Network Working Group G. Bernstein Internet Draft Grotto Networking Intended status: Standards Track Y. Lee Expires: November 2014 D. Li Huawei W. Imajuku NTT May 21, 2014 Routing and Wavelength Assignment Information Encoding for Wavelength Switched Optical Networks draft-ietf-ccamp-rwa-wson-encode-26.txt Status of this Memo This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html This Internet-Draft will expire on August 21, 2014. Copyright Notice Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved. Bernstein and Lee Expires November 21, 2014 [Page 1] Internet-Draft Wavelength Switched Optical Networks May 2014 This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Abstract A wavelength switched optical network (WSON) requires that certain key information elements are made available to facilitate path computation and the establishment of label switching paths (LSPs). The information model described in "Routing and Wavelength Assignment Information for Wavelength Switched Optical Networks" shows what information is required at specific points in the WSON. Part of the WSON information model contains aspects that may be of general applicability to other technologies, while other parts are fairly specific to WSONs. This document provides efficient, protocol-agnostic encodings for the WSON specific information elements. It is intended that protocol-specific documents will reference this memo to describe how information is carried for specific uses. Such encodings can be used to extend GMPLS signaling and routing protocols. In addition these encodings could be used by other mechanisms to convey this same information to a path computation element (PCE). Conventions used in this document The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119]. Table of Contents 1. Introduction...................................................3 1.1. Terminology..................................................4 2. Resources, Resource Blocks, and the Resource Pool..............4 2.1. Resource Block Set Field..................................5 3. Resource Accessibility/Availability............................6 Bernstein and Lee Expires November 21, 2014 [Page 2] Internet-Draft Wavelength Switched Optical Networks May 2014 3.1. Resource Accessibility Field..............................6 3.2. Resource Wavelength Constraints Field.....................8 3.3. Resource Block Pool State (RBPoolState) Field............10 3.4. Resource Block Shared Access Wavelength Availability (RBSharedAccessWaveAvailability) Field........................11 4. Resource Block Information (ResourceBlockInfo) Field..........13 4.1. Optical Interface Class List Subfield....................15 4.1.1. ITU-G.698.1 Application Code Mapping.............16 4.1.2. ITU-G.698.2 Application Code Mapping.............18 4.1.3. ITU-G.959.1 Application Code Mapping.............19 4.1.4. ITU-G.695 Application Code Mapping...............22 4.2. Acceptable Client Signal List Subfield................24 4.3. Input Bit Rate List Subfield..........................24 4.4. Processing Capability List Subfield...................25 5. Security Considerations.......................................26 6. IANA Considerations...........................................27 6.1. Types for subfields of WSON Resource Block Information...27 7. Acknowledgments...............................................27 APPENDIX A: Encoding Examples....................................28 A.1. Wavelength Converter Accessibility Field.................28 A.2. Wavelength Conversion Range Field........................29 A.3. An OEO Switch with DWDM Optics...........................30 8. References....................................................33 8.1. Normative References.....................................33 8.2. Informative References...................................33 9. Contributors..................................................35 Authors' Addresses...............................................36 Intellectual Property Statement..................................37 Disclaimer of Validity...........................................38 1. Introduction A Wavelength Switched Optical Network (WSON) is a Wavelength Division Multiplexing (WDM) optical network in which switching is performed selectively based on the center wavelength of an optical signal. [RFC6163] describes a framework for Generalized Multiprotocol Label Switching (GMPLS) and Path Computation Element (PCE) control of a WSON. Based on this framework, [RWA-Info] describes an information model that specifies what information is needed at various points in a WSON in order to compute paths and establish Label Switched Paths (LSPs). This document provides efficient encodings of information needed by the routing and wavelength assignment (RWA) process in a WSON. Such Bernstein and Lee Expires November 21, 2014 [Page 3] Internet-Draft Wavelength Switched Optical Networks May 2014 encodings can be used to extend GMPLS signaling and routing protocols. In addition these encodings could be used by other mechanisms to convey this same information to a path computation element (PCE). Note that since these encodings are relatively efficient they can provide more accurate analysis of the control plane communications/processing load for WSONs looking to utilize a GMPLS control plane. 1.1. Terminology Refer to [RFC6163] for CWDM, DWDM, RWA, WDM. Refer to Section 5 of [Gen-Encode] for the terminology of Resources, Resources Blocks, and Resource Pool. 2. Resources, Resource Blocks, and the Resource Pool This section provides encodings for the information elements defined in [RWA-Info] that have applicability to WSON. The encodings are designed to be suitable for use in the GMPLS routing protocols OSPF [RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP) [RFC5440]. Note that the information distributed in [RFC4203] and [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and this document defines elements to be used within such constructs. Specific constructs of sub-TLVs and the nesting of sub-TLVs of the information element defined by this document will be defined in the respective protocol enhancement documents. This document defines the following information elements pertaining to resources within an optical node: . Resource Accessibility . Resource Wavelength Constraints . Resource Block Pool State . Resource Block Shared Access Wavelength Availability . Resource Block Information Bernstein and Lee Expires November 21, 2014 [Page 4] Internet-Draft Wavelength Switched Optical Networks May 2014 Each of these information elements works with one or more sets of resources rather than just a single resource block. This motivates the following field definition. 2.1. Resource Block Set Field In a WSON node that includes resource blocks (RB), denoting subsets of these blocks allows one to efficiently describe common properties of the blocks and to describe the structure and characteristics, if non-trivial, of the resource pool. The RB Set field is defined in a similar manner to the label set concept of [RFC3471]. The information carried in a RB set field is defined by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action |C| Reserved | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Identifier 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Identifier n | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Action: 8 bits 0 - Inclusive List Indicates that the TLV contains one or more RB elements that are included in the list. 1 - Inclusive Range(s) Indicates that the TLV contains one or more ranges of RBs. Each individual range is denoted by two 32 bit RB identifier. The first 32 bits is the RB identifier for the start of the range and the next 32 bits is the RB identifier for the end of the range. Note that the Length field is used to determine the number of ranges. C (Connectivity bit): Set to 0 to denote fixed (possibly multi- cast) connectivity; Set to 1 to denote potential (switched) Bernstein and Lee Expires November 21, 2014 [Page 5] Internet-Draft Wavelength Switched Optical Networks May 2014 connectivity. Used in Resource Accessibility field. Ignored elsewhere. Reserved: 7 bits This field is reserved. It MUST be set to zero on transmission and MUST be ignored on receipt. Length: 16 bits The total length of this field in bytes. RB Identifier: The RB identifier represents the ID of the resource block which is a 32 bit integer. Usage Note: the inclusive range "Action" can result in very compact encoding of resource sets and it can be advantages to number resource blocks in such a way so that status updates (dynamic information) can take advantage of this efficiency. 3. Resource Accessibility/Availability This section defines the information elements for dealing with accessibility and availability of resource blocks within a pool of resources. These include the ResourceAccessibility, ResourceWaveConstraints, and RBPoolState fields. 3.1. Resource Accessibility Field This information element describes the structure of the resource pool in relation to the switching device. In particular it indicates the ability of an input port to reach sets of resources and of sets of resources to reach a particular output port. This is the PoolInputMatrix and PoolOutputMatrix of [RWA-Info]. The Resource Accessibility is defined by: Bernstein and Lee Expires November 21, 2014 [Page 6] Internet-Draft Wavelength Switched Optical Networks May 2014 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Reserved(8bits)|C| Reserved (23 bits) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Link Set Field A #1 | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field A #1 | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Additional Link set and RB set pairs as needed to | : specify PoolInputMatrix : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Output Link Set Field B #1 | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set B Field #1 (for output connectivity) | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Additional Link Set and RB set pairs as needed to | : specify PoolOutputMatrix : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where C (Connectivity bit): Connectivity indicates how the input/output ports connect to the resource blocks. 0 -- the device is fixed (e.g., a connected port must go through the resource block) 1 -- the device is switched (e.g., a port can be configured to go through a resource but isn't required) The For the Input and Output Link Set Fields, the Link Set Field encoding defined in [Gen-Encode] is to be used. A Label Set Field MUST carry a label as defined in [RFC6205]. Bernstein and Lee Expires November 21, 2014 [Page 7] Internet-Draft Wavelength Switched Optical Networks May 2014 Note that the direction parameter within the Link Set Field is used to indicate whether the link set is an input or output link set, and the bidirectional value for this parameter is not permitted in this field. See Appendix A.1 for an illustration of this encoding. 3.2. Resource Wavelength Constraints Field Resources, such as wavelength converters, etc., may have a limited input or output wavelength ranges. Additionally, due to the structure of the optical system not all wavelengths can necessarily reach or leave all the resources. These properties are described by using one or more resource wavelength restrictions fields as defined below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |I|O|B| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Wavelength Constraints | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Output Wavelength Constraints | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I = 1 or 0 indicates the presence or absence of the Input Wavelength Constraints Field. O = 1 or 0 indicates the presence or absence of the Output Wavelength Constraints Field. B = 1 indicates that a single wavelength constraints field represents both Input and Output Wavelength Constraints Fields. Currently the only valid combinations of (I,O,B) are (1,0,0), (0,1,0), (1,1,0), (0,0,1). Bernstein and Lee Expires November 21, 2014 [Page 8] Internet-Draft Wavelength Switched Optical Networks May 2014 RB Set Field: A set of resource blocks (RBs) which have the same wavelength restrictions. Input Wavelength Constraints Field: Indicates the wavelength input restrictions of the RBs in the corresponding RB set. This field is encoded via the Label Set field of [Gen-Encode]. Output Wavelength Constraints Field: Indicates the wavelength output restrictions of RBs in the corresponding RB set. This field is encoded via the Label Set field of [Gen-Encode]. Bernstein and Lee Expires November 21, 2014 [Page 9] Internet-Draft Wavelength Switched Optical Networks May 2014 3.3. Resource Block Pool State (RBPoolState) Field The state of the pool is given by the number of resources available with particular characteristics. A resource block set is used to encode all or a subset of the resources of interest. The usage state of resources within a resource block set is encoded as either a list of 16 bit integer values or a bit map indicating whether a single resource is available or in use. The bit map encoding is appropriate when resource blocks consist of a single resource. This information can be relatively dynamic, i.e., can change when a connection (LSP is established or torn down. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Usage state | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where Action = 0 denotes a list of 16 bit integers and Action = 1 denotes a bit map. In both cases the elements of the RB Set field are in a one-to-one correspondence with the values in the usage RB usage state area. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action = 0 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB#1 state | RB#2 state | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB#n-1 state | RB#n state or Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ RB#i State (16 bits, unsigned integer): indicates Resource Block #i is in use or available. Bernstein and Lee Expires November 21, 2014 [Page 10] Internet-Draft Wavelength Switched Optical Networks May 2014 Whether the last 16 bits is a wavelength converter (RB) state or padding is determined by the number of elements in the RB set field. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action = 1 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Usage state bitmap | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ...... | Padding bits | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ RB Usage state: Variable Length but must be a multiple of 4 byes. Each bit indicates the usage status of one RB with 0 indicating the RB is available and 1 indicating the RB is in used. The sequence of the bit map is ordered according to the RB Set field with this element. Padding bits: Variable Length 3.4. Resource Block Shared Access Wavelength Availability (RBSharedAccessWaveAvailability) Field Resources blocks may be accessed via a shared fiber. If this is the case, then wavelength availability on these shared fibers is needed to understand resource availability. Bernstein and Lee Expires November 21, 2014 [Page 11] Internet-Draft Wavelength Switched Optical Networks May 2014 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |I|O| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Available Wavelength Set Field | : (Optional) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Output Available Wavelength Set Field | : (Optional) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I bit: Indicates whether the input available wavelength set field is included (1) or not (0). O bit: Indicates whether the output available wavelength set field is included (1) or not (0). RB Set Field: A Resource Block set in which all the members share the same input or output fiber or both. Input Available Wavelength Set Field: Indicates the wavelengths currently available (not being used) on the input fiber to this resource block. This field is encoded via the Label Set field of [Gen-Encode]. Output Available Wavelength Set Field: Indicates the wavelengths currently available (not being used) on the output fiber from this resource block. This field is encoded via the Label Set field of [Gen-Encode]. Bernstein and Lee Expires November 21, 2014 [Page 12] Internet-Draft Wavelength Switched Optical Networks May 2014 4. Resource Block Information (ResourceBlockInfo) Field As defined in [RWA-Info], the Resource Block Information field is used to represent resource signal constraints and processing capabilities of a node. The fundamental properties of a resource block are: (a) Optical Interface Class List(s) (b) Acceptable Client Signal (shared input, modulation, FEC, bit rate, G-PID) (c) Input Bit Rate (d) Processing Capabilities (number of resources in a block, regeneration, performance monitoring, vendor specific) ResourceBlockInfo fields are used to convey relatively static information about individual resource blocks including the resource block properties and the number of resources in a block. When more than one ResourceBlockInfo field is used, there are no ordering requirements amongst these fields. This ResourceBlockInfo field has the following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |I|O| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Optional subfield 1 | : ... : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : : : : : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Optional subfield N | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Bernstein and Lee Expires November 21, 2014 [Page 13] Internet-Draft Wavelength Switched Optical Networks May 2014 RB Set Field is described in Section 2.1. The shared input or output indication is indicated by the first bit (I) and the second bit (O): where I and O are set to 1 if the resource blocks identified in the RB set field utilized a shared fiber for input/output access and set to 0 otherwise. Zero or more Optional subfields MAY be present. Optional subfields have following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Value... | . . . . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The Length field defines the length of the value portion in bytes (thus a subfield with no value portion would have a length of zero). The subfield is padded to four-byte alignment; padding is not included in the Length field (so a three byte value would have a length of three, but the total size of the subfield would be eight byte). Unrecognized types are not processed. If multiple subfields of the same type are present, only the first of the type SHOULD be processed. The following subfield Types are defined: Value Length Sub-TLV Type 1 variable Optical Interface Class List 2 variable Acceptable Client Signal List 3 variable Input Bit Rate List 4 variable Processing Capability List See the IANA Considerations section for allocation of new Types. Bernstein and Lee Expires November 21, 2014 [Page 14] Internet-Draft Wavelength Switched Optical Networks May 2014 4.1. Optical Interface Class List Subfield The list of Optical Interface Class subfield has the following format: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved |I|O| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Optical Interface Classes | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The following I and E combination are defined: I O 0 0 Invalid 1 0 Optical Interface Class List acceptable in input 0 1 Optical Interface Class List available in output 1 1 Optical Interface Class List available on both input and output. The Resource Block MAY contain one or more lists according to input/output flags. The Optical Interface Classes Format is defined as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |S| Reserved | OI Code Points | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Optical Interface Class | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Optical Interface Class (Cont.) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Bernstein and Lee Expires November 21, 2014 [Page 15] Internet-Draft Wavelength Switched Optical Networks May 2014 Where the first 32 bits of the encoding shall be used to identify the semantic of the Optical Interface Class in the following way: S Standard bit. S=0, identify not ITU code points S=1, identify ITU application codes With S=0, the OI Code Points field can take the following values: 0: reserved 1: Vendor Specific Optical Interface Class. With S=1, the OI Code Points field can take the following values: 0: reserved 1: [ITU-G.698.1] application code. 2: [ITU-G.698.2] application code. 3: [ITU-G.959.1] application code. 4: [ITU-G.695] application code. In case of ITU Application Code, the mapping between the string defining the application code and the 64 bits number implementing the optical interface class is given in the following sections. 4.1.1. ITU-G.698.1 Application Code Mapping Recommendation ITU-G.698.1 defines the Application Codes: DScW- ytz(v) and B-DScW-ytz(v). Where: B: means Bidirectionals. Bernstein and Lee Expires November 21, 2014 [Page 16] Internet-Draft Wavelength Switched Optical Networks May 2014 D: means a DWDM application. S: take values N (narrow spectral excursion), W (wide spectral excursion). c: Channel Spacing (GHz). W: take values S (short-haul), L (long-haul). y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). t: take only D value is defined (link does not contain optical amplifier) z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 (indicating ITU-T G.655 fibre). v: take values S (Short wavelength), C (Conventional), L (Long wavelength). An Optional F can be added indicating a FEC Encoding. These get mapped into the 64 bit OIC field as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |B| D |S| c | W | y | t | z | v | F | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where (values between parenthesis refer to ITU defined values as reported above): B: = 1 bidirectional, 0 otherwise D (prefix): = 0 reserved, = 1 (D) S: = 0 (N), = 1 (W) c: Channel Spacing, 4 bits mapped according to same definition in [RFC6205] (note that DWDM spacing apply here) Bernstein and Lee Expires November 21, 2014 [Page 17] Internet-Draft Wavelength Switched Optical Networks May 2014 W: = 0 reserved, = 2 (S), = 3 (L) y: = 0 reserved, = 1 (1), = 2 (2) t: = 0 reserved, = 4 (D) z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) F (suffix): = 0 reserved, = 1 Fec Encoding Values not mentioned here are not allowed in this application code, the last 32 bits are reserved and shall be set to zero. 4.1.2. ITU-G.698.2 Application Code Mapping Recommendation ITU-G.698.2 defines the Application Codes: DScW- ytz(v) and B-DScW-ytz(v). B: means Bidirectional. D: means a DWDM application. S: take values N (narrow spectral excursion), W (wide spectral excursion). c: Channel Spacing (GHz). W: take values C (link is dispersion compensated), U (link is dispersion uncompensated). y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). t: take value A (link may contains optical amplifier) z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 (indicating ITU-T G.655 fibre). v: take values S (Short wavelength), C (Conventional), L (Long wavelength). Bernstein and Lee Expires November 21, 2014 [Page 18] Internet-Draft Wavelength Switched Optical Networks May 2014 An Optional F can be added indicating a FEC Encoding. These get mapped into the 64 bit OIC field as follows: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |B| D |S| c | W | y | t | z | v | F | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where (values between parenthesis refer to ITU defined values as reported above): B: = 1 bidirectional, 0 otherwise D (prefix): = 0 reserved, = 1 (D) S: = 0 (N), = 1 (W) c: Channel Spacing, 4 bits mapped according to same definition in [RFC6205] (note that DWDM spacing apply here) W: = 0 reserved, = 10 (C), = 11 (U) y: = 0 reserved, = 1 (1), = 2 (2) t: = 0 reserved, = 1 (A) z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) F (suffix): = 0 reserved, = 1 Fec Encoding Values not mentioned here are not allowed in this application code, the last 32 bits are reserved and shall be set to zero. 4.1.3. ITU-G.959.1 Application Code Mapping Recommendation ITU-G.959.1 defines the Application Codes: PnWx-ytz and BnWx-ytz. Where: Bernstein and Lee Expires November 21, 2014 [Page 19] Internet-Draft Wavelength Switched Optical Networks May 2014 P,B: when present indicate Plural or Bidirectional n: maximum number of channels supported by the application code (i.e. an integer number) W: take values I (intra-office), S (short-haul), L (long-haul), V (very long-haul), U (ultra long-haul). x: maximum number of spans allowed within the application code (i.e. an integer number) y: take values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ 40G), 7 (RZ 40G). t: take values A (power levels suitable for a booster amplifier in the originating ONE and power levels suitable for a pre-amplifier in the terminating ONE), B (booster amplifier only), C (pre- amplifier only), D (no amplifiers). z: take values 1 (1310 nm sources on ITU-T G.652 fibre), 2 (1550 nm sources on ITU-T G.652 fibre), 3 (1550 nm sources on ITU-T G.653 fibre), 5 (1550 nm sources on ITU-T G.655 fibre). The following list of suffixes can be added to these application codes: F: FEC encoding. D: Adaptive dispersion compensation. E: receiver capable of dispersion compensation. r: reduced target distance. a: power levels appropriate to APD receivers. b: power levels appropriate to PIN receivers. These values are encoded as follows: Bernstein and Lee Expires November 21, 2014 [Page 20] Internet-Draft Wavelength Switched Optical Networks May 2014 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | p | P | n | W | x | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | y | t | z | suffix | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where (values between parenthesis refer to ITU defined values as reported above): p (prefix) = 0 otherwise, = 1 Bidirectional (B) P (optional): = 0 not present, = 2 (P). n: maximum number of channels (10 bits, up to 1024 channels) W: = 0 reserved, = 1 (I), = 2 (S), = 3 (L), = 4 (V), = 5 (U) x: = number of spans (6 bits, up to 64 spans) y: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 7 (7), = 9 (9) t: = 0 reserved, = 1 (A), = 2 (B), = 3 (C), = 4 (D) z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 5 (5) suffix is an 6 bit, bit map: 0 1 2 3 4 5 +-+-+-+-+-+-+ |F|D|E|r|a|b| +-+-+-+-+-+-+ where a 1 in the appropriate slot indicates that the corresponding suffix has been added. Bernstein and Lee Expires November 21, 2014 [Page 21] Internet-Draft Wavelength Switched Optical Networks May 2014 4.1.4. ITU-G.695 Application Code Mapping Recommendation [ITU-G.695] defines the Application Codes: CnWx-ytz and B-CnWx-ytz and S-CnWx-ytz. Where the optional prefixed are: B: Bidirectional S: a system using a black link approach And the rest of the application code is defined as: C: CWDM (Coarse WDM) application n: maximum number of channels supported by the application code (i.e. an integer number) W: take values S (short-haul), L (long-haul). x: maximum number of spans allowed y: take values 0 (NRZ 1.25G), 1 (NRZ 2.5G), 2 (NRZ 10G). t: take values D (link does not contain any optical amplifier). z: take values 1 (1310 nm region for ITU-T G.652 fibre), 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 (ITU-T G.655 fibre). The following list of suffixes can be added to these application codes: F: FEC encoding. Since the application codes are very similar to the one from the G.959 section most of the fields are reused. The 64 bit OIC field is encoded as follows: Bernstein and Lee Expires November 21, 2014 [Page 22] Internet-Draft Wavelength Switched Optical Networks May 2014 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | p | C | n | W | x | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | y | t | z | suffix | reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where (values between parenthesis refer to ITU defined values as reported above): p: = 0 no prefix, 1 = B bidirectional, = 2 S black link C: = 0 reserved, = 3 (C). n: maximum number of channels (10 bits, up to 1024 channels) W: = 0 reserved, = 1 reserved, = 2 (S), = 3 (L), > 3 reserved x: = number of spans (6 bits, up to 64 spans) y: = 0 (0), = 1 (1), =2 (2), > 2 reserved t: = 4 (D), all other values are reserved z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3) suffix is an 6 bit, bit map: 0 1 2 3 4 5 +-+-+-+-+-+-+ |F|0|0|0|0|0| +-+-+-+-+-+-+ where a 1 in the appropriate slot indicates that the corresponding suffix has been added. Bernstein and Lee Expires November 21, 2014 [Page 23] Internet-Draft Wavelength Switched Optical Networks May 2014 4.2. Acceptable Client Signal List Subfield This subfield contains a list of acceptable input client signal types. The acceptable client signal list is a list of Generalized Protocol Identifiers (G-PIDs). 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved | Number of G-PIDs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | G-PID #1 | G-PID #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : | : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | G-PID #N | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Type (16 bits): identifies the Acceptable Client Signal List field. Length (16 bits): The Length field defines the length of the value portion in octets. The number of G-PIDs is an integer greater than or equal to one. G-PIDs are assigned by IANA and many are defined in [RFC3471] and [RFC4328]. 4.3. Input Bit Rate List Subfield This subfield contains a list of bit rate of each input client signal types specified in the Input Client Signal List. The number of Input Bit Rate MUST match the number of G-PID. Bernstein and Lee Expires November 21, 2014 [Page 24] Internet-Draft Wavelength Switched Optical Networks May 2014 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Bit Rate of G-PID #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Bit Rate of G-PID #N | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Input Bit Rates are in IEEE floating point format [IEEE]. 4.4. Processing Capability List Subfield This subfield contains a list of resource processing capabilities. The processing capability list field is a list of capabilities that can be achieved through the referred resources: 1. Regeneration capability 2. Fault and performance monitoring 3. Vendor Specific capability Note that the code points for Fault and performance monitoring and vendor specific capability are subject to further study. The processing capability list field is then given by: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved | Processing Cap ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Possible additional capability parameters depending upon | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : the processing ID : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Bernstein and Lee Expires November 21, 2014 [Page 25] Internet-Draft Wavelength Switched Optical Networks May 2014 When the processing Cap ID is "regeneration capability", the following additional capability parameters are provided in the following field: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | T | C | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Where T bit indicates the type of regenerator: T=0: Reserved T=1: 1R Regenerator T=2: 2R Regenerator T=3: 3R Regenerator Where C bit indicates the capability of regenerator: C=0: Reserved C=1: Fixed Regeneration Point C=2: Selective Regeneration Point Note that when the capability of regenerator is indicated to be Selective Regeneration Pools, regeneration pool properties such as input and output restrictions and availability need to be specified. The code point for this is subject to further study. 5. Security Considerations This document defines protocol-independent encodings for WSON information and does not introduce any security issues. However, other documents that make use of these encodings within protocol extensions need to consider the issues and risks associated with, inspection, interception, modification, or spoofing of any of this information. It is expected that any such documents will describe the necessary security measures to provide adequate Bernstein and Lee Expires November 21, 2014 [Page 26] Internet-Draft Wavelength Switched Optical Networks May 2014 protection. A general discussion on security in GMPLS networks can be found in [RFC5920]. 6. IANA Considerations This document introduces a new registry for GMPLS routing parameters for WSON encoding. This new IANA registry will be created to make the assignment of a new type and new values for the new "GMPLS Routing Parameters for WSON." 6.1. Types for subfields of WSON Resource Block Information Under this new GMPLS Routing Parameters for WSON, a new IANA registry will be created for nested subfields of the Resource Block Information field to create a new section named "Types for subfields of WSON Resource Block Information" and allocate new values as follows: Value Length Sub-TLV Type Reference 0 Reserved 1 variable Optical Interface Class List [This.I-D] 2 variable Acceptable Client Signal List [This.I-D] 3 variable Input Bit Rate List [This.I-D] 4 variable Processing Capability List [This.I-D] 5-65535 Unassigned Types are to be assigned via Standards Action as defined in [RFC5226]. 7. Acknowledgments This document was prepared using 2-Word-v2.0.template.dot. Bernstein and Lee Expires November 21, 2014 [Page 27] Internet-Draft Wavelength Switched Optical Networks May 2014 APPENDIX A: Encoding Examples A.1. Wavelength Converter Accessibility Field Example: Figure 1 shows a wavelength converter pool architecture know as "shared per fiber". In this case the input and output pool matrices are simply: +-----+ +-----+ | 1 1 | | 1 0 | WI =| |, WE =| | | 1 1 | | 0 1 | +-----+ +-----+ +-----------+ +------+ | |--------------------->| | | |--------------------->| C | /| | |--------------------->| o | /D+--->| |--------------------->| m | + e+--->| | | b |=======> ========>| M| | Optical | +-----------+ | i | Port O1 Port I1 + u+--->| Switch | | WC Pool | | n | \x+--->| | | +-----+ | | e | \| | +----+->|WC #1|--+---->| r | | | | +-----+ | +------+ | | | | +------+ /| | | | +-----+ | | | /D+--->| +----+->|WC #2|--+---->| C | + e+--->| | | +-----+ | | o | ========>| M| | | +-----------+ | m |=======> Port I2 + u+--->| | | b | Port O2 \x+--->| |--------------------->| i | \| | |--------------------->| n | | |--------------------->| e | | |--------------------->| r | +-----------+ +------+ Figure 1 An optical switch featuring a shared per fiber wavelength converter pool architecture. This wavelength converter pool can be encoded as follows: Bernstein and Lee Expires November 21, 2014 [Page 28] Internet-Draft Wavelength Switched Optical Networks May 2014 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved |1| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: I1,I2 can connect to either WC1 or WC2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0| Reserved | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB ID = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB ID = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: WC1 can only connect to O1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB ID = #1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: WC2 can only connect to O2 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Link Local Identifier = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |0| | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB ID = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ A.2. Wavelength Conversion Range Field Example: Bernstein and Lee Expires November 21, 2014 [Page 29] Internet-Draft Wavelength Switched Optical Networks May 2014 This example, based on figure 1, shows how to represent the wavelength conversion range of wavelength converters. Suppose the wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, L4}: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Note: WC Set +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Action=0 |1| Reserved | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | WC ID = #1 | WC ID = #2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: wavelength input range +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 2 | Num Wavelengths = 4 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Note: wavelength output range +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 2 | Num Wavelengths = 4 | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Grid | C.S. | Reserved | n for lowest frequency = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ A.3. An OEO Switch with DWDM Optics Figure 2 shows an electronic switch fabric surrounded by DWDM optics. In this example the electronic fabric can handle either G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, the following information is needed: ::= [Other GMPLS info- elements][...] [][] In this case there is complete port to port connectivity so the is not required. In addition since there are sufficient ports to handle all wavelength signals the element is not needed. Hence the attention will be focused on the field: ::= [...][. ..] Bernstein and Lee Expires November 21, 2014 [Page 30] Internet-Draft Wavelength Switched Optical Networks May 2014 /| +-----------+ +-------------+ +------+ /D+--->| +--->|Tunable Laser|-->| | + e+--->| | +-------------+ | C | ========>| M| | | ... | o |=======> Port I1 + u+--->| | +-------------+ | m | Port O1 \x+--->| |--->|Tunable Laser|-->| b | \| | Electric | +-------------+ +------+ | Switch | /| | | +-------------+ +------+ /D+--->| +--->|Tunable Laser|-->| | + e+--->| | +-------------+ | C | ========>| M| | | ... | o |=======> Port I2 + u+--->| | +-------------+ | m | Port O2 \x+--->| +--->|Tunable Laser|-->| b | \| | | +-------------+ +------+ | | /| | | +-------------+ +------+ /D+--->| |--->|Tunable Laser|-->| | + e+--->| | +-------------+ | C | ========>| M| | | ... | o |=======> Port I3 + u+--->| | +-------------+ | m | Port O3 \x+--->| |--->|Tunable Laser|-->| b | \| +-----------+ +-------------+ +------+ Figure 2 An optical switch built around an electronic switching fabric. The resource block information will tell us about the processing constraints of the receivers, transmitters and the electronic switch. The resource availability information, although very simple, tells us that all signals must traverse the electronic fabric (fixed connectivity). The resource wavelength constraints are not needed since there are no special wavelength constraints for the resources that would not appear as port/wavelength constraints. : Bernstein and Lee Expires November 21, 2014 [Page 31] Internet-Draft Wavelength Switched Optical Networks May 2014 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field | : (only one resource block in this example with shared | | input/output case) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|1| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Optical Interface Class List(s) | : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Client Signal Type | : (G-PIDs for SDH and G.709) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Bit Rate Range List | : (2.5Gbps, 10Gbps) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Processing Capabilities List | : Fixed (non optional) 3R regeneration : : : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Since there is fixed connectivity to resource blocks (the electronic switch) the is: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Connectivity=0|Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Input Link Set Field A #1 | : (All input links connect to resource) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RB Set Field A #1 | : (trivial set only one resource block) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Output Link Set Field B #1 | : (All output links connect to resource) : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Bernstein and Lee Expires November 21, 2014 [Page 32] Internet-Draft Wavelength Switched Optical Networks May 2014 8. References 8.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G.709 Optical Transport Networks Control", RFC 4328, January 2006. [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General Network Element Constraint Encoding for GMPLS Controlled Networks", work in progress: draft-ietf-ccamp-general- constraint-encode. 8.2. Informative References [IEEE] IEEE, "IEEE Standard for Binary Floating-Point Arithmetic", Standard 754-1985, 1985 (ISBN 1-5593-7653-8). [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM applications: DWDM frequency grid, June 2002. [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM applications: CWDM wavelength grid, December 2003. [G.695] ITU-T Recommendation G.695, Optical interfaces for coarse wavelength division multiplexing applications, October, 2010. [G.959.1] ITU-T Recommendation G.959.1, Optical transport network physical layer interfaces, February, 2012. [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, January 2003. Bernstein and Lee Expires November 21, 2014 [Page 33] Internet-Draft Wavelength Switched Optical Networks May 2014 [RFC4203] Kompella, L. and Y. Rekhter, Eds., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005. [RFC5226] Narten, T., Alvestrand, H., "Guidelines for Writing an IANA Considerations Section in RFCs", RFC 5226, May 2008. [RFC5307] Kompella, L. and Y. Rekhter, Eds., "IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 5307, October, 2008. [RFC5440] Vasseur, JP. and Le Roux, JL., Eds., "Path Computation Element (PCE) Communication Protocol (PCEP)", RFC 5440, March 2009. [RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS Networks", RFC 5920, July 2010. [RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized Labels for G.694 Lambda-Switching Capable Label Switching Routers", RFC 6205, March 2011. [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS and PCE Control of Wavelength Switched Optical Networks", RFC 6163, April 2011. [RWA-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks", work in progress: draft-ietf- ccamp-rwa-info. Bernstein and Lee Expires November 21, 2014 [Page 34] Internet-Draft Wavelength Switched Optical Networks May 2014 9. Contributors Diego Caviglia Ericsson Via A. Negrone 1/A 16153 Genoa Italy Phone: +39 010 600 3736 Email: diego.caviglia@ericsson.com Anders Gavler Acreo AB Electrum 236 SE - 164 40 Kista Sweden Email: Anders.Gavler@acreo.se Jonas Martensson Acreo AB Electrum 236 SE - 164 40 Kista, Sweden Email: Jonas.Martensson@acreo.se Itaru Nishioka NEC Corp. 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 Japan Phone: +81 44 396 3287 Email: i-nishioka@cb.jp.nec.com Pierre Peloso ALU Email: pierre.peloso@alcatel-lucent.com Cyril Margaria Email: cyril.margaria@gmail.com Giovanni Martinelli Cisco Bernstein and Lee Expires November 21, 2014 [Page 35] Internet-Draft Wavelength Switched Optical Networks May 2014 Email: giomarti@cisco.com Gabriele M Galimberti Cisco Email: ggalimbe@cisco.com Lyndon Ong Ciena Corporation Email: lyong@ciena.com Daniele Ceccarelli Ericsson Email: daniele.ceccarelli@ericsson.com Authors' Addresses Greg M. Bernstein (ed.) Grotto Networking Fremont California, USA Phone: (510) 573-2237 Email: gregb@grotto-networking.com Young Lee (ed.) Huawei Technologies 5340 Legacy Drive Build 3 Plano, TX 75024 USA Phone: (469) 277-5838 Email: leeyoung@huawei.com Bernstein and Lee Expires November 21, 2014 [Page 36] Internet-Draft Wavelength Switched Optical Networks May 2014 Dan Li Huawei Technologies Co., Ltd. F3-5-B R&D Center, Huawei Base, Bantian, Longgang District Shenzhen 518129 P.R.China Phone: +86-755-28973237 Email: danli@huawei.com Wataru Imajuku NTT Network Innovation Labs 1-1 Hikari-no-oka, Yokosuka, Kanagawa Japan Phone: +81-(46) 859-4315 Email: imajuku.wataru@lab.ntt.co.jp Jianrui Han Huawei Technologies Co., Ltd. F3-5-B R&D Center, Huawei Base, Bantian, Longgang District Shenzhen 518129 P.R.China Phone: +86-755-28972916 Email: hanjianrui@huawei.com Intellectual Property Statement The IETF Trust takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in any IETF Document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Copies of Intellectual Property disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr Bernstein and Lee Expires November 21, 2014 [Page 37] Internet-Draft Wavelength Switched Optical Networks May 2014 The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement any standard or specification contained in an IETF Document. Please address the information to the IETF at ietf-ipr@ietf.org. Disclaimer of Validity All IETF Documents and the information contained therein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Acknowledgment Funding for the RFC Editor function is currently provided by the Internet Society. Bernstein and Lee Expires November 21, 2014 [Page 38]