Network Working Group E. Gunduz Internet-Draft RIPE NCC Expires: November 26, 2006 A. Newton VeriSign, Inc. S. Kerr RIPE NCC May 25, 2006 IRIS - An Address Registry (areg) Type for the Internet Registry Information Service draft-ietf-crisp-iris-areg-14 Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire on November 26, 2006. Copyright Notice Copyright (C) The Internet Society (2006). Abstract This document describes an IRIS registry schema for IP address and Autonomous System Number information. The schema extends the necessary query and result operations of IRIS to provide the functional information service needs for syntaxes and results used by Gunduz, et al. Expires November 26, 2006 [Page 1] Internet-Draft iris-areg May 2006 Internet Protocol address registries. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Document Terminology . . . . . . . . . . . . . . . . . . . . . 5 3. Schema Description . . . . . . . . . . . . . . . . . . . . . . 6 3.1. Query Derivatives . . . . . . . . . . . . . . . . . . . . 6 3.1.1. Query . . . . . . . . . . . . . . . . . 6 3.1.2. . . . . . . . . . . . . . . . . . 6 3.1.3. and . . . . . . . . . . . . . . . . . 7 3.1.4. . . . . . . . . . . . . . . . 7 3.1.5. . . . . . . . . . . . . . . . . 8 3.1.6. . . . . . . . . . . . . . . . . . . . 8 3.1.7. . . . . . . . . . . . . . . . . . . . 9 3.1.8. . . . . . . . . . . . . . . 9 3.1.9. Contact Search Group . . . . . . . . . . . . . . . . . 10 3.1.10. Common Search Group . . . . . . . . . . . . . . . . . 10 3.1.11. Match Parameters . . . . . . . . . . . . . . . . . . . 10 3.2. Result Derivatives . . . . . . . . . . . . . . . . . . . . 11 3.2.1. and Results . . . . . . . 11 3.2.2. Result . . . . . . . . . . . . . . 12 3.2.3. Result . . . . . . . . . . . . . . . . . . . 13 3.2.4. Result . . . . . . . . . . . . . . . . 13 3.2.5. Contact References . . . . . . . . . . . . . . . . . . 14 3.2.6. Common Result Child Elements . . . . . . . . . . . . . 15 3.3. Support for . . . . . . . . . . . . . 15 4. Terminology for Nesting of Networks . . . . . . . . . . . . . 16 5. Formal XML Syntax . . . . . . . . . . . . . . . . . . . . . . 20 6. BEEP Transport Compliance . . . . . . . . . . . . . . . . . . 33 6.1. Message Pattern . . . . . . . . . . . . . . . . . . . . . 33 6.2. Server Authentication . . . . . . . . . . . . . . . . . . 33 7. URI Resolution . . . . . . . . . . . . . . . . . . . . . . . . 34 7.1. Application Service Label . . . . . . . . . . . . . . . . 34 7.2. Operational Considerations . . . . . . . . . . . . . . . . 34 7.3. Top-Down Resolution . . . . . . . . . . . . . . . . . . . 34 8. Internationalization Considerations . . . . . . . . . . . . . 35 9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 36 10. Security Considerations . . . . . . . . . . . . . . . . . . . 37 11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 38 11.1. Normative References . . . . . . . . . . . . . . . . . . . 38 11.2. Informative References . . . . . . . . . . . . . . . . . . 38 Appendix A. Privacy Considerations . . . . . . . . . . . . . . . 39 Appendix B. Example Requests and Responses . . . . . . . . . . . 40 B.1. Example 1 . . . . . . . . . . . . . . . . . . . . . . . . 40 B.2. Example 2 . . . . . . . . . . . . . . . . . . . . . . . . 41 Gunduz, et al. Expires November 26, 2006 [Page 2] Internet-Draft iris-areg May 2006 Appendix C. Specificity Examples . . . . . . . . . . . . . . . . 45 Appendix D. Contributors . . . . . . . . . . . . . . . . . . . . 57 Appendix E. Acknowledgements . . . . . . . . . . . . . . . . . . 58 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 59 Intellectual Property and Copyright Statements . . . . . . . . . . 60 Gunduz, et al. Expires November 26, 2006 [Page 3] Internet-Draft iris-areg May 2006 1. Introduction An Internet address registry stores information about: o address ranges o autonomous system number ranges o associated contacts and organizations o name servers This information is inter-related, and Internet address registries store this information and the information's inter-relationships in a manner befitting the needs of each Internet address registry and the registry's constituents. This document specifies a methods for accessing and retrieving this information in a common XML format. This document describes an IRIS namespace for Internet address registries using an XML Schema [9] derived from and using the IRIS [2] schema. This schema and registry type are provided to demonstrate the extensibility of the IRIS framework beyond the use of domains, a criteria defined in CRISP [4]. The schema given is this document is specified using the Extensible Markup Language (XML) 1.0 as described in XML [6], XML Schema notation as described in XML_SD [8] and XML_SS [9], and XML Namespaces as described in XML_NS [7]. Examples of client/server XML exchanges with this registry type are available in Appendix B. Gunduz, et al. Expires November 26, 2006 [Page 4] Internet-Draft iris-areg May 2006 2. Document Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [1]. Gunduz, et al. Expires November 26, 2006 [Page 5] Internet-Draft iris-areg May 2006 3. Schema Description IRIS requires the derivation of both query and result elements by a registry schema. These descriptions follow. The descriptions contained within this section refer to XML elements and attributes and their relation to the exchange of data within the protocol. These descriptions also contain specifications outside the scope of the formal XML syntax. Therefore, this section will use terms defined by RFC 2119 [1] to describe the specification outside the scope of the formal XML syntax. While reading this section, please reference Section 5 for needed details on the formal XML syntax. 3.1. Query Derivatives 3.1.1. Query searches for contacts given search constraints. The allowable search fields are handled by one of the elements in the "contactSearchGroup" (see Section 3.1.9) or the element . The element constrains the query based on the organization ID (handle) associated with contacts. This element is an "exactMatchParameter" (see Section 3.1.11). This query also provides optional elements containing language tags. Clients MAY use these elements to give a hint about the natural language(s) of the affected element. Servers MAY use this information in processing the query, such as tailoring normalization routines to aid in more effective searches. The client SHOULD pass the names unchanged to the server, and the implementation of the server decides if the search is case sensitive or not. 3.1.2. searches for organizations given search constraints. The allowable search fields are handled by one of the elements in the "commonSearchGroup" (see Section 3.1.10) or the element . This element is an "exactOrPartialMatchParameter" (see Section 3.1.11). This query also provides optional elements containing language tags. Clients MAY use these elements to give a hint about Gunduz, et al. Expires November 26, 2006 [Page 6] Internet-Draft iris-areg May 2006 the natural language(s) of the affected element. Servers MAY use this information in processing the query, such as tailoring normalization routines to aid in more effective searches. The client SHOULD pass the names unchanged to the server, and the implementation of the server decides if the search is case sensitive or not. 3.1.3. and The and elements allow searches by name of autonomous systems, and networks, respectively. Both have the same format. The child element is an "exactOrPartialMatchParameter" (see Section 3.1.11). This query also provides optional elements containing language tags. Clients MAY use these elements to give a hint about the natural language(s) of the affected element. Servers MAY use this information in processing the query, such as tailoring normalization routines to aid in more effective searches. The client SHOULD pass the names unchanged to the server, and the implementation of the server decides if the search is case sensitive or not. 3.1.4. The element is a query for a network given a related IP address or IP address range. It has the following child elements: o - has a child element containing the starting IPv4 address of the network and an optional child of containing the ending IPv4 address of the network. Clients MUST convert any short-form notation ot the fully-qualified notation. o - same as but the child addresses contain IPv6 addresses. Clients MUST convert any short-form notation to the fully-qualified notation. o - determines the network specificity for the search (see Section 4). Valid values are "exact-match", "all-less- specific", "one-level-less-specific", "all-more-specific", and "one-level-more-specific". This element may have the optional attribute 'allowEquivalences'. When set to "true", the result set Gunduz, et al. Expires November 26, 2006 [Page 7] Internet-Draft iris-areg May 2006 should include networks with equivalent starting and ending addresses. The default value for 'allowEquivalences' is "false". The results from this query MUST be either the result or the result. More than one network result MAY be returned. 3.1.5. The element is a query for a network given a the handle of a related network. It has the following child elements: o - Specifies the network handle. o - determines the network specificity for the search (see Section 4). Valid values are "all-less-specifics", "one- level-less-specifics", "all-more-specifics", and "one-level-more- specifics". The results from this query MUST be either the result or the result. More than one network result MAY be returned. This query could be used to discover the parentage relationships between networks that have the same starting and ending addresses. The client SHOULD pass handles unchanged to the server, and the implementation of the server decides if the search is case sensitive or not. 3.1.6. The element allows a search for autonomous systems given an autonomous system number (ASN) range. It has the following child elements: o - Specifies the start of the ASN range. o - Specifies the end of the ASN range. o - determines the range specificity for the search (see Section 4). Valid values are "exact-match", "all-less- specific", "one-level-less-specific", "all-more-specific" and "one-level-more-specific". This element may have the optional attribute 'allowEquivalences'. When set to "true", the result set should include ranges with equivalent starting and ending numbers. The default value for 'allowEquivalences' is "false". Gunduz, et al. Expires November 26, 2006 [Page 8] Internet-Draft iris-areg May 2006 The results from this query MUST be result. More than one result MAY be returned. 3.1.7. The element allows a search for autonomous systems, IP networks and organizations on fields associated with that entity's contact. The optional search element MUST restrict the results to autonomous systems, IPv4 networks, IPv6 networks, or organizations using the values 'returnASs', 'returnIPv4Networks', 'returnIPv6Networks', and 'returnOrganizations', respectively. The allowable search fields are handled with either the element or one of the elements in the "contactSearchGroup" (see Section 3.1.9). The element allows for the entities to be selected based on the contact having the specified contact handle, and is an "exactMatchParameter" type (see Section 3.1.11). The client SHOULD pass these search fields unchanged to the server, and the implementation of the server decides if the search is case sensitive or not. The query MAY also be constrained further using the optional element. The contents of this element signify the role the contact has with the entity. The allowable values for this element are "adminContact", "nocContact", "techContact", "abuseContact", and "otherContact". This query also provides optional elements containing language tags. Clients MAY use these elements to give a hint about the natural language(s) of the affected element. Servers MAY use this information in processing the query, such as tailoring normalization routines to aid in more effective searches. The results from this query MUST be the results, the results, the or results. More than one result MAY be returned and the results MAY be of mixed types. 3.1.8. The element allows a search for IP networks based on their associated name servers. The element contains the fully qualified domain name of the name server. The optional search element MUST restrict the results to IPv4 networks or IPv6 networks using the values 'returnIPv4Networks' and 'returnIPv6Networks', respectively. Gunduz, et al. Expires November 26, 2006 [Page 9] Internet-Draft iris-areg May 2006 The results from this query MUST be the or the results. More than one result MAY be returned and the results MAY be of mixed types. 3.1.9. Contact Search Group Some of the queries above have similar query constraints for searching on contacts. This section describes those common parameters. allows the query to be constrained based on the common name of the contact. This constraint is an "exactOrPartialMatchParameter" (see Section 3.1.11). This group also contains all the members of the "commonSearchGroup" (see Section 3.1.10). 3.1.10. Common Search Group Some of the queries above have similar query constraints for searching on contacts. This section describes those common parameters. constrains the query based on the e-mail address of the contact. This constraint is a "domainResource" type (see Section 3.1.11). The , , and elements restrict the scope of the query based on the city, region, country, or postal code of the contact, respectively. These constraints are all "exactMatchParameter" types (see Section 3.1.11). The contents of MUST be compliant with ISO 3166 [12] two-character country codes. 3.1.11. Match Parameters Some of the queries above have constraints that match strings using matching parameters. This section describes those matching parameters. Elements of type "exactMatchParameter" will have one child element of . The contents of this child element are to match exactly in the use of the constraint. Elements of type "partialMatchParameter" will have either a child element with an optional child element or an child element. The content of the element specifies the beginning character sequence for the Gunduz, et al. Expires November 26, 2006 [Page 10] Internet-Draft iris-areg May 2006 constraint. The content of the element specifies the ending character sequence for the constraint. Elements of type "exactOrPartialMatchParameter" can have either the child element allowed with the "exactMatchParameter" type or the child elements allowed with the "partialMatchParameter" type. Elements of type "domainResource" can have either the child element allowed with the "exactMatchParameter" type or a child element of . This parameter type is meant to match email, SIP, XMPP, and other types of "user@domain" addresses. When this parameter is specified with the child element, the constraint is based on the whole email address. When this parameter is specified with the child element, the constraint is based on any email address within the domain given. The MUST only contain a valid domain name (i.e. no '@' symbol), and the matching SHOULD take place only on the domain given (i.e. no partial matches with respect to substrings or parent domains). 3.2. Result Derivatives 3.2.1. and Results The and share a common definition of 'ipNetworkType'. It has the following child elements: o contains the registry unique assigned handle for this network. o contains a human friendly name for the network. o contains the first IP address of the network. o contains the last IP address of the network. o contains a string denoting the type of network. o is an entity reference to a definition of the values explained in a plain natural language. The referent MUST be a as defined by [2]. o contains the domain name of a nameserver responsible for reverse-DNS mapping for this network. o contains an entity reference to the organization assigned this network. The referent MUST be an (Section 3.2.4) result. Gunduz, et al. Expires November 26, 2006 [Page 11] Internet-Draft iris-areg May 2006 o One of: * contains an entity reference to the parent network of this network. The referent MUST be an (Section 3.2.1) result if this reference is a child of . The referent MUST be an (Section 3.2.1) result if this reference is a child of . * signifies that this network has not parent network. o Contact references (see Section 3.2.5). o Common child elements (see Section 3.2.6). 3.2.2. Result The element represents an assigned or allocated autonomous system number range. It has the following children: o contains a registry unique assigned handle for this autonomous system number range. o contains an integer indicating the starting number for the autonomous system number range. o contains an integer indicating the ending number for the autonomous system number range. o contains a human readable name for this autonomous system. o contains an entity reference to the organization assigned or allocated this autonomous system number range. The referent MUST be an (Section 3.2.4) result. o One of: * contains an entity reference to the parent autonomous system of this autonomous system. The referent MUST be an (Section 3.2.2) result. * signifies that this autonomous system as no parent autonomous system. o Contact references (see Section 3.2.5). o Common child elements (see Section 3.2.6). Gunduz, et al. Expires November 26, 2006 [Page 12] Internet-Draft iris-areg May 2006 3.2.3. Result The element represents the registration of a point of contact. It has the following child elements: o contains the registry unique assigned handle for this contact. o specifies the name of the contact. o contains the email address for this contact. o contains the sip address for this contact. o contains an entity reference to the organization associated with this contact. The referent MUST be an (Section 3.2.4) result. o contains a information for reaching the contact via postal mail. It is composed of the following child elements: *
contains the address for this contact. * contains the city where this contact is located. * contains the national region where this contact is located. * contains the postal code where this contact is located. * contains the country code where this contact is located. This MUST be compliant with ISO 3166 [12] two- character country codes. o contains child elements describing the phone number of the contact. The child elements are , , and . o Common child elements (see Section 3.2.6). 3.2.4. Result The element represents an organization. It has the following child elements: o contains the name of the organization. Gunduz, et al. Expires November 26, 2006 [Page 13] Internet-Draft iris-areg May 2006 o contains a registry unique identifier for this organization. o contains the email address for this organization. o contains a information for reaching the organization via postal mail. It is composed of the following child elements: *
contains the address for this organization. * contains the city where this organization is located. * contains the national region where this organization is located. * contains the postal code where this organization is located. * contains the country code where this organization is located. This MUST be compliant with ISO 3166 [12] two- character country codes. o contains child elements describing the phone number of the contact. The child elements are , , and . o Contact references (see Section 3.2.5). o Common child elements (see Section 3.2.6). 3.2.5. Contact References The registry schema defined in Section 5 normalizes out a group of elements used to reference contacts. This group is used by many of the result types for this registry. The group has the following elements, each of which may appear as many times as needed. The referent of each MUST be (Section 3.2.3) results. o o o o o Gunduz, et al. Expires November 26, 2006 [Page 14] Internet-Draft iris-areg May 2006 3.2.6. Common Result Child Elements The registry schema defined in Section 5 normalizes out a group of common elements used most of the result types. The group has the following elements: o contains an entity reference to the number resource registry of record. The referent MUST be an (Section 3.2.4) result. o contains the date of first registration. o contains the date when the registration was last updated. o The element contains an entity reference specifying an entity that is indirectly associated with this result object. This element can be used for comments and remarks. 3.3. Support for The following types of entity classes are recognized by the query of IRIS for this registry: o ipv4-handle - a registry unique identifier specifying an IPv4 network. Queries with these names will yield a result. o ipv6-handle - a registry unique identifier specifying an IPv6 network. Queries with these names will yield a result. o as-handle - a registry unique identifier specifying an autonomous system. It yields a result of . o contact-handle - a registry unique identifier of a contact. Yields a result of . o organization-id - a registry unique identifier of an organization. Yields a result of . o The entity names of these entity classes are case insensitive. Gunduz, et al. Expires November 26, 2006 [Page 15] Internet-Draft iris-areg May 2006 4. Terminology for Nesting of Networks The following terms are defined for describing the nesting of IP networks. o More specific: Given two networks, A and B, A is more specific than B if network B includes all space of network A, and if network B is larger than network A. o Less specific: Opposite of more specific. The network B is less specific than network A if network A's space is completely included in network B and if network A is smaller than network B. o Most specific: Given a set of networks, the network or networks that are more specific than zero or more specific of the other networks in the set, and that are not less specific of any of the networks in the set. o Least specific: Given a set of networks, the network or networks that are not more specific to any of the other networks in the set. Examples: +-------------------------------------------------------+ | | | Given the networks A, B, C and D as follows: | | | | A |---------------------------------| | | B |-----------------| | | C |---------| | | D |-------| | | | | | | The network A is less specific than B, C and D. | | The network B is more specific than A. | | Among these four networks, A is the least specific, | | and C and D are the most specific networks. | | | +-------------------------------------------------------+ Figure 1: Nesting Example 1 Gunduz, et al. Expires November 26, 2006 [Page 16] Internet-Draft iris-areg May 2006 +-------------------------------------------------------+ | | | Given the networks E, F and G: | | | | E |----------| | | F |--------------| | | G |---| | | | | The networks E and F are least specific networks. | | The networks F and G are most specific networks. | | | +-------------------------------------------------------+ Figure 2: Nesting Example 2 The following definitions assume that there are no overlapping networks in the database. A network overlaps with another one when they encompass each other's space partially. Examples: A |---------------------| B |----------------------------| Figure 3: Nesting Example 3 Here, the networks A and B are overlapping networks because network A encompasses network B's space partially and network B encompasses network A's space partially. C |------------------| D |---------| Figure 4: Nesting Example 4 Here, the networks C and D are NOT overlapping networks, because even if network D encompasses a part of network C's space, network C does not encompass network D's space partially (it encompasses network D completely). The address directory can contain more than one network with the same range. They are said to be exact match networks. Parent/child relationship in the internet address directory is unidirectional. That is, there might also be parent/child relationship with exact match networks, but a network cannot be a parent and a child of its exact match network at the same time. Nested matching searches: Gunduz, et al. Expires November 26, 2006 [Page 17] Internet-Draft iris-areg May 2006 [1] all less specifics search: Given a range, find all the networks that contain that range (ie, all less specifics and exact matches). These networks are the networks that fulfill the following condition: (start(network) <= start(search)) AND (end(network) >= end(search)) [2] one-level less specifics search: Given a range, find only the most specific network that contains that range (could be multiple networks, but usually single); This is the set of networks from [1], with the provision that: no network in the return set is contained by any other network in the set. If there are exact match networks in the set from [1], they both must appear in the result set. The result set may contain a network that is exact match to the query range, if the search allows exact matches. A |-------------------------------| B |---------------------------| C |-------| Query |- - - - - - - - - -| Figure 5: Nesting Example 5 In the above case, the query must return B. A |-------------------------------| B |---------------------------| C |---------------------------| D |-------| Query |- - - - - - - - - -| Figure 6: Nesting Example 6 Here, the query must return B and C (they are exact matches of each other). A |-------------------------------| B |---------------------------| C |---------------------------| D |-------| Query |- - - -| Figure 7: Nesting Example 7 Here, the query must return B and C (they are exact matches of each other). D must not be in the result set, as it is exact match to the query if the search specifies that exact matches of query range should not appear in the result set. Gunduz, et al. Expires November 26, 2006 [Page 18] Internet-Draft iris-areg May 2006 In the example 7, if the search specifies that exact matches to the query range are allowed in the result set, then only D must be returned. [3] all more specifics search: Given a range, find all the networks that are fully within that range. The search contains a flag that specifies if an exact match to the query range should appear in the result set or not. Thus, the result set may or may not contain the exact match to the query range, as instructed by the search. (start(network) >= start(search)) AND (end(network) <= end(search)) [4] one-level more specifics search: Given a range, find only the least specific networks that are fully within that range. This is the set of networks from [3], with the provision that: no network in the return set contains any other network in the return set. Query |- - - - - - - - - - - - - - - - - - - - - - -| A |------------------| B |-------------------------| C |--------| D |---------| Figure 8: Nesting Example 8 [5] exact match search: Given a range, find the networks that begin and end on the same IP addresses as the range. That is, the networks that fulfill the following condition: (start(network) = start(search)) AND (end(network) = end(search)) [6] Given a range find the exact match network if exists, and if not, perform the [2] search. Parent-child relationship searches: [6] Given a network handle, find the network that is the direct (one level up) parent of the network with the given handle. [7] Given a network handle, find the network or networks that are direct (one level down) children of the network with the handle given. Gunduz, et al. Expires November 26, 2006 [Page 19] Internet-Draft iris-areg May 2006 5. Formal XML Syntax This IP address registry is specified in the XML Schema notation. The formal syntax presented here is a complete schema representation suitable for automated validation of an XML instance when combined with the formal schema syntax of IRIS. IP address registry schema derived from IRIS schema Gunduz, et al. Expires November 26, 2006 [Page 20] Internet-Draft iris-areg May 2006 Gunduz, et al. Expires November 26, 2006 [Page 21] Internet-Draft iris-areg May 2006 Gunduz, et al. Expires November 26, 2006 [Page 22] Internet-Draft iris-areg May 2006 Gunduz, et al. Expires November 26, 2006 [Page 23] Internet-Draft iris-areg May 2006 Gunduz, et al. Expires November 26, 2006 [Page 24] Internet-Draft iris-areg May 2006 Gunduz, et al. Expires November 26, 2006 [Page 26] Internet-Draft iris-areg May 2006 Gunduz, et al. Expires November 26, 2006 [Page 27] Internet-Draft iris-areg May 2006 Gunduz, et al. Expires November 26, 2006 [Page 31] Internet-Draft iris-areg May 2006 Figure 9 Gunduz, et al. Expires November 26, 2006 [Page 32] Internet-Draft iris-areg May 2006 6. BEEP Transport Compliance IRIS allows several extensions of the core capabilities. This section outlines those extensions allowable by IRIS-BEEP [3]. 6.1. Message Pattern This registry type uses the default message pattern as described in IRIS-BEEP [3]. 6.2. Server Authentication This registry type uses the default server authentication method as described in IRIS-BEEP [3]. Gunduz, et al. Expires November 26, 2006 [Page 33] Internet-Draft iris-areg May 2006 7. URI Resolution 7.1. Application Service Label See Section 9 for the application service label registration. 7.2. Operational Considerations Address registries do not have natural links to DNS. Using reverse DNS tree presents problems for IP address delegation (for example, delegations do not fall into byte boundaries, unlike reverse DNS), and DNS does not currently contain any information regarding autonomous system delegation. Therefore, in order for the top-down resolution to operate properly, it is requested that the IAB instruct IANA to insert and maintain a NAPTR DNS resource record for areg-iris.arpa, as described in Section 9. 7.3. Top-Down Resolution The top-down alternative resolution method MUST be identified as 'top' in IRIS URIs. The process for this condition is as follows: 1. The IRIS [2] direct-resolution process is tried against areg- iris.arpa. 2. If the direct-resolution process yields no server for which a connection can be made, then a negative response is returned and no further action is taken. It is RECOMMENDED that IRIS clients issuing AREG1 requests use the 'top' resolution method when no resolution method has been explicitly given by a user. IRIS servers accepting AREG1 requests seeking information for which they are not authoritative SHOULD refer clients using the 'top' resolution method. Gunduz, et al. Expires November 26, 2006 [Page 34] Internet-Draft iris-areg May 2006 8. Internationalization Considerations This document lays out no new considerations for internationalization beyond that specified in IRIS [2]. Gunduz, et al. Expires November 26, 2006 [Page 35] Internet-Draft iris-areg May 2006 9. IANA Considerations The following URN will need to be registered with IANA according to the IANA considerations defined in IRIS [2]: urn:ietf:params:xml:ns:areg1 The following S-NAPTR application service label will need to be registered with IANA according to the IANA considerations defined in IRIS [2]: AREG1 Under instructions from the IAB, the IANA will create a new second level domain under .arpa called iris (i.e. iris.arpa.). The contents of this new domain are to be under the control of the IAB. Under instructions from the IAB, the IANA will insert and maintain a NAPTR DNS resource record in the iris.arpa. domain for the name areg.iris.arpa. The initial contents for that record is: areg.iris.arpa. ;; order pref flags service re replacement IN NAPTR 100 10 "" "AREG1:iris.xpc:iris.lwz" "" areg.nro.net Gunduz, et al. Expires November 26, 2006 [Page 36] Internet-Draft iris-areg May 2006 10. Security Considerations This document lays out no new considerations for security precautions beyond that specified in IRIS [2]. Gunduz, et al. Expires November 26, 2006 [Page 37] Internet-Draft iris-areg May 2006 11. References 11.1. Normative References [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, BCP 14, March 1997. [2] Newton, A. and M. Sanz, "IRIS: The Internet Registry Information Service (IRIS) Core Protocol", RFC 3981, January 2005. [3] Newton, A. and M. Sanz, "Using the Internet Registry Information Service (IRIS) over the Blocks Extensible Exchange Protocol (BEEP)", RFC 3983, January 2005. [4] Newton, A., "Cross Registry Internet Service Protocol (CRISP) Requirements", RFC 3707, February 2004. 11.2. Informative References [5] Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, November 1987. [6] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0", W3C XML, February 1998, . [7] World Wide Web Consortium, "Namespaces in XML", W3C XML Namespaces, January 1999, . [8] World Wide Web Consortium, "XML Schema Part 2: Datatypes", W3C XML Schema, October 2000, . [9] World Wide Web Consortium, "XML Schema Part 1: Structures", W3C XML Schema, October 2000, . [10] Reynolds, J. and J. Postel, "ASSIGNED NUMBERS", RFC 1700, STD 2, October 1994. [11] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", RFC 2434, BCP 26, October 1998. [12] International Organization for Standardization, "Codes for the representation of names of countries, 3rd edition", ISO Standard 3166, August 1988. Gunduz, et al. Expires November 26, 2006 [Page 38] Internet-Draft iris-areg May 2006 Appendix A. Privacy Considerations Internet address registries store contact details and other information that may be abused. The XML Schema defined in this document purposefully makes the inclusion of any data in a response an option dependent on the needs and policies of the Internet address registry serving the data. Combined with the authentication mechanisms of an IRIS transfer protocol, Internet address registries may derive authorization policies to meet their needs without compromising general privacy policies. As an example, the constituents of an Internet address registry may create a policy whereby NOC contact email addresses are only to be available to members of the Internet address registry. To institute this policy, the XML elements for NOC contacts will never appear in a response to a user that has not been authenticated to be a member of the Internet address registry. Gunduz, et al. Expires November 26, 2006 [Page 39] Internet-Draft iris-areg May 2006 Appendix B. Example Requests and Responses The examples in this section use the string "C:" to denote data sent by a client to a server and the string "S:" to denote data sent by a server to a client. B.1. Example 1 The following is an example of entity lookup for the contact-handle of 'JN560-RIR1'. C: C: C: C: C: C: C: C: C: C: S: S: S: S: S: S: S: S: S: JN560-RIR1 S: S: Bob Smurd S: S: S: S: Organization X, Inc. S: S: S: S: S: +1-703-555-5555 S: office S: S: S: S: S: S: S: S: Figure 11: Example 1 B.2. Example 2 The following example shows a query to find the IP networks containing a given address. C: C: C: C: C: C: C: C: 192.0.2.134 C: C: C: one-level-less-specific C: C: C: C: Gunduz, et al. Expires November 26, 2006 [Page 41] Internet-Draft iris-areg May 2006 C: S: S: S: S: S: S: S: S: NET-192-0-2-128-1 S: S: S: UU-192-0-2-D6 S: S: S: 192.0.2.128 S: S: S: 192.0.2.255 S: S: reassigned S: S: S: Organization X, Inc. S: S: S: S: S: S: Smurd, Bob S: S: S: Gunduz, et al. Expires November 26, 2006 [Page 42] Internet-Draft iris-areg May 2006 S: 2002-11-18T00:00:00-00:00 S: S: S: 2002-11-18T00:00:00-00:00 S: S: S: S: S: S: NET-192-0-2-0-2 S: S: S: UU-192-0-2-0-D5 S: S: S: 192.0.2.0 S: S: S: 192.0.2.255 S: S: direct allocation S: auth03.ns.example.org S: auth00.ns.example.org S: S: S: Organization Y, Inc. S: S: S: S: S: Gunduz, et al. Expires November 26, 2006 [Page 43] Internet-Draft iris-areg May 2006 S: 2000-10-27T00:00:00-00:00 S: S: S: 2002-02-13T00:00:00-00:00 S: S: S: S: S: S: S: S: Addresses within this block are non-portable. S: S: S: S: S: S: Figure 12: Example 2 Gunduz, et al. Expires November 26, 2006 [Page 44] Internet-Draft iris-areg May 2006 Appendix C. Specificity Examples This section includes examples to clarify specificity options for network and ASN searches. A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Contents of the DB Figure 13: Specificity Example 1 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query|- - - - - - - | 192.0.2.0 - 192.0.2.9 Exact match [1] Result: C Gunduz, et al. Expires November 26, 2006 [Page 45] Internet-Draft iris-areg May 2006 Figure 14: Specificity Example 2 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query|- - - - - - - - | 192.0.2.0 - 192.0.2.12 Exact match [2] Result: None Figure 15: Specificity Example 3 Gunduz, et al. Expires November 26, 2006 [Page 46] Internet-Draft iris-areg May 2006 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query|- - - - - - - - - | 192.0.2.0 - 192.0.2.15 All more specifics, allowEquivalences = false Result: C, F & G (not A, which is exact match) Figure 16: Specificity Example 4 Gunduz, et al. Expires November 26, 2006 [Page 47] Internet-Draft iris-areg May 2006 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query|- - - - - - - - - | 192.0.2.0 - 192.0.2.15 All more specifics, allowEquivalences = true Result: A, C, F & G (A included, which is exact match) Figure 17: Specificity Example 5 Gunduz, et al. Expires November 26, 2006 [Page 48] Internet-Draft iris-areg May 2006 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query|- - - - - - - - - | 192.0.2.0 - 192.0.2.15 One level more specifics, allowEquivalences = false Result: C Figure 18: Specificity Example 6 Gunduz, et al. Expires November 26, 2006 [Page 49] Internet-Draft iris-areg May 2006 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query|- - - - - - - - - | 192.0.2.0 - 192.0.2.15 One level more specifics, allowEquivalences = true Result: A Figure 19: Specificity Example 7 Gunduz, et al. Expires November 26, 2006 [Page 50] Internet-Draft iris-areg May 2006 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query |- - | 192.0.2.6 - 192.0.2.9 All less specifics, allowEquivalences = true Result: A, C & G (G is included, exact match) Figure 20: Specificity Example 8 Gunduz, et al. Expires November 26, 2006 [Page 51] Internet-Draft iris-areg May 2006 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query |- - | 192.0.2.6 - 192.0.2.9 All less specifics, allowEquivalences = false Result: A & C (G is not included, exact match) Figure 21: Specificity Example 9 Gunduz, et al. Expires November 26, 2006 [Page 52] Internet-Draft iris-areg May 2006 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query |- - | 192.0.2.6 - 192.0.2.9 One level less specifics, allowEquivalences = true Result: G (the exact match) Figure 22: Specificity Example 10 Gunduz, et al. Expires November 26, 2006 [Page 53] Internet-Draft iris-areg May 2006 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query |- - | 192.0.2.6 - 192.0.2.9 One level less specifics, allowEquivalences = false Result: C Figure 23: Specificity Example 11 Gunduz, et al. Expires November 26, 2006 [Page 54] Internet-Draft iris-areg May 2006 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query|- - - - - - | 192.0.2.0 - 192.0.2.8 One level less specifics, allowEquivalences = false or true Result: C Figure 24: Specificity Example 12 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query = E Find parent (Query argument is a handle) Result: D Gunduz, et al. Expires November 26, 2006 [Page 55] Internet-Draft iris-areg May 2006 Figure 25: Specificity Example 13 A |------------------| 192.0.2.0 - 192.0.2.15 B |------------------| 192.0.2.16 - 192.0.2.31 C |--------------| 192.0.2.0 - 192.0.2.9 D |---------------| 192.0.2.16 - 192.0.2.30 E |---------------| 192.0.2.16 - 192.0.2.30 F |--------| 192.0.2.0 - 192.0.2.5 G |----| 192.0.2.6 - 192.0.2.9 Query = D Find child (Query argument is a handle) Result: E Figure 26: Specificity Example 14 Gunduz, et al. Expires November 26, 2006 [Page 56] Internet-Draft iris-areg May 2006 Appendix D. Contributors David Blacka and Tim Christensen made substantial contributions to this document. Gunduz, et al. Expires November 26, 2006 [Page 57] Internet-Draft iris-areg May 2006 Appendix E. Acknowledgements Eric Hall, William Leibzon, April Marine, George Michaelson, Tim Christensen Cathy Murphy, Andrei Robachevsky, Marcos Sanz, Frederico Neves, Ted Hardie and many others contributed constructively in the mailing list discussions and IETF Meeting sessions. Gunduz, et al. Expires November 26, 2006 [Page 58] Internet-Draft iris-areg May 2006 Authors' Addresses Engin Gunduz RIPE NCC Singel 258 Amsterdam 1016AB The Netherlands Phone: +31 20 535 4444 Email: e.gunduz@computer.org Andrew L. Newton VeriSign, Inc. 21345 Ridgetop Circle Sterling, VA 20166 USA Phone: +1 703 948 3382 Email: andy@hxr.us; anewton@verisignlabs.com Shane W. Kerr RIPE NCC Singel 258 Amsterdam 1016AB The Netherlands Phone: +31 20 535 4444 Email: shane@ripe.net Gunduz, et al. Expires November 26, 2006 [Page 59] Internet-Draft iris-areg May 2006 Intellectual Property Statement The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Disclaimer of Validity This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. Acknowledgment Funding for the RFC Editor function is currently provided by the Internet Society. Gunduz, et al. Expires November 26, 2006 [Page 60]