CCAMP Working Group Y. Lee Internet-Draft SKKU (Sung Kyun Kwan University) Intended status: Standards Track V. Lopez Expires: September 10, 2020 Telefonica G. Galimberti Cisco D. Beller Nokia March 9, 2020 A Yang Data Model for Optical Impairment-aware Topology draft-ietf-ccamp-optical-impairment-topology-yang-03 Abstract In order to provision an optical connection through optical networks, a combination of path continuity, resource availability, and impairment constraints must be met to determine viable and optimal paths through the network. The determination of appropriate paths is known as Impairment-Aware Routing and Wavelength Assignment (IA-RWA) for WSON, while it is known as Impairment-Aware Routing and Spectrum Assigment (IA-RSA) for SSON. This document provides a YANG data model for the impairment-aware TE topology in optical networks. Status of This Memo This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on September 10, 2020. Lee, et al. Expires September 10, 2020 [Page 1] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 Copyright Notice Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Tree Diagram . . . . . . . . . . . . . . . . . . . . . . 4 1.3. Prefixes in Data Node Names . . . . . . . . . . . . . . . 4 2. Reference Architecture . . . . . . . . . . . . . . . . . . . 4 2.1. Control Plane Architecture . . . . . . . . . . . . . . . 5 2.2. Transport Data Plane . . . . . . . . . . . . . . . . . . 6 2.3. OMS Media Links . . . . . . . . . . . . . . . . . . . . . 6 2.3.1. Optical Tributary Signal (OTSi) . . . . . . . . . . . 7 2.3.2. Optical Tributary Signal Group (OTSiG) . . . . . . . 7 2.3.3. Media Channel (MC) . . . . . . . . . . . . . . . . . 8 2.3.4. Media Channel Group (MCG) . . . . . . . . . . . . . . 9 2.4. Amplifiers . . . . . . . . . . . . . . . . . . . . . . . 10 2.5. Transponders . . . . . . . . . . . . . . . . . . . . . . 11 2.6. WSS/Filter . . . . . . . . . . . . . . . . . . . . . . . 11 2.7. Optical Fiber . . . . . . . . . . . . . . . . . . . . . . 11 2.8. ROADM Node Architectures . . . . . . . . . . . . . . . . 12 2.8.1. Integrated ROADM Architecture with Integrated Optical Transponders . . . . . . . . . . . . . . . . . . . . 12 2.8.2. Integrated ROADMs with Integrated Optical Transponders and Single Channel Add/Drop Interfaces for Remote Optical Transponders . . . . . . . . . . . 13 2.8.3. Disaggregated ROADMs Subdivided into Degree, Add/Drop, and Optical Transponder Subsystems . . . . 14 2.8.4. Optical Impairments Imposed by ROADM Nodes . . . . . 15 3. YANG Model (Tree Structure) . . . . . . . . . . . . . . . . . 17 4. Optical Impairment Topology YANG Model . . . . . . . . . . . 20 5. Security Considerations . . . . . . . . . . . . . . . . . . . 53 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 53 7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 54 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.1. Normative References . . . . . . . . . . . . . . . . . . 54 8.2. Informative References . . . . . . . . . . . . . . . . . 54 Appendix A. Contributors . . . . . . . . . . . . . . . . . . . . 56 Lee, et al. Expires September 10, 2020 [Page 2] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 Appendix B. Additional Authors . . . . . . . . . . . . . . . . . 57 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 58 1. Introduction In order to provision an optical connection (an optical path) through a wavelength switched optical networks (WSONs) or spectrum switched optical networks (SSONs), a combination of path continuity, resource availability, and impairment constraints must be met to determine viable and optimal paths through the network. The determination of appropriate paths is known as Impairment-Aware Routing and Wavelength Assignment (IA-RWA) [RFC6566] for WSON, while it is known as IA- Routing and Spectrum Assigment (IA-RSA) for SSON. This document provides a YANG data model for the impairment-aware Traffic Engineering (TE) topology in WSONs and SSONs. The YANG model described in this document is a WSON/SSON technology-specific Yang model based on the information model developed in [RFC7446] and the two encoding documents [RFC7581] and [RFC7579] that developed protocol independent encodings based on [RFC7446]. The intent of this document is to provide a Yang data model, which can be utilized by a Multi-Domain Service Coordinator (MDSC) to collect states of WSON impairment data from the Transport PNCs to enable impairment-aware optical path computation according to the ACTN Architecture [RFC8453]. The communication between controllers is done via a NETCONF [RFC8341] or a RESTCONF [RFC8040]. Similarly,this model can also be exported by the MDSC to a Customer Network Controller (CNC), which can run an offline planning process to map latter the services in the network. This document augments the generic TE topology draft [I-D.ietf-teas-yang-te-topo] where possible. This document defines one YANG module: ietf-optical-impairment- topology (Section 3) according to the new Network Management Datastore Architecture [RFC8342]. 1.1. Terminology Refer to [RFC6566], [RFC7698], and [G.807] for the key terms used in this document. The following terms are defined in [RFC7950] and are not redefined here: o client o server Lee, et al. Expires September 10, 2020 [Page 3] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 o augment o data model o data node The following terms are defined in [RFC6241] and are not redefined here: o configuration data o state data The terminology for describing YANG data models is found in [RFC7950]. 1.2. Tree Diagram A simplified graphical representation of the data model is used in Section 2 of this this document. The meaning of the symbols in these diagrams is defined in [RFC8340]. 1.3. Prefixes in Data Node Names In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in Table 1. +--------------+--------------------------+-------------------------+ | Prefix | YANG module | Reference | +--------------+--------------------------+-------------------------+ | optical-imp- | ietf-optical-impairment- | [RFCXXXX] | | topo | topology | | | layer0-types | ietf-layer0-types | [I-D.ietf-ccamp-layer0- | | | | types] | | nw | ietf-network | [RFC8345] | | nt | ietf-network-topology | [RFC8345] | | tet | ietf-te-topology | [I-D.ietf-teas-yang-te- | | | | topo] | +--------------+--------------------------+-------------------------+ Table 1: Prefixes and corresponding YANG modules [Editor's note: The RFC Editor will replace XXXX with the number assigned to the RFC once this draft becomes an RFC.] 2. Reference Architecture Lee, et al. Expires September 10, 2020 [Page 4] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 2.1. Control Plane Architecture Figure 1 shows the control plane architecture. +--------+ | MDSC | +--------+ Scope of this ID -------> || | || | +------------------------+ | | OPTICAL | +---------+ | | DOMAIN | +---------+ | Device | | | CONTROLLER | | Device | | config. | | +------------------------+ | config. | +---------+ v // || \\ +---------+ ______|______ // || \\ ______|______ / OT \ // || \\ / OT \ | +--------+ |// __--__ \\| +--------+ | | |Vend. A |--|----+ ( ) +----|--| Vend. A| | | +--------+ | | ~-( )-~ | | +--------+ | | +--------+ | +---/ \---+ | +--------+ | | |Vend. B |--|--+ / \ +--|--| Vend. B| | | +--------+ | +---( OLS Segment )---+ | +--------+ | | +--------+ | +---( )---+ | +--------+ | | |Vend. C |--|--+ \ / +--|--| Vend. C| | | +--------+ | +---\ /---+ | +--------+ | | +--------+ | | ~-( )-~ | | +--------+ | | |Vend. D |--|----+ (__ __) +----|--| Vend. D| | | +--------+ | -- | +--------+ | \_____________/ \_____________/ ^ ^ | | | | Scope of [I-D.ietf-ccamp-dwdm-if-param-yang] Figure 1: Scope of draft-ietf-ccamp-dwdm-if-param-yang The models developed in this document is an abstracted Yang model that may be used in the interfaces between the MDSC and the Optical Domain Controller (aka MPI) and between the Optical Domain Controller and the Optical Device (aka SBI) in Figure 1. It is not intended to support a detailed low-level DWDM interface model. DWDM interface model is supported by the models presented in [I-D.ietf-ccamp-dwdm-if-param-yang]. Lee, et al. Expires September 10, 2020 [Page 5] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 2.2. Transport Data Plane This section provides the description of the reference optical network architecture and its relevant components to support optical impairment-aware path computation. Figure 2 shows the reference architecture. +-------------------+ +-------------------+ | ROADM Node | | ROADM Node | | | | | | PA +-------+ BA | ILA | PA +-------+ BA | | +-+ | WSS/ | +-+ | _____ +--+ _____ | +-+ | WSS/ | +-+ | --|-| |-|Filter |-| |-|-()____)-| |-()____)-|-| |-|Filter |-| |-|-- | +-+ | | +-+ | +--+ | +-+ | | +-+ | | +-------+ | optical | +-------+ | | | | | | fiber | | | | | | o o o | | o o o | | transponders | | transponders | +-------------------+ +-------------------+ OTS Link OTS Link <---------> <---------> OMS Link <--------------------------------> PA: Pre-Amplifieror BA: Booster Amplifier ILA: In-Line Amplifier Figure 2: Reference Architecture for Optical Transport Network BA (on the left side ROADM) is the ingress Amplifier and PA (on the right side ROADM is the egress amplifier for the OMS link shown in Figure 2. 2.3. OMS Media Links According to [G.872], OMS Media Link represents a media link between two ROADMs. Specifically, it originates at the ROADM's Filter in the source ROADM and terminates at the ROADM's Filter in the destination ROADM. OTS Media Link represents a media link: (i) between ROADM's BA and ILA; (ii) between a pair of ILAs; (iii) between ILA and ROADM's PA. Lee, et al. Expires September 10, 2020 [Page 6] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 OMS Media link can be decomposed in a sequence of OTS links type (i), (ii), and (iii) as discussed above. OMS Media link would give an abstracted view of impairment data (e.g., power, OSNR, etc.) to the network controller. For the sake of optical impairment evaluation OMS Media link can be also decomposed in a sequence of elements such as BA, fiber section, ILA, concentrated loss and PA. [Editor's note: text below related to [G.807] needs to be revised! [G.807] is now in publication process.] 2.3.1. Optical Tributary Signal (OTSi) The OTSi is defined in ITU-T Recommendation G.959.1, section 3.2.4 [G.959.1]. The YANG model defined below assumes that a single OTSi consists of a single modulated optical carrier. This single modulated optical carrier conveys digital information. Characteristics of the OTSi signal are modulation scheme (e.g. QPSK, 8-QAM, 16-QAM, etc.), baud rate (measure of the symbol rate), pulse shaping (e.g. raised cosine - complying with the Nyquist inter symbol interference criterion), etc. 2.3.2. Optical Tributary Signal Group (OTSiG) The definition of the OTSiG is currently being moved from ITU-T Recommendation G.709 [G.709] to the new draft Recommendation G.807 (still work in progress) [G.807]. The OTSiG is an electrical signal that is carried by one or more OTSi's. The relationship between the OTSiG and the the OTSi's is described in ITU-T draft Recommendation G.807, section 10.2 [G.807]. The YANG model below supports both cases: the single OTSi case where the OTSiG contains a single OTSi (see ITU-T draft Recommendation G.807, Figure 10-2) and the multiple OTSi case where the OTSiG consists of more than one OTSi (see ITU-T draft Recommendation G.807, Figure 10-3). From a layer 0 topology YANG model perspective, the OTSiG is a logical construct that associates the OTSi's, which belong to the same OTSiG. The typical application of an OTSiG consisting of more than one OTSi is inverse multiplexing. Constraints exist for the OTSi's belonging to the same OTSiG such as: (i) all OTSi's must be co-routed over the same optical fibers and nodes and (ii) the differential delay between the different OTSi's may not exceed a certain limit. Example: a 400Gbps client signal may be carried by 4 OTSi's where each OTSi carries 100Gbps of client traffic. Lee, et al. Expires September 10, 2020 [Page 7] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 OTSiG _________________________/\__________________________ / \ m=7 - - - +---------------------------X---------------------------+ - - - / / / | | / / / / / /| OTSi OTSi OTSi OTSi |/ / / / / / | ^ ^ ^ ^ | / / / / / /| | | | | |/ / / / / / | | | | | | / / / / / /| | | | | |/ / / -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--- n = 4 K1 K2 K3 K4 Figure 3: MC Example containing all 4 OTSi signals of an OTSiG 2.3.3. Media Channel (MC) The definition of the MC is currently being moved from ITU-T Recommendation G.872 [G.872] to the new draft Recommendation G.807 (still work in progress) [G.807]. Section 3.2.2 defines the term MC and section 7.1.2 provides a more detailed description with some examples. The definition of the MC is very generic (see ITU-T draft Recommendation G.807, Figure 7-1). In the YANG model below, the MC is used with the following semantics: The MC is an end-to-end topological network construct and can be considered as an "optical pipe" with a well-defined frequency slot between one or more optical transmitters each generating an OTSi and the corresponding optical receivers terminating the OTSi's. If the MC carries more than one OTSi, it is assumed that these OTSi's belong to the same OTSiG. Lee, et al. Expires September 10, 2020 [Page 8] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 m=8 +-------------------------------X-------------------------------+ | | | | +----------X----------+ | +----------X----------+ | | | OTSi | | OTSi | | | | ^ | | | ^ | | | | | | | | | | -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+- | n=4 | K1 K2 <------------------------ Media Channel -----------------------> Figure 4: Figure Caption TBA The frequency slot of the MC is defined by the n value defining the central frequency of the MC and the m value that defines the width of the MC following the flexible grid definition in ITU-T Recommendation G.694.1 [G.694.1]. In this model, the effective frequency slot as defined in ITU-T draft Recommendation G.807 is equal to the frequency slot of this end-to-end MC. It is also assumed that ROADM devices can switch MCs. For various reasons (e.g. differential delay), it is preferred to use a single MC for all OTSi's of the same OTSiG. It may however not always be possible to find a single MC for carrying all OTSi's of an OTSiG due to spectrum occupation along the OTSiG path. 2.3.4. Media Channel Group (MCG) The definition of the MCG is currently work in progress in ITU-T and is defined in section 7.1.3 of the new ITU-T draft Recommendation G.807 (still work in progress) [G.807]. The YANG model below assumes that the MCG is a logical grouping of one or more MCs that are used to to carry all OTSi's belonging to the same OTSiG. The MCG can be considered as an association of MCs without defining a hierarchy where each MC is defined by its (n,m) value pair. An MCG consists of more than one MC when no single MC can be found from source to destination that is wide enough to accommodate all OTSi's (modulated carriers) that belong to the same OTSiG. In such a case the set of OTSi's belonging to a single OTSiG have to be split across 2 or more MCs. Lee, et al. Expires September 10, 2020 [Page 9] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 MCG1 = {M1.1, M1.2} __________________________/\________________________ / \ M1.1 M2 M1.2 ____________/\____________ _____/\_____ ____/\____ / \/ \/ \ - - - +---------------------------+-------------+-----------+ - - - / / / | | / / / / / / | | / / / / / /| OTSi OTSi OTSi |/ / / / / / /| OTSi |/ / / / / / | ^ ^ ^ | / / / / / / | ^ | / / / / / /| | | | |/ / / / / / /| | |/ / / / / / | | | | | / / / / / / | | | / / / / / /| | | | |/ / / / / / /| | |/ / / -7 -4 -1 0 1 2 3 4 5 6 7 8 ... 14 17 20 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ n=0 n=17 K1 K2 K3 K4 Figure 5: Figure Caption TBA The MCG is relevant for path computation because all end-to-end MCs belonging to the same MCG have to be co-routed, i.e., have to follow the same path. Additional constraints may exist (e.g. differential delay). 2.4. Amplifiers Optical amplifiers are in charge of amplifying the optical signal in the optical itself without any electrical conversion. There are three main technologies to build amplifiers: Erbium Doped Fiber Amplifier (EDFA), Raman Fiber Amplifier (RFA), and Semiconductor Optical Amplifier (SOA). Nowadays, most of optical networks uses EDFAs. However, RFA has an attractive feature that it works in any wavelength band with a similar or lower noise figures compared to EDFA. On the other hand, RFAs consumes more power and are more expensive than EDFAs. Amplifiers can be classified according to their location in the communication link. There are three basic types of amplifiers: ILA, Pre-Amplifier and Booster. ILA is In-Line Amplifier which is a separate node type while Pre-Amplifier and Booster Amplifier are integral elements of ROADM node. From a data modeling perspective, Pre-Amplifier and Booster Amplifier are internal functions of a ROADM node and as such these elements are hidden within ROADM node. In this document, we would avoid internal node details, but attempt to abstract as much as possible. Lee, et al. Expires September 10, 2020 [Page 10] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 One modeling consideration of the ROADM internal is to model power parameter through the ROADM, factoring the output power from the Pre- Amplifier minus the ROADM power loss would give the input power to the Booster Amplifier. In other words, Power_in (@ ROADM Booster) = Power_out (@ ROADM Pre-Amplifier) - Power_loss (@ ROADM WSS/Filter). 2.5. Transponders A Transponder is the element that sends and receives the optical signal from a fiber. A transponder is typically characterized by its data rate and the maximum distance the signal can travel. Channel frequency, per channel input power, FEC and Modulation are also associated with a transponder. From a path computation point of view, the selection of the compatible source and destination transponders is an important factor for optical signal to traverse through the fiber. There are three main approaches to determine optical signal compatibility. Application Code based on G.698.2 is one approach that only checks the code at both ends of the link. Another approach is organization codes that are specific to an organization or a vendor. The third approach is specify all the relevant parameters explicitly, e.g., FEC type, Modulation type, etc. [Editor's note: The current YANG model described in Section 3 with respect to the relationship between the transponder attributes and the OTSi will need to be investigated in the future revision] 2.6. WSS/Filter WSS separates the incoming light input spectrally as well as spatially, then chooses the wavelength that is of interest by deflecting it from the original optical path and then couple it to another optical fibre port. WSS/Filter is internal to ROADM. So this document does not model the inside of ROADM. 2.7. Optical Fiber There are various optical fiber types defined by ITU-T. There are several fiber-level parameters that need to be factored in, such as, fiber-type, length, loss coefficient, pmd, connectors (in/out). ITU-T G.652 defines Standard Singlemode Fiber; G.654 Cutoff Shifted Fiber; G.655 Non-Zero Dispersion Shifted Fiber; G.656 Non-Zero Dispersion for Wideband Optical Transport; G.657 Bend-Insensitive Fiber. There may be other fiber-types that need to be considered. Lee, et al. Expires September 10, 2020 [Page 11] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 2.8. ROADM Node Architectures The ROADM node architectures in today's dense wavelength division multiplexing (DWDM) networks can be categorized as follows: o Integrated ROADM architecture with integrated optical transponders o Integrated ROADM architecture with integrated optical transponders and single channel add/drop ports for remote optical transponders o Disaggregated ROADM architecture where the ROADM is subdivided into degree, add/drop, and optical transponder subsystems handled as separate network elements The TE topology YANG model augmentations including optical impairments for DWDM networks defined below intend to cover all the 3 categories of ROADM architectures listed above. In the case of a disaggregated ROADM architecture, it is assumed that optical domain controller already performs some form of abstraction and presents the TE-node representing the disaggregated ROADM in the same way as an integrated ROADM with integrated optical transponders if the optical transponder subsystems and the add/drop subsystems are collocated (short fiber links not imposing significant optical impairments). The different ROADM architectures are briefly described and illustrated in the following subsections. [Editor's note: The modeling of remote optical transponders located for example in the client device with a single channel link between the OT and the add/drop port of the ROADM requires further investigations and will be addressed in a future revision of this document.] 2.8.1. Integrated ROADM Architecture with Integrated Optical Transponders Figure 2 and Figure 6 below show the typical architecture of an integrated ROADM node, which contains the optical transponders as an integral part of the ROADM node. Such an integrated ROADM node provides DWDM interfaces as external interfaces for interconnecting the device with its neighboring ROADMs (see OTS link above). The number of these interfaces denote also the degree of the ROADM. A degree 3 ROADM for example has 3 DWDM links that interconnect the ROADM node with 3 neighboring ROADMs. Additionally, the ROADM provides client interfaces for interconnecting the ROADM with client devices such as IP routers or Ethernet switches. These client interfaces are the client interfaces of the integrated optical transponders. Lee, et al. Expires September 10, 2020 [Page 12] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 . . . . . . . . . . . . . . . . . . +-----.-------------------------------- .-----+ | . ROADM . | | . /| +-----------------+ |\ . | Line | . / |--| |--| \ . | Line WEST | /| . | |--| |--| | . |\ | EAST ------+-/ |-.-| |--| OCX |--| |-.-| \-+----- ------+-\ |-.-| |--| |--| |-.-| /-+----- | \| . | |--| |--| | . |/ | | . \ |--| |--| / . | | . \| +-----------------+ |/ . | | . . | | . +---+ +---+ +---+ +---+ . | | . | O | | O | | O | | O | . | | . | T | | T | | T | | T | . | | . +---+ +---+ +---+ +---+ . | | . | | | | | | | | . | +-----.------+-+---+-+---+-+---+-+------.-----+ . . . .|.| . |.| . |.| . |.|. . . . | | | | | | | | TE Node Client Interfaces Figure 6: ROADM Architectiure with Integrated Transponders 2.8.2. Integrated ROADMs with Integrated Optical Transponders and Single Channel Add/Drop Interfaces for Remote Optical Transponders Figure 7 below shows the extreme case where all optical transponders are not integral parts of the ROADM but are separate devices that are interconnected with add/drop ports of the ROADM. If the optical transponders and the ROADM are collocated and if short single channel fiber links are used to interconnect the optical transponders with an add/drop port of the ROADM, the optical domain controller may present these optical transponders in the same way as integrated optical transponders. If, however, the optical impairments of the single channel fiber link between the optical transponder and the add/drop port of the ROADM cannot be neglected, it is necessary to represent the fiber link with its optical impairments in the topology model This also implies that the optical transponders belong to a separate TE node [Editor's note: this requires further study]. Lee, et al. Expires September 10, 2020 [Page 13] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 . . . . . . . . . . . . . . . . . . . Abstracted ROADM . +-----.-------------------------------- .-----+ | . ROADM . | | . /| +-----------------+ |\ . | Line | . / |--| |--| \ . | Line WEST | /| . | |--| |--| | . |\ | EAST ------+-/ |-.-| |--| OCX |--| |-.-| \-+----- ------+-\ |-.-| |--| |--| |-.-| /-+----- | \| . | |--| |--| | . |/ | | . \ |--| |--| / . | | . \| +-----------------+ |/ . | +-----.---------|----|---|----|---------.-----| Colored OT . +-+ ++ ++ +-+ . line I/F . | | | | . . +---+ +---+ +---+ +---+ . . | O | | O | | O | | O | . . | T | | T | | T | | T | . . +---+ +---+ +---+ +---+ . . . . .|.| . |.| . |.| . |.|. . . . | | | | | | | | TE Node Client Interfaces Figure 7: ROADM Architectiure with Remote Transponders 2.8.3. Disaggregated ROADMs Subdivided into Degree, Add/Drop, and Optical Transponder Subsystems Recently, some DWDM network operators started demanding ROADM subsystems from their vendors. An example is the OpenROADM project where multiple operators and vendors are developing related YANG models. The subsystems of a disaggregated ROADM are: single degree subsystems, add/drop subsystems and optical transponder subsystems. These subsystems separate network elements and each network element provides a separate management and control interface. The subsystems are typically interconnected using short fiber patch cables and form together a disaggregated ROADM node. This disaggregated ROADM architecture is depicted in Figure 8 below. As this document defines TE topology YANG model augmentations [I-D.ietf-teas-yang-te-topo] for the TE topology YANG model provided at the north-bound interface of the optical domain controller, it is a valid assumption that the optical domain controller abstracts the subsystems of a disaggregated ROADM and presents the disaggregated ROADM in the same way as an integrated ROADM hiding all the interconnects that are not relevant from an external TE topology view. Lee, et al. Expires September 10, 2020 [Page 14] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 . . . . . . . . . . . . . . . . . . . Abstracted ROADM . +-----.----------+ +----------.-----+ | Degree 1 | | Degree 2 | Line | . +-----+ | + +-----+ . | Line 1 | /| . | W |-|------------|-| W | . |\ | 2 -----+-/ |-.--| S ******** ******** S |--.-| \-+----- -----+-\ |-.--| S | | * * | | S |--.-| /-+----- | \| . | |-|-+ * * +-|-| | . |/ | | . +-+-+-+ | | * * | | +-+-+-+ . | +-----.----|-----+ | * * | +-----|----.-----+ . | | * * | | . +-----.----|-----+ | * * | +-----|----.-----+ | Degree 4 | | | * * | | | Degree 3 | Line | . +-----+ | | * * | | +-----+ . | Line 4 | /| . | W |-|-|--*--*--+ | | W | . |\ | 3 -----+-/ |-.--| S | | +--*--*----|-| S |--.-| \-+----- -----+-\ |-.--| S |-|----*--*----|-| S |--.-| /-+----- | \| . | | | * * | | | . |/ | | . +--*--+ | * * | +--*--+ . | +-----.-----*----+ * * +----*-----.-----+ . * * * * . . +--*---------*--*---------*--+ . . | ADD | . . | DROP | . . +----------------------------+ . Colored OT . | | | | . Line I/F . +---+ +---+ +---+ +---+ . . | O | | O | | O | | O | . . | T | | T | | T | | T | . . +---+ +---+ +---+ +---+ . . . .|.| . |.| . |.| . |.|. . . | | | | | | | | TE Node Client Interfaces Figure 8: Disaggregated ROADM Architecture with Remote Transponders 2.8.4. Optical Impairments Imposed by ROADM Nodes When an optical OTSi signal traverses a ROADM node, optical impairments are imposed on the signal by various passive or active optical components inside the ROADM node. Examples of optical impairments are: o Chromatic dispersion (CD) o Polarization mode dispersion (PMD) o Polarization dependent loss (PDL) Lee, et al. Expires September 10, 2020 [Page 15] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 o Optical amplifier noise due to amplified spontaneous emission (ASE) o In-band cross-talk o Filtering effects (for further study) A ROADM node contains a wavelength selective photonic switching function (WSS)that is capable of switching media channels (MCs) described in Section 2.3.4. These MCs can be established between two line ports of the ROADM or between a line port and an Add/Drop port of the ROADM. The Add/Drop ports of a ROADM are those ports to which optical transponders are connected. Typically, this is a single channel signal (single OTSi), but principally this could also be a group of OTSi signals. The optical impairments associated with these MCs are different and the paths of the MCs inside the ROADM node can be categorized as follows: o Express path: MC path between two line ports of the ROADM (unidirectional) o Add Path: MC path from an Add port to a line port of the ROADM o Drop path: MC path from a line port to a Drop port of the ROADM Due to the symmetrical architecture of the ROADM node, the optical impairments associated with the express path are typically the same between any two line ports of the ROADM whereas the optical impairments for the add and drop paths are different and therefore have to be modeled separately. The optical impairments associated with each of the three types of ROADM-node-internal paths described above are modeled as optical impairment parameter sets. These parameter sets are modeled as an augmentation of the te-node-attributes defined in [I-D.ietf-teas-yang-te-topo]. The te-node-attributes are augmented with a list of roadm-path-impairments for the three ROADM path types distinguished by the impairment-type. Each roadm-path-impairments list entry contains the set of optical impairment parameters for one of the three path types indicated by the impairment-type. For the optical feasibility calculation based on the optical impairments, it is necessary to know whether the optical power of the OTSi stays within a certain power window. This is reflected by some optical power related parameters such as loss parameters or power parameters, which are included in the optical impairment parameter sets (see tree view in Section 3). [I-D.ietf-teas-yang-te-topo] defines a connectivity matrix and a local link connectivity list for the TE node. The connectivity matrix describes the connectivity for the express paths between the Lee, et al. Expires September 10, 2020 [Page 16] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 different lines of the ROADM and the local link connectivity list describes the connectivity for the Add and Drop paths of the ROADM. These matrices are augmented with a new roadm-path-impairment matrix element, an add-path-impairment, and drop-path-impairment matrix element, respectively, which are defined as a pointer to the corresponding entry in the roadm-path-impairments list (leaf-ref). [Editor's note: this section is still work in progress] 3. YANG Model (Tree Structure) module: ietf-optical-impairment-topology augment /nw:networks/nw:network/nw:network-types/tet:te-topology: +--rw optical-impairment-topology! augment /nw:networks/nw:network/nt:link/tet:te/ tet:te-link-attributes: +--ro OMS-attributes +--ro generalized-snr? decimal64 +--ro equalization-mode identityref +--ro (power-param)? | +--:(channel-power) | | +--ro nominal-channel-power? decimal64 | +--:(power-spectral-density) | +--ro nominal-power-spectral-density? decimal64 +--ro media-channel-group* [i] | +--ro i int16 | +--ro media-channels* [flexi-n] | +--ro flexi-n uint16 | +--ro flexi-m? uint16 | +--ro OTSiG-ref? -> /nw:networks/network/node/tet:te/ tunnel-termination-point/OTSiG-element/OTSiG-identifier | +--ro OTSi-ref? -> /nw:networks/network/node/tet:te/ tunnel-termination-point/ OTSiG-element[OTSiG-identifier=current()/../OTSiG-ref]/ OTSiG-container/OTSi/OTSi-carrier-id +--ro OMS-elements* [elt-index] +--ro elt-index uint16 +--ro uid? string +--ro type identityref +--ro element +--ro (element)? +--:(amplifier) | +--ro amplifier | +--ro type-variety string | +--ro operational | +--ro actual-gain decimal64 | +--ro tilt-target decimal64 | +--ro out-voa decimal64 Lee, et al. Expires September 10, 2020 [Page 17] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 | +--ro in-voa decimal64 | +--ro (power-param)? | +--:(channel-power) | | +--ro nominal-channel-power? decimal64 | +--:(power-spectral-density) | +--ro nominal-power-spectral-density? decimal64 +--:(fiber) | +--ro fiber | +--ro type-variety string | +--ro length decimal64 | +--ro loss-coef decimal64 | +--ro total-loss decimal64 | +--ro pmd? decimal64 | +--ro conn-in? decimal64 | +--ro conn-out? decimal64 +--:(concentratedloss) +--ro concentratedloss +--ro loss? decimal64 augment /nw:networks/nw:network/nw:node/tet:te/ tet:tunnel-termination-point: +--ro OTSiG-element* [OTSiG-identifier] | +--ro OTSiG-identifier int16 | +--ro OTSiG-container | +--ro OTSi* [OTSi-carrier-id] | +--ro OTSi-carrier-id int16 | +--ro OTSi-carrier-frequency? decimal64 | +--ro OTSi-signal-width? decimal64 | +--ro channel-delta-power? decimal64 +--ro transponders-list* [transponder-id] +--ro transponder-id uint32 +--ro (mode)? | +--:(G.692.2) | | +--ro standard-mode? standard-mode | +--:(organizational-mode) | | +--ro operational-mode? operational-mode | | +--ro organization-identifier? vendor-identifier | +--:(explicit-mode) | +--ro available-modulation-types* identityref | +--ro configured-modulation-type? identityref | +--ro available-baud-rates* uint32 | +--ro configured-baud-rate? uint32 | +--ro available-FEC-types* identityref | +--ro configured-FEC-type? identityref | +--ro FEC-code-rate? decimal64 | +--ro FEC-threshold? decimal64 +--ro power? int32 Lee, et al. Expires September 10, 2020 [Page 18] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 +--ro power-min? int32 +--ro power-max? int32 augment /nw:networks/nw:network/nw:node/tet:te/ tet:tunnel-termination-point: +--ro transponder-list* [carrier-id] +--ro carrier-id uint32 augment /nw:networks/nw:network/nw:node/tet:te/ tet:te-node-attributes: +--ro roadm-path-impairments* [roadm-path-impairments-id] +--ro roadm-path-impairments-id uint32 +--ro (impairment-type)? +--:(roadm-express-path) | +--ro roadm-express-path | +--ro roadm-pmd? decimal64 | +--ro roadm-cd? decimal64 | +--ro roadm-pdl? decimal64 | +--ro roadm-inband-crosstalk? decimal64 | +--ro roadm-maxloss? decimal64 +--:(roadm-add-path) | +--ro roadm-add-path | +--ro roadm-pmd? decimal64 | +--ro roadm-cd? decimal64 | +--ro roadm-pdl? decimal64 | +--ro roadm-inband-crosstalk? decimal64 | +--ro roadm-maxloss? decimal64 | +--ro roadm-pmax? decimal64 | +--ro roadm-osnr? decimal64 | +--ro roadm-noise-figure? decimal64 +--:(roadm-drop-path) +--ro roadm-drop-path +--ro roadm-pmd? decimal64 +--ro roadm-cd? decimal64 +--ro roadm-pdl? decimal64 +--ro roadm-inband-crosstalk? decimal64 +--ro roadm-maxloss? decimal64 +--ro roadm-minloss? decimal64 +--ro roadm-typloss? decimal64 +--ro roadm-pmin? decimal64 +--ro roadm-pmax? decimal64 +--ro roadm-ptyp? decimal64 +--ro roadm-osnr? decimal64 +--ro roadm-noise-figure? decimal64 augment /nw:networks/nw:network/nw:node/tet:te/ tet:information-source-entry/tet:connectivity-matrices: +--ro roadm-path-impairments? -> ../../../ tet:te-node-attributes/roadm-path-impairments/ roadm-path-impairments-id augment /nw:networks/nw:network/nw:node/tet:te/ Lee, et al. Expires September 10, 2020 [Page 19] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 tet:information-source-entry/tet:connectivity-matrices/ tet:connectivity-matrix: +--ro roadm-path-impairments? -> ../../../../ tet:te-node-attributes/roadm-path-impairments/ roadm-path-impairments-id augment /nw:networks/nw:network/nw:node/tet:te/ tet:te-node-attributes/tet:connectivity-matrices: +--ro roadm-path-impairments? -> ../../roadm-path-impairments/ roadm-path-impairments-id augment /nw:networks/nw:network/nw:node/tet:te/ tet:te-node-attributes/tet:connectivity-matrices/ tet:connectivity-matrix: +--ro roadm-path-impairments? -> ../../../ roadm-path-impairments/roadm-path-impairments-id augment /nw:networks/nw:network/nw:node/tet:te/ tet:tunnel-termination-point/tet:local-link-connectivities: +--ro add-path-impairments? -> ../../../ tet:te-node-attributes/roadm-path-impairments/ roadm-path-impairments-id +--ro drop-path-impairments? -> ../../../ tet:te-node-attributes/roadm-path-impairments/ roadm-path-impairments-id augment /nw:networks/nw:network/nw:node/tet:te/ tet:tunnel-termination-point/tet:local-link-connectivities/ tet:local-link-connectivity: +--ro add-path-impairments? -> ../../../../ tet:te-node-attributes/roadm-path-impairments/ roadm-path-impairments-id +--ro drop-path-impairments? -> ../../../../ tet:te-node-attributes/roadm-path-impairments/ roadm-path-impairments-id 4. Optical Impairment Topology YANG Model [Editor's note: YANG code below may have to be updated before submission!] module ietf-optical-impairment-topology { yang-version 1.1; namespace "urn:ietf:params:xml" +":ns:yang:ietf-optical-impairment-topology"; prefix "optical-imp-topo"; import ietf-network { prefix "nw"; Lee, et al. Expires September 10, 2020 [Page 20] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } import ietf-network-topology { prefix "nt"; } import ietf-te-topology { prefix "tet"; } import ietf-layer0-types { prefix "layer0-types"; } organization "IETF CCAMP Working Group"; contact "Editor: Young Lee Editor: Haomian Zheng Editor: Nicola Sambo Editor: Victor Lopez Editor: Gabriele Galimberti Editor: Giovanni Martinelli Editor: Jean-Luc Auge Editor: Le Rouzic Esther Editor: Julien Meuric Editor: Italo Busi Editor: Dieter Beller Editor: Sergio Belotti Editor: Griseri Enrico Editor: Gert Grammel "; description "This module contains a collection of YANG definitions for impairment-aware optical networks. Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info)."; revision 2020-03-09 { Lee, et al. Expires September 10, 2020 [Page 21] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 description "Initial Version"; reference "RFC XXXX: A Yang Data Model for Impairment-aware Optical Networks"; } // identity identity modulation { description "base identity for modulation type"; } identity QPSK { base modulation; description "QPSK (Quadrature Phase Shift Keying) modulation"; } identity DP-QPSK { base modulation; description "DP-QPSK (Dual Polarization Quadrature Phase Shift Keying) modulation"; } identity QAM8 { base modulation; description "8QAM (8-State Quadrature Amplitude Modulation) modulation"; } identity QAM16 { base modulation; description "QAM16 (Quadrature Amplitude Modulation)"; } identity DP-QAM8 { base modulation; description "DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; } identity DC-DP-QAM8 { base modulation; description "DC DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; } identity DP-QAM16 { base modulation; description Lee, et al. Expires September 10, 2020 [Page 22] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 "DP-QAM16 (Dual Polarization Quadrature Amplitude Modulation)"; } identity DC-DP-QAM16 { base modulation; description "DC DP-QAM16 (Dual Polarization Quadrature Amplitude Modulation)"; } identity FEC { description "Enumeration that defines the type of Forward Error Correction"; } identity reed-solomon { base FEC; description "Reed-Solomon error correction"; } identity hamming-code { base FEC; description "Hamming Code error correction"; } identity golay { base FEC; description "Golay error correction"; } // typedef typedef fiber-type { type enumeration { enum G.652 { description "G.652 Standard Singlemode Fiber"; } enum G.654 { description "G.654 Cutoff Shifted Fiber"; } enum G.653 { description "G.653 Dispersion Shifted Fiber"; } enum G.655 { description "G.655 Non-Zero Dispersion Shifted Fiber"; } enum G.656 { description "G.656 Non-Zero Dispersion for Wideband Optical Transport"; Lee, et al. Expires September 10, 2020 [Page 23] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } enum G.657 { description "G.657 Bend-Insensitive Fiber"; } } description "ITU-T based fiber-types"; } /*temporary defined here for disalignment with*/ /* ietf-layer0-types module*/ typedef operational-mode { type string; description "Vendor-specific mode that guarantees interoperability."; reference "ITU-T G.698.2 (11/2018)"; } // temporary defined here for disalignment with //ietf-layer0-types module typedef standard-mode { type string; description "ITU-T G.698.2 standard mode that guarantees interoperability. It must be an string with the following format: B-DScW-ytz(v) where all these attributes are conformant to the ITU-T recomendation"; reference "ITU-T G.698.2 (11/2018)"; } // temporary defined here for disalignment //with ietf-layer0-types module typedef vendor-identifier { type string; description "vendor identifier that uses vendor-specific mode"; reference "RFC7581: Routing and Wavelength Assignment Information Encoding for Wavelength Switched Optical Networks"; } // grouping grouping transponder-attributes { Lee, et al. Expires September 10, 2020 [Page 24] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 description "Configuration of an optical transponder"; leaf-list available-modulation-types { type identityref { base modulation; } config false; description "List of modulation types the OTSi supports"; } leaf configured-modulation-type { type identityref { base modulation; } config false; description "Currently configured OTSi modulation type"; } leaf-list available-baud-rates { type uint32; units Bd; config false; description "list of available baud-rates. Baud-rate is the unit for symbol rate or modulation rate in symbols per second or pulses per second. It is the number of distinct symbol changes (signal events) made to the transmission medium per second in a digitally modulated signal or a line code"; } leaf configured-baud-rate { type uint32; units Bd; config false; description "configured baud-rate"; } leaf-list available-FEC-types { type identityref { base FEC; } Lee, et al. Expires September 10, 2020 [Page 25] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 config false; description "List determining all the available FEC"; } leaf configured-FEC-type { type identityref { base FEC; } config false; description "FEC type configured for the transponder"; } leaf FEC-code-rate { type decimal64 { fraction-digits 8; range "0..max"; } config false; description "FEC-code-rate"; } leaf FEC-threshold { type decimal64 { fraction-digits 8; range "0..max"; } config false; description "Threshold on the BER, for which FEC is able to correct errors"; } } grouping sliceable-transponder-attributes { description "Configuration of a sliceable transponder."; list transponder-list { key "carrier-id"; config false; description "List of carriers"; leaf carrier-id { type uint32; config false; description "Identifier of the carrier"; } } Lee, et al. Expires September 10, 2020 [Page 26] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } grouping optical-fiber-data { description "optical link (fiber) attributes with impairment data"; leaf fiber-type { type fiber-type; config false; description "fiber-type"; } leaf span-length { type decimal64 { fraction-digits 2; } units "km"; config false; description "the lenght of the fiber span in km"; } leaf input-power { type decimal64 { fraction-digits 2; } units "dBm"; config false; description "Average input power level estimated at the receiver of the link"; } leaf output-power { type decimal64 { fraction-digits 2; } units "dBm"; description "Mean launched power at the transmitter of the link"; } leaf pmd { type decimal64 { fraction-digits 8; range "0..max"; } units "ps/(km)^0.5"; config false; description Lee, et al. Expires September 10, 2020 [Page 27] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 "Polarization Mode Dispersion"; } leaf cd { type decimal64 { fraction-digits 5; } units "ps/nm/km"; config false; description "Cromatic Dispersion"; } leaf osnr { type decimal64 { fraction-digits 5; } units "dB"; config false; description "Optical Signal-to-Noise Ratio (OSNR) estimated at the receiver"; } leaf sigma { type decimal64 { fraction-digits 5; } units "dB"; config false; description "sigma in the Gausian Noise Model"; } } grouping optical-channel-data { description "optical impairment data per channel/wavelength"; leaf bit-rate { type decimal64 { fraction-digits 8; range "0..max"; } units "Gbit/s"; config false; description "Gross bit rate"; } Lee, et al. Expires September 10, 2020 [Page 28] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 leaf BER { type decimal64 { fraction-digits 18; range "0..max"; } config false; description "BER (Bit Error Rate)"; } leaf ch-input-power { type decimal64 { fraction-digits 2; } units "dBm"; config false; description "Per channel average input power level estimated at the receiver of the link"; } leaf ch-pmd { type decimal64 { fraction-digits 8; range "0..max"; } units "ps/(km)^0.5"; config false; description "per channel Polarization Mode Dispersion"; } leaf ch-cd { type decimal64 { fraction-digits 5; } units "ps/nm/km"; config false; description "per channel Cromatic Dispersion"; } leaf ch-osnr { type decimal64 { fraction-digits 5; } units "dB"; config false; Lee, et al. Expires September 10, 2020 [Page 29] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 description "per channel Optical Signal-to-Noise Ratio (OSNR) estimated at the receiver"; } leaf q-factor { type decimal64 { fraction-digits 5; } units "dB"; config false; description "q-factor estimated at the receiver"; } } grouping standard-mode { description "ITU-T G.698.2 standard mode that guarantees interoperability. It must be an string with the following format: B-DScW-ytz(v) where all these attributes are conformant to the ITU-T recomendation"; leaf standard-mode { type standard-mode; config false; description "G.698.2 standard mode"; } } grouping organizational-mode { description "Transponder operational mode supported by organizations or vendor"; leaf operational-mode { type operational-mode; config false; description "configured organization- or vendor-specific application identifiers (AI) supported by the transponder"; } leaf organization-identifier { type vendor-identifier; config false; description Lee, et al. Expires September 10, 2020 [Page 30] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 "organization identifier that uses organizational mode"; } } /* * Identities */ identity type-element { description "Base identity for element type"; } identity Fiber { base type-element; description "Fiber element"; } identity Roadm { base type-element; description "Roadm element"; } identity Edfa { base type-element; description "Edfa element"; } identity Concentratedloss { base type-element; description "Concentratedloss element"; } identity type-power-mode { description "power equalization mode used within the OMS and its elements"; } identity power-spectral-density { base type-power-mode; description "all elements must use power spectral density (W/Hz)"; Lee, et al. Expires September 10, 2020 [Page 31] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } identity channel-power { base type-power-mode; description "all elements must use power (dBm)"; } /* * Groupings */ grouping amplifier-params { description "describes parameters for an amplifier"; container amplifier{ description "amplifier type, operatonal parameters are described"; leaf type-variety { type string ; mandatory true ; description "String identifier of amplifier type referencing a specification in a separate equipment catalog"; } container operational { description "amplifier operationnal parameters"; leaf actual-gain { type decimal64 { fraction-digits 2; } units dB ; mandatory true ; description ".."; } leaf tilt-target { type decimal64 { fraction-digits 2; } mandatory true ; description ".."; } leaf out-voa { type decimal64 { fraction-digits 2; } units dB; mandatory true; description ".."; } Lee, et al. Expires September 10, 2020 [Page 32] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 leaf in-voa { type decimal64 { fraction-digits 2; } units dB; mandatory true; description ".."; } uses power-param; } } } grouping fiber-params { description "String identifier of fiber type referencing a specification in a separate equipment catalog"; container fiber { description "fiber characteristics"; leaf type-variety { type string ; mandatory true ; description "fiber type"; } leaf length { type decimal64 { fraction-digits 2; } units km; mandatory true ; description "length of fiber"; } leaf loss-coef { type decimal64 { fraction-digits 2; } units dB/km; mandatory true ; description "loss coefficient of the fiber"; } leaf total-loss { type decimal64 { fraction-digits 2; } units dB; mandatory true ; description "includes all losses: fiber loss and conn-in and Lee, et al. Expires September 10, 2020 [Page 33] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 conn-out losses"; } leaf pmd{ type decimal64 { fraction-digits 2; } units sqrt(ps); description "pmd of the fiber"; } leaf conn-in{ type decimal64 { fraction-digits 2; } units dB; description "connector-in"; } leaf conn-out{ type decimal64 { fraction-digits 2; } units dB; description "connector-out"; } } } grouping roadm-express-path { description "roadm express path optical impairments"; container roadm-express-path { description "roadm parameters per express path"; leaf roadm-pmd { type decimal64 { fraction-digits 8; range "0..max"; } units "ps/(km)^0.5"; description "Polarization Mode Dispersion"; } leaf roadm-cd { type decimal64 { fraction-digits 5; } units "ps/nm"; Lee, et al. Expires September 10, 2020 [Page 34] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 description "Chromatic Dispersion"; } leaf roadm-pdl { type decimal64 { fraction-digits 2; } units dB ; description "Polarization dependent loss"; } leaf roadm-inband-crosstalk { type decimal64 { fraction-digits 2; } units dB; description "In-band crosstalk, or coherent crosstalk, can occur in components that can have multiple same wavelength inputs with the inputs either routed to different output ports, or all but 1 blocked"; } leaf roadm-maxloss { type decimal64 { fraction-digits 2; } units dB; description "This is the maximum expected add path loss from the ROADM ingress to the ROADM egress assuming no additional add path loss is added"; } } } grouping roadm-add-path { description "roadm add block path optical impairments"; container roadm-add-path { description "roadm optical impairment parameters per add path"; leaf roadm-pmd { type decimal64 { fraction-digits 8; range "0..max"; } units "ps"; description "Polarization Mode Dispersion"; Lee, et al. Expires September 10, 2020 [Page 35] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } leaf roadm-cd { type decimal64 { fraction-digits 5; } units "ps/nm"; description "Cromatic Dispersion"; } leaf roadm-pdl { type decimal64 { fraction-digits 2; } units dB ; description "Polarization dependent loss"; } leaf roadm-inband-crosstalk { type decimal64 { fraction-digits 2; } units dB ; description "In-band crosstalk, or coherent crosstalk, can occur in components that can have multiple same wavelength inputs,with the inputs either routed to different output ports, or all but 1 blocked. In the case of add path it is the total of the add block + egress WSS crosstalk contributions."; } leaf roadm-maxloss { type decimal64 { fraction-digits 2; } units dB ; description "This is the maximum expected add path loss from the add/drop port input to the ROADM egress, assuming no additional add path loss is added. This is used to establish the minimum required transponder output power required to hit the ROADM egress target power levels and preventing to hit the WSS attenuation limits. If the add path contains an internal amplifier this loss value should be based on worst case expected amplifier gain due to ripple or gain uncertainty"; Lee, et al. Expires September 10, 2020 [Page 36] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } leaf roadm-pmax { type decimal64 { fraction-digits 2; } units dBm ; description "This is the maximum (per carrier) power level permitted at the add block input ports, that can be handled by the ROADM node. This may reflect either add amplifier power contraints or WSS adjustment limits. Higher power transponders would need to have their launch power reduced to this value or lower"; } leaf roadm-osnr { type decimal64 { fraction-digits 5; } units "dB"; description "Optical Signal-to-Noise Ratio (OSNR). If the add path contains the ability to adjust the carrier power levels into an add path amplifier (if present) to a target value, this reflects the OSNR contribution of the add amplifier assuming this target value is obtained. The worst case OSNR based on the input power and NF calculation method, and this value, should be used (if both are defined)."; } leaf roadm-noise-figure { type decimal64 { fraction-digits 5; } units "dB"; description "Noise Figure. If the add path contains an amplifier, this is the noise figure of that amplifier inferred to the add port. This permits add path OSNR calculation based on the input power levels to the add block without knowing the ROADM path losses to the add amplifier."; } } } Lee, et al. Expires September 10, 2020 [Page 37] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 grouping roadm-drop-path { description "roadm drop block path optical impairments"; container roadm-drop-path { description "roadm optical impairment parameters per drop path"; leaf roadm-pmd { type decimal64 { fraction-digits 8; range "0..max"; } units "ps/(km)^0.5"; description "Polarization Mode Dispersion"; } leaf roadm-cd { type decimal64 { fraction-digits 5; } units "ps/nm"; description "Chromatic Dispersion"; } leaf roadm-pdl { type decimal64 { fraction-digits 2; } units dB ; description "Polarization dependent loss"; } leaf roadm-inband-crosstalk { type decimal64 { fraction-digits 2; } units dB; description "In-band crosstalk, or coherent crosstalk, can occur in components that can have multiple same wavelength inputs,with the inputs either routed to different output ports,or all but 1 blocked. In the case of drop path it is the total of the ingress to drop e.g. WSS and drop block crosstalk contributions."; } leaf roadm-maxloss { type decimal64 { fraction-digits 2; Lee, et al. Expires September 10, 2020 [Page 38] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } units dB ; description "The net loss from the ROADM input,to the output of the drop block. If ROADM ingress to drop path includes an amplifier, the amplifier gain reduces the net loss. This is before any additional drop path attenuation that may be required due to drop amplifier power contraints. The max value correspond to worst case expected loss, including amplifier gain ripple or uncertainty. It is the maximum output power of the drop amplifier."; } leaf roadm-minloss { type decimal64 { fraction-digits 2; } units dB ; description "The net loss from the ROADM input, to the output of the drop block. If this ROADM ingress to drop path includes an amplifier,the amplifier gain reduces the net loss. This is before any additional drop path attenuation that may be required due to drop amplifier power contraints. The min value correspond to best case expected loss, including amplifier gain ripple or uncertainty."; } leaf roadm-typloss { type decimal64 { fraction-digits 2; } units dB ; description "The net loss from the ROADM input, to the output of the drop block. If this ROADM ingress to drop path includes an amplifier, the amplifier gain reduces the net loss. This is before any additional drop path attenuation that may be required due to drop amplifier power contraints. The typ value correspond to typical case expected loss."; Lee, et al. Expires September 10, 2020 [Page 39] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } leaf roadm-pmin { type decimal64 { fraction-digits 2; } units dBm ; description "If the drop path has additional loss that is added, for example, to hit target power levels into a drop path amplifier, or simply, to reduce the power of a "strong" carrier (due to ripple,for example), then the use of the ROADM input power levels and the above drop losses is not appropriate. This parameter corresponds to the min per carrier power levels expected at the output of the drop block. A detail example of the comparison using these parameters is detailed in section xxx of the document yyy."; } leaf roadm-pmax { type decimal64 { fraction-digits 2; } units dBm ; description "If the drop path has additional loss that is added, for example, to hit target power levels into a drop path amplifier,or simply,to reduce the power of a "strong" carrier(due to ripple,for example), then the use of the ROADM input power levels and the above drop losses is not appropriate. This parameter corresponds to the best case per carrier power levels expected at the output of the drop block. A detail example of the comparison using these parameters is detailed in section xxx of the document yyy"; } leaf roadm-ptyp { type decimal64 { fraction-digits 2; } units dBm ; description "If the drop path has additional loss that is added, Lee, et al. Expires September 10, 2020 [Page 40] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 for example, to hit target power levels into a drop path amplifier,or simply,to reduce the power of a "strong" carrier(due to ripple,for example), then the use of the ROADM input power levels and the above drop losses is not appropriate. This parameter corresponds to the typical case per carrier power levels expected at the output of the drop block."; } leaf roadm-osnr { type decimal64 { fraction-digits 5; } units "dB"; description "Optical Signal-to-Noise Ratio (OSNR). Expected OSNR contribution of the drop path amplifier(if present) for the case of additional drop path loss (before this amplifier) in order to hit a target power level (per carrier). If both, the OSNR based on the ROADM input power level (Pcarrier = Pref+10Log(carrier-baudrate/ref-baud) + delta-power) and the input inferred NF(NF.drop), and this OSNR value, are defined, the minimum value between these two should be used"; } leaf roadm-noise-figure { type decimal64 { fraction-digits 5; } units "dB"; description "Drop path Noise Figure. If the drop path contains an amplifier, this is the noise figure of that amplifier, inferred to the ROADM ingress port. This permits to determine amplifier OSNR contribution without having to specify the ROADM node's losses to that amplifier. This applies for the case of no additional drop path loss, before the amplifier, in order to reduce the power of the carriers to a target value"; Lee, et al. Expires September 10, 2020 [Page 41] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } } } grouping concentratedloss-params{ description "concentrated loss"; container concentratedloss{ description "concentrated loss"; leaf loss { type decimal64 { fraction-digits 2; } units dB ; description ".."; } } } grouping power-param{ description "optical power or PSD after the ROADM or after the out-voa"; choice power-param { description "select the mode: channel power or power spectral density"; case channel-power { /* when "equalization-mode='channel-power'"; */ leaf nominal-channel-power{ type decimal64 { fraction-digits 1; } units dBm ; description " Reference channel power after the ROADM or after the out-voa. "; } } case power-spectral-density{ /* when "equalization-mode='power-spectral-density'"; */ leaf nominal-power-spectral-density{ type decimal64 { fraction-digits 16; } units W/Hz ; description " Reference power spectral density after the ROADM or after the out-voa. Typical value : 3.9 E-14, resolution 0.1nW/MHz"; } Lee, et al. Expires September 10, 2020 [Page 42] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } } } grouping oms-general-optical-params { description "OMS link optical parameters"; leaf generalized-snr { type decimal64 { fraction-digits 5; } units "dB@0.1nm"; description "generalized snr"; } leaf equalization-mode{ type identityref { base type-power-mode; } mandatory true; description "equalization mode"; } uses power-param; } grouping OTSiG { description "OTSiG definition , representing client digital information stream supported by 1 or more OTSi"; container OTSiG-container { config false; description "the container contains the related list of OTSi. The list could also be of only 1 element"; list OTSi { key "OTSi-carrier-id"; description "list of OTSi's under OTSi-G"; leaf OTSi-carrier-id { type int16; description "OTSi carrier-id"; } leaf OTSi-carrier-frequency { type decimal64 { fraction-digits 3; } units GHz; config false; description "OTSi carrier frequency"; Lee, et al. Expires September 10, 2020 [Page 43] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } leaf OTSi-signal-width { type decimal64 { fraction-digits 3; } units GHz; config false; description "OTSi signal width"; } leaf channel-delta-power { type decimal64 { fraction-digits 2; } units dB; config false; description "optional ; delta power to ref channel input-power applied to this media channel"; } } } // OTSiG container } // OTSiG grouping grouping media-channel-groups { description "media channel groups"; list media-channel-group { key "i"; description "list of media channel groups"; leaf i { type int16; description "index of media channel group member"; } list media-channels { key "flexi-n"; description "list of media channels represented as (n,m)"; uses layer0-types:flexi-grid-channel; leaf OTSiG-ref { type leafref { path "/nw:networks/nw:network/nw:node/tet:te" + "/tet:tunnel-termination-point" + "/OTSiG-element/OTSiG-identifier" ; Lee, et al. Expires September 10, 2020 [Page 44] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } description "Reference to the OTSiG list to get OTSiG identifier of the OSiG carried by this media channel that reports the transient stat"; } leaf OTSi-ref { type leafref { path "/nw:networks/nw:network/nw:node/tet:te" + "/tet:tunnel-termination-point/" +"OTSiG-element[OTSiG-identifier=current()" +"/../OTSiG-ref]/" + "OTSiG-container/OTSi/OTSi-carrier-id" ; } description "Reference to the OTSi list supporting the related OTSiG" ; } } // media channels list } // media-channel-groups list } // media media-channel-groups grouping grouping oms-element { description "OMS description"; list OMS-elements { key "elt-index"; description "defines the spans and the amplifier blocks of the amplified lines"; leaf elt-index { type uint16; description "ordered list of Index of OMS element (whether it's a Fiber, an EDFA or a Concentratedloss)"; } leaf uid { type string; description "unique id of the element if it exists"; } leaf type { type identityref { base type-element; } mandatory true; Lee, et al. Expires September 10, 2020 [Page 45] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 description "element type"; } container element { description "element of the list of elements of the OMS"; choice element { description "OMS element type"; case amplifier { /* when "type = 'Edfa'"; */ uses amplifier-params ; } case fiber { /* when "type = 'Fiber'"; */ uses fiber-params ; } case concentratedloss { /* when "type = 'Concentratedloss'"; */ uses concentratedloss-params ; } } } } } /* Data nodes */ augment "/nw:networks/nw:network/nw:network-types" + "/tet:te-topology" { description "optical-impairment topology augmented"; container optical-impairment-topology { presence "indicates an impairment-aware topology of optical networks"; description "Container to identify impairment-aware topology type"; } } augment "/nw:networks/nw:network/nt:link/tet:te" + "/tet:te-link-attributes" { when "/nw:networks/nw:network/nw:network-types" +"/tet:te-topology/" +"optical-imp-topo:optical-impairment-topology" { description "This augment is only valid for Optical Impairment."; } description "Optical Link augmentation for impairment data."; container OMS-attributes { config false; Lee, et al. Expires September 10, 2020 [Page 46] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 description "OMS attributes"; uses oms-general-optical-params; uses media-channel-groups; uses oms-element; } } augment "/nw:networks/nw:network/nw:node/tet:te" + "/tet:tunnel-termination-point" { when "/nw:networks/nw:network/nw:network-types" +"/tet:te-topology/optical-imp-topo:optical-impairment-topology"{ description "This augment is only valid for Impairment with non-sliceable transponder model"; } description "Tunnel termination point augmentation for non-sliceable transponder model."; list OTSiG-element { key "OTSiG-identifier"; config false; description "the list of possible OTSiG representing client digital stream"; leaf OTSiG-identifier { type int16; description "index of OTSiG element"; } uses OTSiG; } list transponders-list { key "transponder-id"; config false; description "list of transponders"; leaf transponder-id { type uint32; description "transponder identifier"; } choice mode { description "standard mode, organizational mode or explicit mode"; case G.692.2 { uses standard-mode; Lee, et al. Expires September 10, 2020 [Page 47] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } case organizational-mode { uses organizational-mode; } case explicit-mode { uses transponder-attributes; } } leaf power { type int32; units "dBm"; config false; description "per channel power"; } leaf power-min { type int32; units "dBm"; config false; description "minimum power of the transponder"; } leaf power-max { type int32; units "dBm"; config false; description "maximum power of the transponder"; } } } augment "/nw:networks/nw:network/nw:node/tet:te" + "/tet:tunnel-termination-point" { when "/nw:networks/nw:network/nw:network-types" +"/tet:te-topology/" + "optical-imp-topo:optical-impairment-topology" { description "This augment is only valid for optical impairment with sliceable transponder model"; } description "Tunnel termination point augmentation for sliceable transponder model."; uses sliceable-transponder-attributes; } Lee, et al. Expires September 10, 2020 [Page 48] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 augment "/nw:networks/nw:network/nw:node/tet:te" + "/tet:te-node-attributes" { when "/nw:networks/nw:network/nw:network-types" + "/tet:te-topology" + "/optical-imp-topo:optical-impairment-topology" { description "This augment is only valid for Optical Impairment topology"; } description "node attributes augmentantion for optical-impairment ROADM node"; list roadm-path-impairments { key "roadm-path-impairments-id"; config false; description "list of set of optical impairments related to ROADM "; leaf roadm-path-impairments-id { type uint32; description "index of the ROADM path-impairment list"; } choice impairment-type { description "type path impairment"; case roadm-express-path { uses roadm-express-path; } case roadm-add-path { uses roadm-add-path; } case roadm-drop-path { uses roadm-drop-path; } } } // list path impairments } // augmentation for optical-impairment ROADM augment "/nw:networks/nw:network/nw:node/tet:te/" + "tet:information-source-entry/tet:connectivity-matrices"{ when "/nw:networks/nw:network/nw:network-types" + "/tet:te-topology/" + "optical-imp-topo:optical-impairment-topology" { description "This augment is only valid for Optical Impairment topology "; } Lee, et al. Expires September 10, 2020 [Page 49] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 description "Augment default TE node connectivity matrix information source."; leaf roadm-path-impairments { type leafref { path "../../../tet:te-node-attributes/" + "roadm-path-impairments/roadm-path-impairments-id"; } description "pointer to the list set of ROADM optical impairments"; } } // augmentation connectivity-matrices information-source augment "/nw:networks/nw:network/nw:node/tet:te/" + "tet:information-source-entry/tet:connectivity-matrices/" + "tet:connectivity-matrix" { when "/nw:networks/nw:network/nw:network-types" + "/tet:te-topology/" + "optical-imp-topo:optical-impairment-topology" { description "This augment is only valid for Optical Impairment topology "; } description "Augment TE node connectivity matrix entry information source."; leaf roadm-path-impairments { type leafref { path "../../../../tet:te-node-attributes/" + "roadm-path-impairments/roadm-path-impairments-id"; } description "pointer to the list set of ROADM optical impairments"; } } // augmentation connectivity-matrix information-source augment "/nw:networks/nw:network/nw:node/tet:te/" + "tet:te-node-attributes/tet:connectivity-matrices" { when "/nw:networks/nw:network/nw:network-types" + "/tet:te-topology/" + "optical-imp-topo:optical-impairment-topology" { description "This augment is only valid for Optical Impairment topology "; } Lee, et al. Expires September 10, 2020 [Page 50] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 description "Augment default TE node connectivity matrix."; leaf roadm-path-impairments { type leafref { path "../../roadm-path-impairments/" + "roadm-path-impairments-id"; } config false; /*the identifier in the list */ /*"roadm-path-impairments" of ROADM optical impairment*/ /*is read-only as the rest of attributes*/ description "pointer to the list set of ROADM optical impairments"; } } // augmentation connectivity-matrices augment "/nw:networks/nw:network/nw:node/tet:te/" + "tet:te-node-attributes/" + "tet:connectivity-matrices/tet:connectivity-matrix" { when "/nw:networks/nw:network/nw:network-types" + "/tet:te-topology/" + "optical-imp-topo:optical-impairment-topology" { description "This augment is only valid for Optical Impairment topology "; } description "Augment TE node connectivity matrix entry."; leaf roadm-path-impairments { type leafref { path "../../../roadm-path-impairments/" + "roadm-path-impairments-id"; } config false; description "pointer to the list set of ROADM optical impairments"; } } // augmentation connectivity-matrix augment "/nw:networks/nw:network/nw:node/tet:te/" + "tet:tunnel-termination-point/" + "tet:local-link-connectivities" { when "/nw:networks/nw:network/nw:network-types" + "/tet:te-topology/" + "optical-imp-topo:optical-impairment-topology" { description Lee, et al. Expires September 10, 2020 [Page 51] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 "This augment is only valid for Optical Impairment topology "; } description "Augment default TTP LLC."; leaf add-path-impairments { type leafref { path "../../../tet:te-node-attributes/" + "roadm-path-impairments/roadm-path-impairments-id" ; } config false; description "pointer to the list set of ROADM optical impairments"; } leaf drop-path-impairments { type leafref { path "../../../tet:te-node-attributes/" + "roadm-path-impairments/roadm-path-impairments-id" ; } config false; description "pointer to the list set of ROADM optical impairments"; } } // augmentation local-link-connectivities augment "/nw:networks/nw:network/nw:node/tet:te/" + "tet:tunnel-termination-point/" + "tet:local-link-connectivities/" + "tet:local-link-connectivity" { when "/nw:networks/nw:network/nw:network-types" + "/tet:te-topology/" + "optical-imp-topo:optical-impairment-topology" { description "This augment is only valid for Optical Impairment topology "; } description "Augment TTP LLC entry."; leaf add-path-impairments { type leafref { path "../../../../tet:te-node-attributes/" + "roadm-path-impairments/roadm-path-impairments-id" ; } config false; description "pointer to the list set of ROADM optical impairments"; Lee, et al. Expires September 10, 2020 [Page 52] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 } leaf drop-path-impairments { type leafref { path "../../../../tet:te-node-attributes/" + "roadm-path-impairments/roadm-path-impairments-id" ; } config false; description "pointer to the list set of ROADM optical impairments"; } } // augmentation local-link-connectivity } 5. Security Considerations The configuration, state, and action data defined in this document are designed to be accessed via a management protocol with a secure transport layer, such as NETCONF [RFC6241]. The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF users to a preconfigured subset of all available NETCONF protocol operations and content. A number of configuration data nodes defined in this document are read-only; however, these data nodes may be considered sensitive or vulnerable in some network environments (TBD). 6. IANA Considerations This document registers the following namespace URIs in the IETF XML registry [RFC3688]: -------------------------------------------------------------------- URI: urn:ietf:params:xml:ns:yang:ietf-optical-impairment-topology Registrant Contact: The IESG. XML: N/A, the requested URI is an XML namespace. -------------------------------------------------------------------- This document registers the following YANG modules in the YANG Module Names registry [RFC7950]: Lee, et al. Expires September 10, 2020 [Page 53] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 -------------------------------------------------------------------- name: ietf-optical-impairment-topology namespace: urn:ietf:params:xml:ns:yang:ietf-optical-impairment- topology prefix: optical-imp-topo reference: RFC XXXX (TDB) -------------------------------------------------------------------- 7. Acknowledgments We thank Daniele Ceccarelli and Oscar G. De Dios for useful discussions and motivation for this work. 8. References 8.1. Normative References [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, . [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, . [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, . 8.2. Informative References [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, . [RFC6566] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and G. Martinelli, "A Framework for the Control of Wavelength Switched Optical Networks (WSONs) with Impairments", RFC 6566, DOI 10.17487/RFC6566, March 2012, . [RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku, "Routing and Wavelength Assignment Information Model for Wavelength Switched Optical Networks", RFC 7446, DOI 10.17487/RFC7446, February 2015, . Lee, et al. Expires September 10, 2020 [Page 54] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 [RFC7579] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and J. Han, "General Network Element Constraint Encoding for GMPLS-Controlled Networks", RFC 7579, DOI 10.17487/RFC7579, June 2015, . [RFC7581] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and J. Han, "Routing and Wavelength Assignment Information Encoding for Wavelength Switched Optical Networks", RFC 7581, DOI 10.17487/RFC7581, June 2015, . [RFC7698] Gonzalez de Dios, O., Ed., Casellas, R., Ed., Zhang, F., Fu, X., Ceccarelli, D., and I. Hussain, "Framework and Requirements for GMPLS-Based Control of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks", RFC 7698, DOI 10.17487/RFC7698, November 2015, . [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, . [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, . [RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N., Ananthakrishnan, H., and X. Liu, "A YANG Data Model for Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March 2018, . [RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for Abstraction and Control of TE Networks (ACTN)", RFC 8453, DOI 10.17487/RFC8453, August 2018, . [I-D.ietf-teas-yang-te-topo] Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and O. Dios, "YANG Data Model for Traffic Engineering (TE) Topologies", draft-ietf-teas-yang-te-topo-22 (work in progress), June 2019. Lee, et al. Expires September 10, 2020 [Page 55] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 [I-D.ietf-ccamp-wson-yang] Zheng, H., Lee, Y., Guo, A., Lopezalvarez, V., and D. King, "A YANG Data Model for WSON (Wavelength Switched Optical Networks)", draft-ietf-ccamp-wson-yang-23 (work in progress), November 2019. [I-D.ietf-ccamp-layer0-types] Zheng, H., Lee, Y., Guo, A., Lopezalvarez, V., and D. King, "A YANG Data Model for Layer 0 Types", draft-ietf- ccamp-layer0-types-03 (work in progress), November 2019. [I-D.ietf-ccamp-dwdm-if-param-yang] Galimberti, G., Kunze, R., Hiremagalur, D., and G. Grammel, "A YANG model to manage the optical interface parameters for an external transponder in a WDM network", draft-ietf-ccamp-dwdm-if-param-yang-02 (work in progress), November 2019. [G.807] "Generic functional architecture of the optical media network", ITU-T Recommendation G.807 - in publication process, February 2020. [G.709] "Interfaces for the Optical Transport Network (OTN)", ITU-T Recommendation G.709, June 2016. [G.694.1] "Spectral grids for WDM applications: DWDM frequency grid", ITU-T Recommendation G.694.1, February 2012. [G.959.1] "Optical transport network physical layer interfaces", ITU-T Recommendation G.959.1, February 2012. [G.872] "Architecture of optical transport networks", ITU-T Recommendation G.872, January 2017. Appendix A. Contributors Aihua Guo Huawei Technologies Email: aguo@futurewei.com Jonas Martensson RISE Email: jonas.martensson@ri.se Lee, et al. Expires September 10, 2020 [Page 56] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 Appendix B. Additional Authors Haomian Zheng Huawei Technologies Email: zhenghaomian@huawei.com Italo Busi Huawei Technologies Email: Italo.Busi@huawei.com Nicola Sambo Scuola Superiore Sant'Anna Email: nicosambo@gmail.com Giovanni Martinelli Cisco Email: giomarti@cisco.com Jean-Luc Auge Orange Email: jeanluc.auge@orange.com Esther Le Rouzic Orange Email: esther.lerouzic@orange.com Julien Meuric Orange Email: julien.meuric@orange.com Sergio Belotti Nokia Email: Sergio.belotti@nokia.com Lee, et al. Expires September 10, 2020 [Page 57] Internet-Draft Opt. Impairment-Aware Topo YANG Model March 2020 Griseri Enrico Nokia Email: Enrico.Griseri@nokia.com Gert Grammel Juniper Email: ggrammel@juniper.net Authors' Addresses Young Lee SKKU (Sung Kyun Kwan University) Email: younglee.tx@gmail.com Victor Lopez Telefonica Email: victor.lopezalvarez@telefonica.com G. Galimberti Cisco Email: ggalimbe@cisco.com Dieter Beller Nokia Email: Dieter.Beller@nokia.com Lee, et al. Expires September 10, 2020 [Page 58]