Network Working Group G. Mirsky Internet-Draft X. Min Intended status: Standards Track ZTE Corp. Expires: March 11, 2019 W. Luo Ericsson September 7, 2018 Simple Two-way Active Measurement Protocol (STAMP) Data Model draft-ietf-ippm-stamp-yang-02 Abstract This document specifies the data model for implementations of Session-Sender and Session-Reflector for Simple Two-way Active Measurement Protocol (STAMP) mode using YANG. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on March 11, 2019. Copyright Notice Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Mirsky, et al. Expires March 11, 2019 [Page 1] Internet-Draft STAMP Data Model September 2018 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Conventions used in this document . . . . . . . . . . . . 2 1.1.1. Requirements Language . . . . . . . . . . . . . . . . 2 2. Scope, Model, and Applicability . . . . . . . . . . . . . . . 3 2.1. Data Model Parameters . . . . . . . . . . . . . . . . . . 3 2.1.1. STAMP-Sender . . . . . . . . . . . . . . . . . . . . 3 2.1.2. STAMP-Reflector . . . . . . . . . . . . . . . . . . . 4 3. Data Model . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 4 3.2. YANG Module . . . . . . . . . . . . . . . . . . . . . . . 10 4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 30 5. Security Considerations . . . . . . . . . . . . . . . . . . . 31 6. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 32 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.1. Normative References . . . . . . . . . . . . . . . . . . 32 7.2. Informative References . . . . . . . . . . . . . . . . . 33 Appendix A. Example of STAMP Session Configuration . . . . . . . 34 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 35 1. Introduction The Simple Two-way Active Measurement Protocol (STAMP) [I-D.ietf-ippm-stamp] can be used to measure performance parameters of IP networks such as latency, jitter, and packet loss by sending test packets and monitoring their experience in the network. The STAMP protocol [I-D.ietf-ippm-stamp] in unauthenticated mode is on- wire compatible with STAMP Light, discussed in Appendix I [RFC5357]. The STAMP Light is known to have many implementations though no common management framework being defined, thus leaving some aspects of test packet processing to interpretation. As one of the goals of STAMP is to support these variations, this document presents their analysis; describes common STAMP and STAMP model while allowing for STAMP extensions in the future. This document defines the STAMP data model and specifies it formally, using the YANG data modeling language [RFC7950]. This version of the interfaces data model conforms to the Network Management Datastore Architecture (NMDA) defined in [RFC8342]. 1.1. Conventions used in this document 1.1.1. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP Mirsky, et al. Expires March 11, 2019 [Page 2] Internet-Draft STAMP Data Model September 2018 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 2. Scope, Model, and Applicability The scope of this document includes a model of the STAMP as defined in [I-D.ietf-ippm-stamp]. o----------------------------------------------------------o | Config client | o----------------------------------------------------------o || || || NETCONF/RESTCONF || || || o----------------------o o-------------------------o | Config server | | Config server | | | | | +----------------------+ +-------------------------+ | STAMP Session-Sender | <--- STAMP---> | STAMP Session-Reflector | +----------------------+ +-------------------------+ Figure 1: STAMP Reference Model 2.1. Data Model Parameters This section describes containers within the STAMP data model. 2.1.1. STAMP-Sender The stamp-session-sender container holds items that are related to the configuration of the stamp Session-Sender logical entity. The stamp-session-sender-state container holds information about the state of the particular STAMP test session. RPCs stamp-sender-start and stamp-sender-stop respectively start and stop the referenced session by the session-id of the STAMP. 2.1.1.1. Controls for Test Session and Performance Metric Calculation The data model supports several scenarios for a STAMP Session-Sender to execute test sessions and calculate performance metrics: The test mode in which the test packets are sent unbound in time as defined by the parameter 'interval' in the stamp-session-sender container frequency is referred to as continuous mode. Mirsky, et al. Expires March 11, 2019 [Page 3] Internet-Draft STAMP Data Model September 2018 Performance metrics in the continuous mode are calculated at a period defined by the parameter 'measurement-interval'. The test mode that has a specific number of the test packets configured for the test session in the 'number-of-packets' parameter is referred to as a periodic mode. The STAMP-Sender MAY repeat the test session with the same parameters. The 'repeat' parameter defines the number of tests and the 'repeat-interval' - the interval between the consecutive tests. The performance metrics are calculated after each test session when the interval defined by the 'session-timeout' expires. 2.1.2. STAMP-Reflector The stamp-session-reflector container holds items that are related to the configuration of the STAMP Session-Reflector logical entity. The stamp-session-refl-state container holds Session-Reflector state data for the particular STAMP test session. 3. Data Model Creating STAMP data model presents a number of challenges and among them is the identification of a test-session at Session-Reflector. A Session-Reflector MAY require only as little as its IP and UDP port number in received STAMP-Test packet to spawn new test session. More so, to test processing of Class-of-Service along the same route in Equal Cost Multi-Path environment Session-Sender may perform STAMP test sessions concurrently using the same source IP address, source UDP port number, destination IP address, and destination UDP port number. Thus the only parameter that can be used to differentiate these test sessions would be DSCP value. The DSCP field may get re- marked along the path, and without the use of [RFC7750] that will go undetected, but by using five-tuple instead of four-tuple as a key, we can ensure that STAMP test packets that are considered as different test sessions follow the same path even in ECMP environments. 3.1. Tree Diagrams This section presents a simplified graphical representation of the STAMP data model using a YANG tree diagram [RFC8340]. Mirsky, et al. Expires March 11, 2019 [Page 4] Internet-Draft STAMP Data Model September 2018 module: ietf-stamp +--rw stamp | +--rw stamp-session-sender {session-sender}? | | +--rw sender-enable? boolean | | +--rw test-session* [session-id] | | +--rw session-id uint32 | | +--rw test-session-enable? boolean | | +--rw number-of-packets? union | | +--rw packet-padding-size? uint32 | | +--rw interval? uint32 | | +--rw session-timeout? uint32 | | +--rw measurement-interval? uint32 | | +--rw repeat? union | | +--rw repeat-interval? uint32 | | +--rw dscp-value? inet:dscp | | +--rw test-session-reflector-mode? session-reflector-mode | | +--rw sender-ip inet:ip-address | | +--rw sender-udp-port inet:port-number | | +--rw reflector-ip inet:ip-address | | +--rw reflector-udp-port? inet:port-number | | +--rw sender-timestamp-format? timestamp-format | | +--rw security! {stamp-security}? | | | +--rw key-chain? kc:key-chain-ref | | +--rw first-percentile? percentile | | +--rw second-percentile? percentile | | +--rw third-percentile? percentile | +--rw stamp-session-reflector {session-reflector}? | +--rw reflector-enable? boolean | +--rw ref-wait? uint32 | +--rw reflector-mode-state? session-reflector-mode | +--rw test-session* [session-id] | +--rw session-id uint32 | +--rw dscp-handling-mode? session-dscp-mode | +--rw dscp-value? inet:dscp | +--rw sender-ip? union | +--rw sender-udp-port? union | +--rw reflector-ip? union | +--rw reflector-udp-port? inet:port-number | +--rw reflector-timestamp-format? timestamp-format | +--rw security! {stamp-security}? | +--rw key-chain? kc:key-chain-ref Figure 2: STAMP Configuration Tree Diagram module: ietf-stamp +--ro stamp-state Mirsky, et al. Expires March 11, 2019 [Page 5] Internet-Draft STAMP Data Model September 2018 +--ro stamp-session-sender-state {session-sender}? | +--ro test-session-state* [session-id] | +--ro session-id uint32 | +--ro sender-session-state? enumeration | +--ro current-stats | | +--ro start-time yang:date-and-time | | +--ro packet-padding-size? uint32 | | +--ro interval? uint32 | | +--ro duplicate-packets? uint32 | | +--ro reordered-packets? uint32 | | +--ro sender-timestamp-format? timestamp-format | | +--ro reflector-timestamp-format? timestamp-format | | +--ro dscp? inet:dscp | | +--ro two-way-delay | | | +--ro delay | | | | +--ro min? yang:gauge32 | | | | +--ro max? yang:gauge32 | | | | +--ro avg? yang:gauge32 | | | +--ro delay-variation | | | +--ro min? uint32 | | | +--ro max? uint32 | | | +--ro avg? uint32 | | +--ro one-way-delay-far-end | | | +--ro delay | | | | +--ro min? yang:gauge32 | | | | +--ro max? yang:gauge32 | | | | +--ro avg? yang:gauge32 | | | +--ro delay-variation | | | +--ro min? uint32 | | | +--ro max? uint32 | | | +--ro avg? uint32 | | +--ro one-way-delay-near-end | | | +--ro delay | | | | +--ro min? yang:gauge32 | | | | +--ro max? yang:gauge32 | | | | +--ro avg? yang:gauge32 | | | +--ro delay-variation | | | +--ro min? uint32 | | | +--ro max? uint32 | | | +--ro avg? uint32 | | +--ro low-percentile | | | +--ro delay-percentile | | | | +--ro rtt-delay? percentile | | | | +--ro near-end-delay? percentile | | | | +--ro far-end-delay? percentile | | | +--ro delay-variation-percentile | | | +--ro rtt-delay-variation? percentile | | | +--ro near-end-delay-variation? percentile Mirsky, et al. Expires March 11, 2019 [Page 6] Internet-Draft STAMP Data Model September 2018 | | | +--ro far-end-delay-variation? percentile | | +--ro mid-percentile | | | +--ro delay-percentile | | | | +--ro rtt-delay? percentile | | | | +--ro near-end-delay? percentile | | | | +--ro far-end-delay? percentile | | | +--ro delay-variation-percentile | | | +--ro rtt-delay-variation? percentile | | | +--ro near-end-delay-variation? percentile | | | +--ro far-end-delay-variation? percentile | | +--ro high-percentile | | | +--ro delay-percentile | | | | +--ro rtt-delay? percentile | | | | +--ro near-end-delay? percentile | | | | +--ro far-end-delay? percentile | | | +--ro delay-variation-percentile | | | +--ro rtt-delay-variation? percentile | | | +--ro near-end-delay-variation? percentile | | | +--ro far-end-delay-variation? percentile | | +--ro two-way-loss | | | +--ro loss-count? int32 | | | +--ro loss-ratio? percentage | | | +--ro loss-burst-max? int32 | | | +--ro loss-burst-min? int32 | | | +--ro loss-burst-count? int32 | | +--ro one-way-loss-far-end | | | +--ro loss-count? int32 | | | +--ro loss-ratio? percentage | | | +--ro loss-burst-max? int32 | | | +--ro loss-burst-min? int32 | | | +--ro loss-burst-count? int32 | | +--ro one-way-loss-near-end | | | +--ro loss-count? int32 | | | +--ro loss-ratio? percentage | | | +--ro loss-burst-max? int32 | | | +--ro loss-burst-min? int32 | | | +--ro loss-burst-count? int32 | | +--ro sender-ip inet:ip-address | | +--ro sender-udp-port inet:port-number | | +--ro reflector-ip inet:ip-address | | +--ro reflector-udp-port? inet:port-number | | +--ro sent-packets? uint32 | | +--ro rcv-packets? uint32 | | +--ro sent-packets-error? uint32 | | +--ro rcv-packets-error? uint32 | | +--ro last-sent-seq? uint32 | | +--ro last-rcv-seq? uint32 | +--ro history-stats* [session-id] Mirsky, et al. Expires March 11, 2019 [Page 7] Internet-Draft STAMP Data Model September 2018 | +--ro session-id uint32 | +--ro end-time yang:date-and-time | +--ro packet-padding-size? uint32 | +--ro interval? uint32 | +--ro duplicate-packets? uint32 | +--ro reordered-packets? uint32 | +--ro sender-timestamp-format? timestamp-format | +--ro reflector-timestamp-format? timestamp-format | +--ro dscp? inet:dscp | +--ro two-way-delay | | +--ro delay | | | +--ro min? yang:gauge32 | | | +--ro max? yang:gauge32 | | | +--ro avg? yang:gauge32 | | +--ro delay-variation | | +--ro min? uint32 | | +--ro max? uint32 | | +--ro avg? uint32 | +--ro one-way-delay-far-end | | +--ro delay | | | +--ro min? yang:gauge32 | | | +--ro max? yang:gauge32 | | | +--ro avg? yang:gauge32 | | +--ro delay-variation | | +--ro min? uint32 | | +--ro max? uint32 | | +--ro avg? uint32 | +--ro one-way-delay-near-end | | +--ro delay | | | +--ro min? yang:gauge32 | | | +--ro max? yang:gauge32 | | | +--ro avg? yang:gauge32 | | +--ro delay-variation | | +--ro min? uint32 | | +--ro max? uint32 | | +--ro avg? uint32 | +--ro low-percentile | | +--ro delay-percentile | | | +--ro rtt-delay? percentile | | | +--ro near-end-delay? percentile | | | +--ro far-end-delay? percentile | | +--ro delay-variation-percentile | | +--ro rtt-delay-variation? percentile | | +--ro near-end-delay-variation? percentile | | +--ro far-end-delay-variation? percentile | +--ro mid-percentile | | +--ro delay-percentile | | | +--ro rtt-delay? percentile Mirsky, et al. Expires March 11, 2019 [Page 8] Internet-Draft STAMP Data Model September 2018 | | | +--ro near-end-delay? percentile | | | +--ro far-end-delay? percentile | | +--ro delay-variation-percentile | | +--ro rtt-delay-variation? percentile | | +--ro near-end-delay-variation? percentile | | +--ro far-end-delay-variation? percentile | +--ro high-percentile | | +--ro delay-percentile | | | +--ro rtt-delay? percentile | | | +--ro near-end-delay? percentile | | | +--ro far-end-delay? percentile | | +--ro delay-variation-percentile | | +--ro rtt-delay-variation? percentile | | +--ro near-end-delay-variation? percentile | | +--ro far-end-delay-variation? percentile | +--ro two-way-loss | | +--ro loss-count? int32 | | +--ro loss-ratio? percentage | | +--ro loss-burst-max? int32 | | +--ro loss-burst-min? int32 | | +--ro loss-burst-count? int32 | +--ro one-way-loss-far-end | | +--ro loss-count? int32 | | +--ro loss-ratio? percentage | | +--ro loss-burst-max? int32 | | +--ro loss-burst-min? int32 | | +--ro loss-burst-count? int32 | +--ro one-way-loss-near-end | | +--ro loss-count? int32 | | +--ro loss-ratio? percentage | | +--ro loss-burst-max? int32 | | +--ro loss-burst-min? int32 | | +--ro loss-burst-count? int32 | +--ro sender-ip inet:ip-address | +--ro sender-udp-port inet:port-number | +--ro reflector-ip inet:ip-address | +--ro reflector-udp-port? inet:port-number | +--ro sent-packets? uint32 | +--ro rcv-packets? uint32 | +--ro sent-packets-error? uint32 | +--ro rcv-packets-error? uint32 | +--ro last-sent-seq? uint32 | +--ro last-rcv-seq? uint32 +--ro stamp-session-refl-state {session-reflector}? +--ro reflector-light-admin-status? boolean +--ro test-session-state* [session-id] +--ro session-id uint32 +--ro reflector-timestamp-format? timestamp-format Mirsky, et al. Expires March 11, 2019 [Page 9] Internet-Draft STAMP Data Model September 2018 +--ro sender-ip inet:ip-address +--ro sender-udp-port inet:port-number +--ro reflector-ip inet:ip-address +--ro reflector-udp-port? inet:port-number +--ro sent-packets? uint32 +--ro rcv-packets? uint32 +--ro sent-packets-error? uint32 +--ro rcv-packets-error? uint32 +--ro last-sent-seq? uint32 +--ro last-rcv-seq? uint32 Figure 3: STAMP State Tree Diagram rpcs: +---x stamp-sender-start | +---w input | +---w session-id uint32 +---x stamp-sender-stop +---w input +---w session-id uint32 Figure 4: STAMP RPC Tree Diagram 3.2. YANG Module file "ietf-stamp@2018-09-07.yang" module ietf-stamp { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-stamp"; //namespace need to be assigned by IANA prefix "ietf-stamp"; import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Types."; } import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Types."; } import ietf-key-chain { prefix kc; reference "RFC 8177: YANG Data Model for Key Chains."; } Mirsky, et al. Expires March 11, 2019 [Page 10] Internet-Draft STAMP Data Model September 2018 organization "IETF IPPM (IP Performance Metrics) Working Group"; contact "WG Web: http://tools.ietf.org/wg/ippm/ WG List: ippm@ietf.org Editor: Greg Mirsky gregimirsky@gmail.com Editor: Xiao Min xiao.min2@zte.com.cn Editor: Wei S Luo wei.s.luo@ericsson.com"; description "This YANG module specifies a vendor-independent model for the Simple Two-way Active Measurement Protocol (STAMP). The data model covers two STAMP logical entities - Session-Sender and Session-Reflector; characteristics of the STAMP test session, as well as measured and calculated performance metrics. Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices."; revision "2018-09-07" { description "Initial Revision. Base STAMP specification is covered"; reference "RFC XXXX: STAMP YANG Data Model."; } /* * Typedefs */ typedef session-reflector-mode { type enumeration { enum stateful { Mirsky, et al. Expires March 11, 2019 [Page 11] Internet-Draft STAMP Data Model September 2018 description "When the Session-Reflector is stateful, i.e. is aware of STAMP-Test session state."; } enum stateless { description "When the Session-Reflector is stateless, i.e. is not aware of the state of STAMP-Test session."; } } description "State of the Session-Reflector"; } typedef session-dscp-mode { type enumeration { enum copy-received-value { description "Use DSCP value copied from received STAMP test packet of the test session."; } enum use-configured-value { description "Use DSCP value configured for this test session on the Session-Reflector."; } } description "DSCP handling mode by Session-Reflector."; } typedef timestamp-format { type enumeration { enum ntp-format { description "NTP 64 bit format of a timestamp"; } enum ptp-format { description "PTPv2 truncated format of a timestamp"; } } description "Timestamp format used by Session-Sender or Session-Reflector."; } typedef percentage { Mirsky, et al. Expires March 11, 2019 [Page 12] Internet-Draft STAMP Data Model September 2018 type decimal64 { fraction-digits 5; } description "Percentage"; } typedef percentile { type decimal64 { fraction-digits 2; } description "Percentile is a measure used in statistics indicating the value below which a given percentage of observations in a group of observations fall."; } /* * Feature definitions. */ feature session-sender { description "This feature relates to the device functions as the STAMP Session-Sender"; } feature session-reflector { description "This feature relates to the device functions as the STAMP Session-Reflector"; } feature stamp-security { description "Secure STAMP supported"; } /* * Reusable node groups */ grouping maintenance-statistics { description "Maintenance statistics grouping"; leaf sent-packets { type uint32; description "Packets sent"; } leaf rcv-packets { Mirsky, et al. Expires March 11, 2019 [Page 13] Internet-Draft STAMP Data Model September 2018 type uint32; description "Packets received"; } leaf sent-packets-error { type uint32; description "Packets sent error"; } leaf rcv-packets-error { type uint32; description "Packets received error"; } leaf last-sent-seq { type uint32; description "Last sent sequence number"; } leaf last-rcv-seq { type uint32; description "Last received sequence number"; } } grouping test-session-statistics { description "Performance metrics calculated for a STAMP test session."; leaf packet-padding-size { type uint32; description "Size of the Packet Padding. Suggested to run Path MTU Discovery to avoid packet fragmentation in IPv4 and packet blackholing in IPv6"; } leaf interval { type uint32; units microseconds; description "Time interval between transmission of two consecutive packets in the test session"; } leaf duplicate-packets { type uint32; description "Duplicate packets"; } leaf reordered-packets { Mirsky, et al. Expires March 11, 2019 [Page 14] Internet-Draft STAMP Data Model September 2018 type uint32; description "Reordered packets"; } leaf sender-timestamp-format { type timestamp-format; description "Sender Timestamp format"; } leaf reflector-timestamp-format { type timestamp-format; description "Reflector Timestamp format"; } leaf dscp { type inet:dscp; description "The DSCP value that was placed in the header of STAMP UDP test packets by the Session-Sender."; } container two-way-delay { description "two way delay result of the test session"; uses delay-statistics; } container one-way-delay-far-end { description "one way delay far-end of the test session"; uses delay-statistics; } container one-way-delay-near-end { description "one way delay near-end of the test session"; uses delay-statistics; } container low-percentile { when "/stamp/stamp-session-sender/" +"test-session[session-id]/" +"first-percentile != '0.00'" { description "Only valid if the the first-percentile is not NULL"; } description Mirsky, et al. Expires March 11, 2019 [Page 15] Internet-Draft STAMP Data Model September 2018 "Low percentile report"; uses time-percentile-report; } container mid-percentile { when "/stamp/stamp-session-sender/" +"test-session[session-id]/" +"second-percentile != '0.00'" { description "Only valid if the the first-percentile is not NULL"; } description "Mid percentile report"; uses time-percentile-report; } container high-percentile { when "/stamp/stamp-session-sender/" +"test-session[session-id]/" +"third-percentile != '0.00'" { description "Only valid if the the first-percentile is not NULL"; } description "High percentile report"; uses time-percentile-report; } container two-way-loss { description "two way loss count and ratio result of the test session"; uses packet-loss-statistics; } container one-way-loss-far-end { when "/stamp/stamp-session-sender/" +"test-session[session-id]/" +"test-session-reflector-mode = 'stateful'" { description "One-way statistic is only valid if the session-reflector is in stateful mode."; } description "one way loss count and ratio far-end of the test session"; Mirsky, et al. Expires March 11, 2019 [Page 16] Internet-Draft STAMP Data Model September 2018 uses packet-loss-statistics; } container one-way-loss-near-end { when "/stamp/stamp-session-sender/" +"test-session[session-id]/" +"test-session-reflector-mode = 'stateful'" { description "One-way statistic is only valid if the session-reflector is in stateful mode."; } description "one way loss count and ratio near-end of the test session"; uses packet-loss-statistics; } uses session-parameters; uses maintenance-statistics; } grouping stamp-session-percentile { description "Percentile grouping"; leaf first-percentile { type percentile; default 95.00; description "First percentile to report"; } leaf second-percentile { type percentile; default 99.00; description "Second percentile to report"; } leaf third-percentile { type percentile; default 99.90; description "Third percentile to report"; } } grouping delay-statistics { description "Delay statistics grouping"; container delay { description "Packets transmitted delay"; leaf min { type yang:gauge32; Mirsky, et al. Expires March 11, 2019 [Page 17] Internet-Draft STAMP Data Model September 2018 units microseconds; description "Min of Packets transmitted delay"; } leaf max { type yang:gauge32; units microseconds; description "Max of Packets transmitted delay"; } leaf avg { type yang:gauge32; units microseconds; description "Avg of Packets transmitted delay"; } } container delay-variation { description "Packets transmitted delay variation"; leaf min { type uint32; units microseconds; description "Min of Packets transmitted delay variation"; } leaf max { type uint32; units microseconds; description "Max of Packets transmitted delay variation"; } leaf avg { type uint32; units microseconds; description "Avg of Packets transmitted delay variation"; } } } grouping time-percentile-report { description "Delay percentile report grouping"; container delay-percentile { Mirsky, et al. Expires March 11, 2019 [Page 18] Internet-Draft STAMP Data Model September 2018 description "Report round-trip, near- and far-end delay"; leaf rtt-delay { type percentile; description "Percentile of round-trip delay"; } leaf near-end-delay { type percentile; description "Percentile of near-end delay"; } leaf far-end-delay { type percentile; description "Percentile of far-end delay"; } } container delay-variation-percentile { description "Report round-trip, near- and far-end delay variation"; leaf rtt-delay-variation { type percentile; description "Percentile of round-trip delay-variation"; } leaf near-end-delay-variation { type percentile; description "Percentile of near-end delay variation"; } leaf far-end-delay-variation { type percentile; description "Percentile of far-end delay-variation"; } } } grouping packet-loss-statistics { description "Grouping for Packet Loss statistics"; leaf loss-count { type int32; description "Number of lost packets during the test interval."; Mirsky, et al. Expires March 11, 2019 [Page 19] Internet-Draft STAMP Data Model September 2018 } leaf loss-ratio { type percentage; description "Ratio of packets lost to packets sent during the test interval."; } leaf loss-burst-max { type int32; description "Maximum number of consecutively lost packets during the test interval."; } leaf loss-burst-min { type int32; description "Minimum number of consecutively lost packets during the test interval."; } leaf loss-burst-count { type int32; description "Number of occasions with packet loss during the test interval."; } } grouping session-parameters { description "Parameters Session-Sender"; leaf sender-ip { type inet:ip-address; mandatory true; description "Sender IP address"; } leaf sender-udp-port { type inet:port-number { range "49152..65535"; } mandatory true; description "Sender UDP port number"; } leaf reflector-ip { type inet:ip-address; mandatory true; description "Reflector IP address"; } leaf reflector-udp-port { Mirsky, et al. Expires March 11, 2019 [Page 20] Internet-Draft STAMP Data Model September 2018 type inet:port-number{ range "862 | 49152..65535"; } default 862; description "Reflector UDP port number"; } } grouping session-security { description "Grouping for STAMP security and related parameters"; container security { if-feature stamp-security; presence "Enables secure STAMP"; description "Parameters for STAMP authentication or encryption"; leaf key-chain { type kc:key-chain-ref; description "Name of key-chain"; } } } /* * Configuration Data */ container stamp { description "Top level container for STAMP configuration"; container stamp-session-sender { if-feature session-sender; description "STAMP Session-Sender container"; leaf sender-enable { type boolean; default "true"; description "Whether this network element is enabled to act as STAMP Session-Sender"; } list test-session { key "session-id"; unique "sender-ip sender-udp-port reflector-ip" +" reflector-udp-port dscp-value"; description "This structure is a container of test session Mirsky, et al. Expires March 11, 2019 [Page 21] Internet-Draft STAMP Data Model September 2018 managed objects"; leaf session-id { type uint32; description "Session ID"; } leaf test-session-enable { type boolean; default "true"; description "Whether this STAMP Test session is enabled"; } leaf number-of-packets { type union { type uint32 { range 1..4294967294 { description "The overall number of UDP test packet to be transmitted by the sender for this test session"; } } type enumeration { enum forever { description "Indicates that the test session SHALL be run *forever*."; } } } default 10; description "This value determines if the STAMP-Test session is bound by number of test packets or not."; } leaf packet-padding-size { type uint32; default 27; description "Size of the Packet Padding. Suggested to run Path MTU Discovery to avoid packet fragmentation in IPv4 and packet blackholing in IPv6"; } leaf interval { Mirsky, et al. Expires March 11, 2019 [Page 22] Internet-Draft STAMP Data Model September 2018 type uint32; units microseconds; description "Time interval between transmission of two consecutive packets in the test session in microseconds"; } leaf session-timeout { when "../number-of-packets != 'forever'" { description "Test session timeout only valid if the test mode is periodic."; } type uint32; units "seconds"; default 900; description "The timeout value for the Session-Sender to collect outstanding reflected packets."; } leaf measurement-interval { when "../number-of-packets = 'forever'" { description "Valid only when the test to run forever, i.e. continuously."; } type uint32; units "seconds"; default 60; description "Interval to calculate performance metric when the test mode is 'continuous'."; } leaf repeat { type union { type uint32 { range 0..4294967294; } type enumeration { enum forever { description "Indicates that the test session SHALL be repeated *forever* using the information in repeat-interval parameter, and SHALL NOT decrement Mirsky, et al. Expires March 11, 2019 [Page 23] Internet-Draft STAMP Data Model September 2018 the value."; } } } default 0; description "This value determines if the STAMP-Test session must be repeated. When a test session has completed, the repeat parameter is checked. The default value of 0 indicates that the session MUST NOT be repeated. If the repeat value is 1 through 4,294,967,294 then the test session SHALL be repeated using the information in repeat-interval parameter. The implementation MUST decrement the value of repeat after determining a repeated session is expected."; } leaf repeat-interval { when "../repeat != '0'"; type uint32; units seconds; default 0; description "This parameter determines the timing of repeated STAMP-Test sessions when repeat is more than 0."; } leaf dscp-value { type inet:dscp; default 0; description "DSCP value to be set in the test packet."; } leaf test-session-reflector-mode { type session-reflector-mode; default "stateless"; description "The mode of STAMP-Reflector for the test session."; } uses session-parameters; leaf sender-timestamp-format { type timestamp-format; default ntp-format; description "Sender Timestamp format"; } uses session-security; Mirsky, et al. Expires March 11, 2019 [Page 24] Internet-Draft STAMP Data Model September 2018 uses stamp-session-percentile; } } container stamp-session-reflector { if-feature session-reflector; description "STAMP Session-Reflector container"; leaf reflector-enable { type boolean; default "true"; description "Whether this network element is enabled to act as STAMP Session-Reflector"; } leaf ref-wait { type uint32 { range 1..604800; } units seconds; default 900; description "REFWAIT(STAMP test session timeout in seconds), the default value is 900"; } leaf reflector-mode-state { type session-reflector-mode; default stateless; description "The state of the mode of the STAMP Session-Reflector"; } list test-session { key "session-id"; unique "sender-ip sender-udp-port reflector-ip" +" reflector-udp-port"; description "This structure is a container of test session managed objects"; leaf session-id { type uint32; description "Session ID"; } Mirsky, et al. Expires March 11, 2019 [Page 25] Internet-Draft STAMP Data Model September 2018 leaf dscp-handling-mode { type session-dscp-mode; default copy-received-value; description "Session-Reflector handling of DSCP: - use value copied from received STAMP-Test packet; - use value explicitly configured"; } leaf dscp-value { when "../dscp-handling-mode = 'use-configured-value'"; type inet:dscp; default 0; description "DSCP value to be set in the reflected packet if dscp-handling-mode is set to use-configured-value."; } leaf sender-ip { type union { type inet:ip-address; type enumeration { enum any { description "Indicates that the Session-Reflector accepts STAMP test packets from any Session-Sender"; } } } default any; description "This value determines whether specific IPv4/IPv6 address of the Session-Sender or the wildcard, i.e. any address"; } leaf sender-udp-port { type union { type inet:port-number { range "49152..65535"; } type enumeration { enum any { description "Indicates that the Session-Reflector accepts STAMP test packets from any Session-Sender"; Mirsky, et al. Expires March 11, 2019 [Page 26] Internet-Draft STAMP Data Model September 2018 } } } default any; description "This value determines whether specific port number of the Session-Sender or the wildcard, i.e. any"; } leaf reflector-ip { type union { type inet:ip-address; type enumeration { enum any { description "Indicates that the Session-Reflector accepts STAMP test packets on any of its interfaces"; } } } default any; description "This value determines whether specific IPv4/IPv6 address of the Session-Reflector or the wildcard, i.e. any address"; } leaf reflector-udp-port { type inet:port-number{ range "862 | 49152..65535"; } default 862; description "Reflector UDP port number"; } leaf reflector-timestamp-format { type timestamp-format; default ntp-format; description "Reflector Timestamp format"; } uses session-security; } } } /* Mirsky, et al. Expires March 11, 2019 [Page 27] Internet-Draft STAMP Data Model September 2018 * Operational state data nodes */ container stamp-state { config false; description "Top level container for STAMP state data"; container stamp-session-sender-state { if-feature session-sender; description "Session-Sender container for state data"; list test-session-state{ key "session-id"; description "This structure is a container of test session managed objects"; leaf session-id { type uint32; description "Session ID"; } leaf sender-session-state { type enumeration { enum active { description "Test session is active"; } enum ready { description "Test session is idle"; } } description "State of the particular STAMP test session at the sender"; } container current-stats { description "This container contains the results for the current Measurement Interval in a Measurement session "; leaf start-time { type yang:date-and-time; mandatory true; description "The time that the current Measurement Interval started"; } uses test-session-statistics; Mirsky, et al. Expires March 11, 2019 [Page 28] Internet-Draft STAMP Data Model September 2018 } list history-stats { key session-id; description "This container contains the results for the history Measurement Interval in a Measurement session "; leaf session-id { type uint32; description "The identifier for the Measurement Interval within this session"; } leaf end-time { type yang:date-and-time; mandatory true; description "The time that the Measurement Interval ended"; } uses test-session-statistics; } } } container stamp-session-refl-state { if-feature session-reflector; description "STAMP Session-Reflector container for state data"; leaf reflector-light-admin-status { type boolean; description "Whether this network element is enabled to act as STAMP Session-Reflector"; } list test-session-state { key "session-id"; description "This structure is a container of test session managed objects"; leaf session-id { type uint32; description "Session ID"; } Mirsky, et al. Expires March 11, 2019 [Page 29] Internet-Draft STAMP Data Model September 2018 leaf reflector-timestamp-format { type timestamp-format; description "Reflector Timestamp format"; } uses session-parameters; uses maintenance-statistics; } } } rpc stamp-sender-start { description "start the configured sender session"; input { leaf session-id { type uint32; mandatory true; description "The STAMP session to be started"; } } } rpc stamp-sender-stop { description "stop the configured sender session"; input { leaf session-id { type uint32; mandatory true; description "The session to be stopped"; } } } } 4. IANA Considerations This document registers a URI in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made. URI: urn:ietf:params:xml:ns:yang:ietf-stamp Mirsky, et al. Expires March 11, 2019 [Page 30] Internet-Draft STAMP Data Model September 2018 Registrant Contact: The IPPM WG of the IETF. XML: N/A, the requested URI is an XML namespace. This document registers a YANG module in the YANG Module Names registry [RFC7950]. name: ietf-stamp namespace: urn:ietf:params:xml:ns:yang:ietf-stamp prefix: stamp reference: RFC XXXX 5. Security Considerations The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446]. The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a pre- configured subset of all available NETCONF or RESTCONF protocol operations and content. There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have an adverse effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability: TBD Unauthorized access to any data node of these subtrees can adversely affect the routing subsystem of both the local device and the network. This may lead to corruption of the measurement that may result in false corrective action, e.g., false negative or false positive. That could be, for example, prolonged and undetected deterioration of the quality of service or actions to improve the quality unwarranted by the real network conditions. Mirsky, et al. Expires March 11, 2019 [Page 31] Internet-Draft STAMP Data Model September 2018 Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability: TBD Unauthorized access to any data node of these subtrees can disclose the operational state information of VRRP on this device. Some of the RPC operations in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control access to these operations. These are the operations and their sensitivity/vulnerability: TBD 6. Acknowledgments Authors recognize and appreciate valuable comments provided by Adrian Pan. 7. References 7.1. Normative References [I-D.ietf-ippm-stamp] Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple Two-way Active Measurement Protocol", draft-ietf-ippm- stamp-01 (work in progress), March 2018. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, . [RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J. Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", RFC 5357, DOI 10.17487/RFC5357, October 2008, . Mirsky, et al. Expires March 11, 2019 [Page 32] Internet-Draft STAMP Data Model September 2018 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, . [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, . [RFC7750] Hedin, J., Mirsky, G., and S. Baillargeon, "Differentiated Service Code Point and Explicit Congestion Notification Monitoring in the Two-Way Active Measurement Protocol (TWAMP)", RFC 7750, DOI 10.17487/RFC7750, February 2016, . [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, . [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, . [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, . [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, . 7.2. Informative References [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, . Mirsky, et al. Expires March 11, 2019 [Page 33] Internet-Draft STAMP Data Model September 2018 Appendix A. Example of STAMP Session Configuration Figure 5 shows a configuration example of a STAMP-Sender. enable 10 enable forever 10 Figure 5: XML instance of STAMP Session-Sender configuration Mirsky, et al. Expires March 11, 2019 [Page 34] Internet-Draft STAMP Data Model September 2018 enable Figure 6: XML instance of STAMP Session-Reflector configuration Authors' Addresses Greg Mirsky ZTE Corp. Email: gregimirsky@gmail.com Xiao Min ZTE Corp. Email: xiao.min2@zte.com.cn Wei S Luo Ericsson Email: wei.s.luo@ericsson.com Mirsky, et al. Expires March 11, 2019 [Page 35]