Network Working Group                           
   INTERNET-DRAFT                                  
   Expires in: January 2006                       	   
                                                   Scott Poretsky
                                                   Reef Point Systems

                                                   July 2005

                   Considerations for Benchmarking 
                   IGP Data Plane Route Convergence

            <draft-ietf-bmwg-igp-dataplane-conv-app-07.txt>

Intellectual Property Rights (IPR) statement:
By submitting this Internet-Draft, each author represents that any 
applicable patent or other IPR claims of which he or she is aware 
have been or will be disclosed, and any of which he or she becomes 
aware will be disclosed, in accordance with Section 6 of BCP 79.

   Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force  (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other 
   documents at any time.  It is inappropriate to use Internet-Drafts 
   as reference material or to cite them other than as "work in 
   progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.


   ABSTRACT
   This draft provides considerations for IGP Route Convergence 
   benchmarking methodology [1] and IGP Route Convergence benchmarking
   terminology [2].  The methodology and terminology is to be used 
   for benchmarking route convergence and can be applied to any
   link-state IGP such as ISIS [3] and OSPF [4].  The data plane is 
   measured to obtain the convergence benchmarking metrics described 
   in [1].






Poretsky                                                   [Page 1]

INTERNET-DRAFT        Considerations for Benchmarking         July 2005
                      IGP Data Plane Route Convergence

   Table of Contents
     1. Introduction ...............................................2 
     2. Existing definitions .......................................2
     3. Factors for IGP Route Convergence Time......................2 
     4. Network Events that Cause Route Convergence.................3
     5. Use of Data Plane for IGP Route Convergence Benchmarking....3
     6. Security Considerations.....................................4 
     7. Acknowledgements............................................4
     8. Normative References........................................5
     9. Author's Address............................................5

   1. Introduction
   IGP Convergence is a critical performance parameter.  Customers 
   of Service Providers use packet loss due to IGP Convergence as a
   key metric of their network service quality.  Service Providers 
   use IGP Convergence time as a key metric of router design and 
   architecture.  Fast network convergence can be optimally achieved
   through deployment of fast converging routers.  The fundamental 
   basis by which network users and operators benchmark convergence 
   is packet loss, which is an externally observable event having 
   direct impact on their application performance.  
   
   IGP Route Convergence is a Direct Measure of Quality (DMOQ) when 
   benchmarking the data plane.  For this reason it is important to 
   develop a standard router benchmarking methodology and terminology 
   for measuring IGP convergence that uses the data plane as described 
   in [1] and [2].  This document describes all of the factors that 
   influence a convergence measurement and how a purely black box test 
   can be designed to account for all of these factors.  This enables 
   accurate benchmarking and evaluation for route convergence time.  

   2.  Existing definitions
   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14, RFC 2119
   [Br97].  RFC 2119 defines the use of these key words to help make the
   intent of standards track documents as clear as possible.  While this
   document uses these keywords, this document is not a standards track
   document.

   3. Factors for IGP Route Convergence Time
   
   There are four major categories of factors contributing to the 
   measured Router IGP Convergence Time.   As discussed in [5], [6], 
   [7], [8] and [9], these categories are Event Detection, SPF 
   Processing, IGP Advertisement, and FIB Update.  These have numerous 
   components that influence the convergence time.  These are listed 
   as follow:




Poretsky                                                   [Page 2]

INTERNET-DRAFT        Considerations for Benchmarking         July 2005
                      IGP Data Plane Route Convergence

	-Event Detection-
	SONET failure indication time
	PPP failure indication time
	IGP Hello Dead Interval

	-SPF Processing-
	SPF Delay Time
	SPF Hold time
	SPF Execution time

	-IGP Advertisement-
	LSA/LSP Flood Packet Pacing
	LSA/LSP Retransmission Packet Pacing
	LSA/LSP Generation time

	-FIB Update-
	Tree Build time
	Hardware Update time

   The contribution of each of these factors listed above will vary
   with each router vendors' architecture and IGP implementation.  
   It is therefore necessary to design a convergence test that 
   considers all of these components, not just one or a few of these 
   components.  The additional benefit of designing a test for all 
   components is that it enables black-box testing in which knowledge 
   of the routers' internal implementations is not required.  It is 
   then possible to make valid use of the convergence benchmarking 
   metrics when comparing routers from different vendors.
   
   4. Network Events that Cause Convergence
   There are different types of network events that can cause IGP 
   convergence.  These network events are administrative link 
   removal, unplanned link failure, line card failure, and route 
   changes such as withdrawal, flap, next-hop change, and cost change.  
   When benchmarking a router it is important to measure the 
   convergence time for local and remote occurrence of these network 
   events.  The convergence time measured will vary whether the network 
   event occurred locally or remotely due to varying combinations of 
   factors listed in the previous sections.  This behavior makes it 
   possible to design purely black-box tests that isolate 
   measurements for each of the components of convergence time.

   5. Use of Data Plane for IGP Route Convergence Benchmarking
   Customers of service providers use packet loss as the metric to
   calculate convergence time.  Packet loss is an externally observable 
   event having direct impact on customers' application performance.  
   For this reason it is important to develop a standard router 
   benchmarking methodology and terminology that is a Direct Measure 
   of Quality (DMOQ) for measuring IGP convergence.  Such a 
   methodology uses the data plane as described in [1] and [2].  


Poretsky                                                   [Page 3]

INTERNET-DRAFT        Considerations for Benchmarking         July 2005
                      IGP Data Plane Route Convergence

   An additional benefit of using packet loss for calculation of 
   IGP Route Convergence time is that it enables black-box tests to 
   be designed.  Data traffic can be offered to the 
   device under test (DUT), an emulated network event can be forced 
   to occur, and packet loss can be externally measured to calculate 
   the convergence time.  Knowledge of the DUT architecture and IGP    
   implementation is not required. There is no need to rely on the 
   DUT to produce the test results.  There is no need to build 
   intrusive test harnesses for the DUT.   

   Use of data traffic and measurement of packet loss on the data 
   plane also enables Route Convergence methodology test cases that 
   consider the time for the Route Controller to update the FIB on 
   the forwarding engine of the hardware.  A router is not fully 
   converged until all components are updated and traffic is 
   rerouted to the correct egress interface.  As long as there is 
   packet loss, routes have not converged.  It is possible to send 
   diverse traffic flows to destinations matching every route in the 
   FIB so that the time it takes for the router to converge an entire
   route table can be benchmarked.

  


   6. Security Considerations

        Documents of this type do not directly effect the security of
        the Internet or of corporate networks as long as benchmarking
        is not performed on devices or systems connected to operating
        networks.

   7. Acknowledgements
	Thanks to Curtis Villamizar for sharing so much of his 
	knowledge and experience through the years. Also, special 
	thanks to the many Network Engineers and Network Architects 
	at the Service Providers who are always eager to discuss 
	Route Convergence benchmarking.















Poretsky                                                   [Page 4]

INTERNET-DRAFT        Considerations for Benchmarking         July 2005
                      IGP Data Plane Route Convergence

   8. Normative References
      [1] Poretsky, S., "Benchmarking Methodology for IGP Data Plane
          Route Convergence", draft-ietf-bmwg-igp-dataplane-conv-meth-07, 
          work in progress, July 2005.

      [2] Poretsky, S., "Benchmarking Terminology for IGP Data Plane 
          Route Convergence", draft-ietf-bmwg-igp-dataplane-conv-term-07, 
          work in progress, July 2005.

      [3] Callon, R., "Use of OSI IS-IS for Routing in TCP/IP and Dual 
          Environments", RFC 1195, December 1990.

      [4] Moy, J., "OSPF Version 2", RFC 2328, IETF, April 1998.

      [5] Villamizar, C., "Convergence and Restoration Techniques for
          ISP Interior Routing", NANOG 25, October 2002. 

      [6] Katz, D., "Why are we Scared of SPF?  IGP Scaling and 
          Stability", NANOG 25, October 2002. 

      [7] Filsfils, C., "Deploying Tight-SLA Services on an Internet   
          Backbone: ISIS Fast Convergence and Differentiated Services 
          Design (tutorial)", NANOG 25, October 2002.

      [8] Alaettinoglu, C. and Casner, S., "ISIS Routing on the Qwest 
          Backbone: a Recipe for Subsecond ISIS Convergence", NANOG 24, 
          October 2002. 

      [9] Alaettinoglu, C., Jacobson, V., and Yu, H., "Towards 
          Millisecond IGP Convergence", NANOG 20, October 2000. 


   9. Author's Address

      Scott Poretsky
      Reef Point Systems
      8 New England Executive Park
      Burlington, MA 01803 
      USA

      Phone: + 1 781 395 5090
      EMail: sporetsky@quarrytech.com










Poretsky                                                   [Page 5]

INTERNET-DRAFT        Considerations for Benchmarking         July 2005
                      IGP Data Plane Route Convergence

Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.








Poretsky                                                   [Page 6]