Network Working Group G. Mirsky Internet-Draft ZTE Corp. Intended status: Standards Track G. Jun Expires: July 8, 2018 ZTE Corporation H. Nydell Accedian Networks January 4, 2018 Simple Two-way Active Measurement Protocol draft-ietf-ippm-stamp-00 Abstract This document describes a Two-way Active Measurement Protocol which enables measurement of both one-way and round-trip performance metrics like delay, delay variation and packet loss. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on July 8, 2018. Copyright Notice Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of Mirsky, et al. Expires July 8, 2018 [Page 1] Internet-Draft STAMP January 2018 the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Conventions used in this document . . . . . . . . . . . . . . 2 2.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 2 2.2. Requirements Language . . . . . . . . . . . . . . . . . . 3 3. Softwarization of Performance Measurement . . . . . . . . . . 3 4. Theory of Operation . . . . . . . . . . . . . . . . . . . . . 3 4.1. Sender Behavior and Packet Format . . . . . . . . . . . . 4 4.1.1. Sender Packet Format in Unauthenticated Mode . . . . 4 4.1.2. Sender Packet Format in Authenticated and Encrypted Modes . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2. Reflector Behavior and Packet Format . . . . . . . . . . 7 4.2.1. Reflector Packet Format in Unauthenticated Mode . . . 7 4.2.2. Reflector Packet Format in Authenticated and Encrypted Modes . . . . . . . . . . . . . . . . . . . 8 5. TLV Extensions to STAMP . . . . . . . . . . . . . . . . . . . 9 5.1. Extra Padding TLV . . . . . . . . . . . . . . . . . . . . 10 5.2. Location TLV . . . . . . . . . . . . . . . . . . . . . . 10 5.3. Timestamp Information TLV . . . . . . . . . . . . . . . . 12 5.4. Class of Service TLV . . . . . . . . . . . . . . . . . . 12 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 6.1. STAMP TLV Registry . . . . . . . . . . . . . . . . . . . 13 6.2. Synchronization Source Sub-registry . . . . . . . . . . . 14 6.3. Timestamp Method Sub-registry . . . . . . . . . . . . . . 14 6.4. CoS Operation Sub-registry . . . . . . . . . . . . . . . 14 7. Security Considerations . . . . . . . . . . . . . . . . . . . 14 8. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 14 9. Normative References . . . . . . . . . . . . . . . . . . . . 14 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15 1. Introduction 2. Conventions used in this document 2.1. Terminology STAMP - Simple Two-way Active Measurement Protocol NTP - Network Time Protocol PTP - Precision Time Protocol Mirsky, et al. Expires July 8, 2018 [Page 2] Internet-Draft STAMP January 2018 2.2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 3. Softwarization of Performance Measurement Instance of a Simple Two-way Active Measurement Protocol (STAMP) session between a Sender and a Reflector controlled by communication between a Configuration Client as a manager and Configuration Servers as agents of the configuration session that configures STAMP measurement between Sender and Reflector. The Configuration Client also issues queries to obtain operational state information and/or measurement results. o----------------------------------------------------------o | Config client | o----------------------------------------------------------o || || || NETCONF/RESTCONF || || || o-------------------o o-------------------o | Config server | | Config server | | | | | +-------------------+ +-------------------+ | STAMP Sender | <--- STAMP---> | STAMP Reflector | +-------------------+ +-------------------+ Figure 1: STAMP Reference Model 4. Theory of Operation STAMP Sender transmits test packets toward STAMP Reflector. STAMP Reflector receives Sender's packet and acts according to the configuration and optional control information communicated in the Sender's test packet. STAMP defines two different test packet formats, one for packets transmitted by the STAMP-Sender and one for packets transmitted by the STAMP-Reflector. STAMP supports three modes: unauthenticated, authenticated, and encrypted. Unauthenticated STAMP test packets are compatible on the wire with unauthenticated TWAMP-Test [RFC5357] packet formats. Mirsky, et al. Expires July 8, 2018 [Page 3] Internet-Draft STAMP January 2018 By default STAMP uses symmetrical packets, i.e. size of the packet transmitted by Reflector equals to the size of the packet received by the Reflector. 4.1. Sender Behavior and Packet Format 4.1.1. Sender Packet Format in Unauthenticated Mode Because STAMP supports symmetrical test packets, STAMP Sender packet has minimum size of 44 octets in unauthenticated mode, see Figure 2, and 48 octets in authenticated or encrypted modes , see Figure 4. For unauthenticated mode: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Error Estimate | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | | | | | MBZ (27 octets) | | | | | | | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Server Octets | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Remaining Packet Padding (to be reflected) | ~ (length in octets specified in command) ~ + +-+-+-+-+-+-+-+-+ | | Comp.MBZ | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Value ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: STAMP Sender test packet format in unauthenticated mode where fields are defined as the following: Mirsky, et al. Expires July 8, 2018 [Page 4] Internet-Draft STAMP January 2018 o Sequence Number is four octets long field. For each new session its value starts at zero and is incremented with each transmitted packet. o Timestamp is eight octets long field. STAMP node MUST support Network Time Protocol (NTP) version 4 64-bit timestamp format [RFC5905]. STAMP node MAY support IEEE 1588v2 Precision Time Protocol truncated 64-bit timestamp format [IEEE.1588.2008]. o Error Estimate is two octets long field with format displayed in Figure 3 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |S|Z| Scale | Multiplier | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 3: Error Estimate Format where S, Scale and Multiplier fields are interpreted as they have been defined in section 4.1.2 [RFC4656]; and Z field - as has been defined in section 2.3 [RFC8186]: * 0 - NTP 64 bit format of a timestamp; * 1 - PTPv2 truncated format of a timestamp. o Must-be-Zero (MBZ) field in the sender unauthenticated packet is 27 octets long. It MUST be all zeroed on transmission and ignored on receipt. o Server Octets field is two octets long field. It MUST follow the 27 octets long MBZ field. The Reflect Octets capability defined in [RFC6038]. The value in the Server Octets field equals to the number of octets the Reflector is expected to copy back to the Sender starting with the Server Octets field. Thus the minimal non-zero value for the Server Octets field is two and value of one is invalid. If none of Payload to be copied the value of the Server Octets field MUST be set to zero on transmit. o Remaining Packet Padding is optional field of variable length. The number of octets in the Remaining Packet Padding field is the value of the Server Octets field less the length of the Server Octets field. o Comp.MBZ is variable length field used to achieve alignment on word boundary. Thus the length of Comp.MBZ field may be only 0, Mirsky, et al. Expires July 8, 2018 [Page 5] Internet-Draft STAMP January 2018 1, 2 or 3 octets. The value of the field MUST be zeroed on transmission and ignored on receipt. The unauthenticated STAMP Sender packet MAY include Type-Length-Value encodings that immediately follow the Comp. MBZ field. o Type field is two octets long. The value of the Type field is the codepoint allocated by IANA Section 6 that identifies data in the Value field. o Length is two octets long field and its value is the length of the Value field in octets. 4.1.2. Sender Packet Format in Authenticated and Encrypted Modes For authenticated and encrypted modes: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | MBZ (12 octets) | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Error Estimate | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | MBZ (6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | HMAC (16 octets) | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Value ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 4: STAMP Sender test packet format in authenticated or encrypted modes Mirsky, et al. Expires July 8, 2018 [Page 6] Internet-Draft STAMP January 2018 4.2. Reflector Behavior and Packet Format The Reflector receives the STAMP test packet, verifies it, prepares and transmits the reflected test packet. [Editor note: Verification may include presence and content of TLVs in the STAMP test packet.] 4.2.1. Reflector Packet Format in Unauthenticated Mode For unauthenticated mode: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Error Estimate | MBZ | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Receive Timestamp | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender Timestamp | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender Error Estimate | MBZ | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender TTL | | +-+-+-+-+-+-+-+-+ + | | ~ Packet Padding (reflected) ~ + +-+-+-+-+-+-+-+-+ | | Comp.MBZ | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Value ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 5: STAMP Reflector test packet format in unauthenticated mode where fields are defined as the following: Mirsky, et al. Expires July 8, 2018 [Page 7] Internet-Draft STAMP January 2018 o Sequence Number is four octets long field. The value of the Sequence Number field is set according to the mode of the STAMP Reflector: * in the stateless mode the Reflector copies the value from the received STAMP test packet's Sequence Number field; * in the stateful mode the Reflector counts the received STAMP test packets in each test session and uses that counter to set value of the Sequence Number field. o Timestamp and Receiver Timestamp fields are each 8 octets long. The format of these fields, NTP or PTPv2, indicated by the Z flag of the Error Estimate field as described in Section 4.1. o Error Estimate has the same size and interpretation as described in Section 4.1. o Sender Sequence Number, Sender Timestamp, and Sender Error Estimate are copies of the corresponding fields in the STAMP test packet send by the Sender. o Sender TTL is one octet long field and its value is the copy of the TTL field from the received STAMP test packet. o Packet Padding (reflected) is optional variable length field. The length of the Packet Padding (reflected) field MUST be equal to the value of the Server Octets field (Figure 2). If the value is non-zero, the Reflector copies octets starting with the Server Octets field. o Comp.MBZ is variable length field used to achieve alignment on word boundary. Thus the length of Comp.MBZ field may be only 0, 1, 2 or 3 octets. The value of the field MUST be zeroed on transmission and ignored on receipt. 4.2.2. Reflector Packet Format in Authenticated and Encrypted Modes For authenticated and encrypted modes: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MBZ (12 octets) | | | | | Mirsky, et al. Expires July 8, 2018 [Page 8] Internet-Draft STAMP January 2018 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Error Estimate | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | MBZ (6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Receive Timestamp | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MBZ (8 octets) | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MBZ (12 octets) | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender Timestamp | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender Error Estimate | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | MBZ (6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender TTL | | +-+-+-+-+-+-+-+-+ + | | | | | MBZ (15 octets) | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | HMAC (16 octets) | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-| Figure 6: STAMP Reflector test packet format in authenticated or encrypted modes 5. TLV Extensions to STAMP TBA Mirsky, et al. Expires July 8, 2018 [Page 9] Internet-Draft STAMP January 2018 5.1. Extra Padding TLV TBA 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Extra Padding Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Extra Padding ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 7: Extra Padding TLV where fields are defined as the following: o Extra Padding Type - TBA1 allocated by IANA Section 6.1 o Length - 2 octets long field equals length on the Extra Padding field in octets. o Extra Padding - pseudo-random sequence of numbers. The field MAY be filled with all zeroes. 5.2. Location TLV STAMP sender MAY include the Location TLV to request information from the reflector. The sender SHOULD NOT fill any information fields except for Type and Length. The reflector MUST validate the Length value against address family of the transport encapsulating the STAMP test packet. If the value of the Length field is invalid, the reflector MUST zero all fields and MUST NOT return any information to the sender. The reflector MUST ignore all other fields of the received Location TLV. Mirsky, et al. Expires July 8, 2018 [Page 10] Internet-Draft STAMP January 2018 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Location Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source MAC | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | MBZ | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Destination IP Address ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Source IP Address ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Dest.port | Src.Port | MBZ | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 8: Reflector Location TLV where fields are defined as the following: o Location Type - TBA1 allocated by IANA Section 6.1 o Length - 2 octets long field equals length on the Value field in octets. Length field value MUST be 20 octets for IPv4 address family. For IPv6 address family value of the Length field MUST be 44 octets. All other values are invalid o Source MAC - 6 octets 48 bits long field. The reflector MUST copy Source MAC of received STAMP packet into this field. o MBZ - two octets long field. MUST be zeroed on transmission and ignored on reception. o Destination IP Address - IPv4 or IPv6 destination address of the received by the reflector STAMP packet. o Source IP Address - IPv4 or IPv6 source address of the received by the reflector STAMP packet. o Dest.port - one octet long UDP destination port number of the received STAMP packet. o Src.port - one octet long UDP source port number of the received STAMP packet. Mirsky, et al. Expires July 8, 2018 [Page 11] Internet-Draft STAMP January 2018 5.3. Timestamp Information TLV STAMP sender MAY include the Timestamp Information TLV to request information from the reflector. The sender SHOULD NOT fill any information fields except for Type and Length. The reflector MUST validate the Length value of the STAMP test packet. If the value of the Length field is invalid, the reflector MUST zero all fields and MUST NOT return any information to the sender. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Timestamp Information Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Synchronization Source | Timestamp Method | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 9: Timestamp Information TLV where fields are defined as the following: o Timestamp Information Type - TBA1 allocated by IANA Section 6.1 o Length - 2 octets long field, equals 4 octets. o Synchronization Source - two octets long field that characterizes the source of clock synchronization at the reflector. The value is one of Section 6.2. o Timestamp Method - two octets long field that characterizes timestamping method at the reflector. The value is one of Section 6.3. [Ed.note: Should it be split for ingress and egress?] 5.4. Class of Service TLV The STAMP sender MAY include Class of Service TLV in the STAMP test packet. If the Class of Service TLV is present in the STAMP test packet and the value of the Op field equals Report (TBA5) value Section 6.4, then the STAMP reflector MUST copy DSCP and ECN values from the received STAMP test packet into DSCP and ECN fields of the Class of Service TLV of the reflected STAMP test packet. If the value of the Op field equals Set and Report (TBA6) Section 6.4, then the STAMP reflector MUST use DSCP value from the Class of Service TLV in the received STAMP test packet as DSCP value of STAMP reflected test packet and MUST copy DSCP and ECN values of the received STAMP test packet into DSCP and ECN fields of Class of Service TLV in the STAMP reflected packet. Mirsky, et al. Expires July 8, 2018 [Page 12] Internet-Draft STAMP January 2018 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Class of Service Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | DSCP |ECN|Op | MBZ | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 10: Class of Service TLV where fields are defined as the following: o 6. IANA Considerations 6.1. STAMP TLV Registry IANA is requested to create STAMP TLV Type registry. All code points in the range 1 through 32759 in this registry shall be allocated according to the "IETF Review" procedure as specified in [RFC8126]. Code points in the range 32760 through 65279 in this registry shall be allocated according to the "First Come First Served" procedure as specified in [RFC8126]. Remaining code points are allocated according to the Table 1: +---------------+--------------+-------------------------+ | Value | Description | Reference | +---------------+--------------+-------------------------+ | 0 | Reserved | This document | | 1- 32759 | Unassigned | IETF Review | | 32760 - 65279 | Unassigned | First Come First Served | | 65280 - 65519 | Experimental | This document | | 65520 - 65534 | Private Use | This document | | 65535 | Reserved | This document | +---------------+--------------+-------------------------+ Table 1: STAMP TLV Type Registry This document defines the following new values in STAMP TLV Type registry: Mirsky, et al. Expires July 8, 2018 [Page 13] Internet-Draft STAMP January 2018 +-------+-----------------------+---------------+ | Value | Description | Reference | +-------+-----------------------+---------------+ | TBA1 | Extra Padding | This document | | TBA2 | Location | This document | | TBA3 | Timestamp Information | This document | | TBA4 | Class of Service | This document | +-------+-----------------------+---------------+ Table 2: STAMP Types 6.2. Synchronization Source Sub-registry TBD 6.3. Timestamp Method Sub-registry TBD 6.4. CoS Operation Sub-registry TBD 7. Security Considerations TBD 8. Acknowledgments TBD 9. Normative References [IEEE.1588.2008] "Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems", IEEE Standard 1588, March 2008. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M. Zekauskas, "A One-way Active Measurement Protocol (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006, . Mirsky, et al. Expires July 8, 2018 [Page 14] Internet-Draft STAMP January 2018 [RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J. Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", RFC 5357, DOI 10.17487/RFC5357, October 2008, . [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010, . [RFC6038] Morton, A. and L. Ciavattone, "Two-Way Active Measurement Protocol (TWAMP) Reflect Octets and Symmetrical Size Features", RFC 6038, DOI 10.17487/RFC6038, October 2010, . [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . [RFC8186] Mirsky, G. and I. Meilik, "Support of the IEEE 1588 Timestamp Format in a Two-Way Active Measurement Protocol (TWAMP)", RFC 8186, DOI 10.17487/RFC8186, June 2017, . Authors' Addresses Greg Mirsky ZTE Corp. Email: gregimirsky@gmail.com Guo Jun ZTE Corporation 68# Zijinghua Road Nanjing, Jiangsu 210012 P.R.China Phone: +86 18105183663 Email: guo.jun2@zte.com.cn Mirsky, et al. Expires July 8, 2018 [Page 15] Internet-Draft STAMP January 2018 Henrik Nydell Accedian Networks Email: hnydell@accedian.com Mirsky, et al. Expires July 8, 2018 [Page 16]