues and Things To Be Done (TBD)
	14. References
	14.1. Normative References
	14.2. Informative References
	Appendix A. JWE Examples
	A.1. JWE Example using TBD Algorithm
	A.1.1. Encrypting
	A.1.2. Decrypting
	Appendix B. Acknowledgements
	Appendix C. Document History
	Authors' Addresses

