
Network Working Group M. Hapner, Ed.
Internet-Draft Huawei
Intended status: Standards Track C. Suconic
Expires: September 28, 2012 redhat
 March 27, 2012

 The MessageBroker WebSocket Subprotocol
 draft-hapner-hybi-messagebroker-subprotocol-01

Abstract

 The WebSocket protocol [I-D.ietf-hybi-thewebsocketprotocol] provides
 a subprotocol extension facility. The MessageBroker WebSocket
 Subprotocol (MBWS) is a WebSocket Subprotocol used by messaging
 clients to send messages to, and receive messages from an internet
 message broker (herein called a message broker). A message broker is
 a messaging intermediary that queues messages sent by its clients for
 asynchronous delivery to its clients.

 Messages are addressed to message-broker-specific address names.
 Clients send messages to addresses and consume messages from
 addresses. Clients do not send messages directly to other clients.

 Message brokers provide a range of functionality that is outside the
 scope of MBWS. Typically an internet message broker provides a REST
 API for working with this functionality; such as configuring client
 credentials; setting client access controls; configuring address
 routing; etc.

 MBWS limits its scope to the definition of a WebSocket subprotocol
 that provides a full duplex, reliable message transport protocol
 between message brokers and their clients; and, between message
 brokers.

 Since reliable message transport is often independent of a broker’s
 particular features, MBWS can be used as the message transport
 protocol for a wide range of message brokers.

 The MBWS subprotocol defines a binary message frame and a text
 message frame. Both types of frame carry the same protocol; however,
 the protocol bindings differ slightly. The binary frame is a
 WebSocket binary message that contains an MBWS binary header followed
 by a binary message body. The text frame is a WebSocket UTF-8 text
 message that contains an MBWS text header followed by a text message
 body.

Status of this Memo

Hapner & Suconic Expires September 28, 2012 [Page 1]

Internet-Draft MBWS and MBLWS March 2012

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 28, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hapner & Suconic Expires September 28, 2012 [Page 2]

Internet-Draft MBWS and MBLWS March 2012

Table of Contents

 1. Introduction . 4
 2. MBWS Functionality . 4
 2.1. Connection Recovery 5
 2.1.1. MBWS Connections 5
 2.1.2. MBWS Connection Name and Connection Recovery 5
 2.1.3. Message Synchronization of a Recovered MBWS
 Connection . 6
 2.1.3.1. Broker-message-delivery-resync 7
 2.1.3.2. Client-message-delivery-resync 7
 2.1.4. MBLWS Connections 7
 2.1.5. Message Metadata 7
 2.1.5.1. Address List 8
 2.1.5.1.1. Undeliverable Messages 8
 2.1.5.2. Content-Type 8
 2.1.5.3. Property List 8
 3. Additional Issues . 8
 3.1. Sec-WebSocket-Protocol Field 9
 3.2. Client Identity . 9
 3.3. Message Security . 9
 3.4. Empty Protocol Values 9
 4. MBWS/MBLWS Protocol ABNF 9
 5. Scenarios . 11
 5.1. MBWS Connection Recovery Scenario 11
 5.2. MBLWS Session Scenario 12
 6. Issues Outside the Scope of this Document 12
 6.1. Messaging Scope . 12
 6.2. Message Acknowledgement Interval 12
 6.3. Synchronous Messaging 12
 6.4. End-to-End Reliability 13
 7. References . 13
 Authors’ Addresses . 13

Hapner & Suconic Expires September 28, 2012 [Page 3]

Internet-Draft MBWS and MBLWS March 2012

1. Introduction

 The WebSocket protocol [I-D.ietf-hybi-thewebsocketprotocol] provides
 a subprotocol extension facility. The MessageBroker WebSocket
 Subprotocol (MBWS) is a WebSocket Subprotocol used by messaging
 clients to send messages to, and receive messages from an internet
 message broker (herein called a message broker). A message broker is
 a messaging intermediary that queues messages sent by its clients for
 asynchronous delivery to its clients.

 Messages are addressed to message-broker-specific address names.
 Clients send messages to addresses and consume messages from
 addresses. Clients do not send messages directly to other clients.

 Message brokers provide a range of functionality that is outside the
 scope of MBWS. Typically an internet message broker provides a REST
 API for working with this functionality; such as configuring client
 credentials; setting client access controls; configuring address
 routing; etc.

 MBWS limits its scope to the definition of a WebSocket subprotocol
 that provides a full duplex, reliable message transport protocol
 between message brokers and their clients; and, between message
 brokers.

 Since reliable message transport is often independent of a broker’s
 particular features, MBWS can be used as the message transport
 protocol for a wide range of message brokers.

 The MBWS subprotocol defines a binary message frame and a text
 message frame. Both types of frame carry the same protocol; however,
 the protocol bindings differ slightly. The binary frame is a
 WebSocket binary message that contains an MBWS binary header followed
 by a binary message body. The text frame is a WebSocket UTF-8 text
 message that contains an MBWS text header followed by a text message
 body.

2. MBWS Functionality

 MBWS subprotocol defines two capabilities:
 o Connection Recovery - the ability to support a logical, reliable
 connection that spans a sequence of WebSocket sessions (herein,
 such a connection is called a ’connection’)
 o Message Metadata - the ability to annotate a WebSocket message
 with metadata to support the functionality of a message broker

 This document defines two subprotocols - MessageBroker WebSocket

Hapner & Suconic Expires September 28, 2012 [Page 4]

Internet-Draft MBWS and MBLWS March 2012

 Subprotocol (MBWS) and MessageBrokerLight WebSocket Subprotocol
 (MBLWS). MBWS supports both Connection Recovery and Message
 Metadata. MBLWS supports only Message Metadata.

 The protocol description defines the logical MBWS and MBLWS
 subprotocols. The protocol ABNF [RFC5234] defines the binding of
 these protocols to MBWS binary frames and text frames. MBLWS uses
 the same frames as MBWS.

2.1. Connection Recovery

 When a WebSocket is normally closed, both client and server can
 assume the messages they sent/delivered have been received by the
 other party.

 The reliability of the WebSocket’s underlying TCP connection,
 combined with the WebSocket close protocol, insures that both parties
 have implicitly acknowledged the receipt of the all messages they
 have been sent.

 If a WebSocket session fails, the protocol does not define how the
 parties resolve what messages have been received and what messages
 have been lost. In many cases, this is not an issue; however,
 message brokers typically provide once-and-only-once QoS and
 WebSocket alone is not sufficient to support this.

 MBWS defines a Connection Recovery subprotocol that allows a message
 broker client whose connection’s session has failed to create a new
 WebSocket session that extends the connection and reliably
 resynchronizes its full duplex message transport such that no
 messages are lost or duplicated.

2.1.1. MBWS Connections

 MBWS defines a connection that spans a sequence of one or more
 WebSocket sessions. During the time period between the failure of
 one of its sessions and the creation of its next session, its parties
 must maintain the state required to recover the connection. Since
 messages may be lost when a session fails, this state must contain a
 window of recently sent messages. MBWS provides support for
 identifying connections; maintaining recently sent message windows;
 recovering a connection on a new session; and, resynchronizing a
 recovered connection’s message transport.

2.1.2. MBWS Connection Name and Connection Recovery

 When a client requests a new connection it sends a Connect frame with
 an empty connection name. The server must respond with a Connect

Hapner & Suconic Expires September 28, 2012 [Page 5]

Internet-Draft MBWS and MBLWS March 2012

 frame containing the name of a new connection. The MBWS client must
 retain this connection name so that it can be used later to recovery
 this connection if this connection’s current WebSocket session were
 to fail. If a connection’s WebSocket session is closed, as defined
 by the WebSocket close protocol, it also closes the connection. It
 is recommended but not required that connection name be a URN.

 When a client requests the recovery of a connection, it sends a
 Connect frame containing the name of the connection to be recovered.
 The message broker must then respond with a Connect frame containing
 a connection name. If this connection name matches the value sent by
 the client, the server has accepted the recovery request. If the
 name does not match, the server has rejected the recovery request and
 has opened a new connection.

 Connection’s are identified by a combination of client origin and
 connection name. Only the client origin that opened the connection
 can recover the connection.

2.1.3. Message Synchronization of a Recovered MBWS Connection

 MBWS requires clients and message brokers to use an implicit sequence
 numbering protocol for the messages transported by a connection.
 Each direction of transport defines a separate sequence. The first
 message sent by each party is sequence number 1, the next is 2, etc.
 Since both parties are guaranteed to see the messages in the order
 sent, no explicit exchange of sequence numbers is required.

 Both parties must acknowledge receipt of messages they receive. This
 is done by sending an Acknowledge frame with the sequence number of
 the last message reliably received. When a sending party receives an
 Acknowledge frame from its receiving party, the sending party can
 delete from its message recovery window all messages with sequence
 numbers less than or equal to the Acknowledge sequence number.

 If a session abnormally terminates and a message broker accepts a
 client’s request to recover the connection, both client and message
 broker must verify that they can resume sending messages with the
 message sequence number required by each. Connection recovery
 message resynchronization is a serial two phase process. First, the
 client provides the message broker with the information required for
 the broker to restart message delivery. This phase is named broker-
 message-delivery-resync. Second, the message broker provides the
 client with information required for the client to restart message
 delivery. This phase is named client-message-delivery-resync.

 If both broker-message-delivery-resync and client-message-delivery-
 resync succeed, the connection has been recovered. If either fails,

Hapner & Suconic Expires September 28, 2012 [Page 6]

Internet-Draft MBWS and MBLWS March 2012

 a new connection is opened.

2.1.3.1. Broker-message-delivery-resync

 The client sends an Acknowledge frame containing the sequence number
 of the last message it has received. The message broker validates it
 can resume sending with the next message in sequence.

 If so, the message broker must reply with a Connect frame containing
 the connection name being recovered. Connection recovery then
 proceeds with the client-message-deliveryresync phase.

 If the message broker cannot restart with this message, it must reply
 with a Connect frame with a new connection name. Message transport
 then begins on this new connection.

2.1.3.2. Client-message-delivery-resync

 The message broker sends the client an Acknowledge frame containing
 the sequence number of the last message it has received. The client
 validates it can resume sending with the next message in sequence.

 If so, the client must reply with a Connect frame containing the
 connection name being recovered. This completes a successful
 connection recovery and normal full duplex message transport resumes.

 If the client cannot restart with this message, it must reply with a
 Connect frame containing an empty connection name. The message
 broker must then respond with a Connect frame containing a new
 connection name. Message transport then begins on this new
 connection.

2.1.4. MBLWS Connections

 An MBLWS client opens a new connection with the same Connect frame
 protocol as used by an MBWS client. MBLWS does not support
 connection recovery. MBLWS connections do not span WebSocket
 sessions. If an MBLWS client sends a Connect frame containing a
 connection name, the connection name must be ignored and a new
 connection must be opened. MBLWS connections do not use
 Acknowledgement frames. If an MBLWS client sends an Acknowledgement
 frame, it must be ignored. If connection’s WebSocket session fails
 or is closed, the connection is closed.

2.1.5. Message Metadata

 MBWS and MBLWS define a message header containing three metadata
 elements. In order, these are Address List, Content-Type and

Hapner & Suconic Expires September 28, 2012 [Page 7]

Internet-Draft MBWS and MBLWS March 2012

 Property List.

2.1.5.1. Address List

 For messages sent by a client to a broker, the Address List contains
 the list of destination Addresses to which to send the message.
 Empty Addresses are ignored. For messages delivered by a message
 broker to a client, Address List contains the addresses from which
 the message originated.

 It is recommended but not required that address value be a URN.

 The format and semantics of Address is message broker dependent and
 is outside the scope of MBWS. For instance, some brokers may treat
 Address as a strictly local name; other brokers may support a more
 global form of addressing. Broker-specific message routing semantics
 determine how a destination Address’s messages are to be routed and
 how message’s origination Addresses are determined. This includes
 defining the meaning of an empty destination Address List and an
 empty origination Address List.

2.1.5.1.1. Undeliverable Messages

 An messages’s Address may not be known to a broker. MBWS does not
 define how such dead-letters are handled once they are received by a
 message broker. MBWS requires a message broker to acknowledge every
 message sent to it, whether or not it can deliver it.

2.1.5.2. Content-Type

 Immediately following Address List, a message header contains a
 Content-Type. Its value is a UTF-8 string containing the MIME
 discrete type [RFC2045] that describes the message’s content.
 Content-Type may be empty.

2.1.5.3. Property List

 Immediately following Content-Type, a message header contains a
 Property List. This list contains zero or more Properties. Each
 Property is a Name/Value pair with each being a UTF-8 string. MBWS
 does not define the semantics of Properties.

3. Additional Issues

Hapner & Suconic Expires September 28, 2012 [Page 8]

Internet-Draft MBWS and MBLWS March 2012

3.1. Sec-WebSocket-Protocol Field

 Sec-WebSocket-Protocol Field Values

 +------------------+
 | Value |
 +------------------+
 | MBWS.huawei.com |
 | MBLWS.huawei.com |
 +------------------+

 WebSocket defines the subprotocol negotiation process. This starts
 with a client including the Sec-WebSocket-Protocol Field with one or
 more subprotocol names in its WebSocket upgrade request. The table
 above specifies the values for the two subprotocols defined in this
 document.

3.2. Client Identity

 WebSocket uses the HTTP origin model to identify clients. MBWS uses
 the same client identity model.

3.3. Message Security

 WebSocket supports TLS and MBWS/MBLWS recommends, but does not
 require, its use. In addition to providing better security the use
 of TLS and port 443 insures that MBWS connections avoid the overhead
 and latency of having to traverse web proxies.

3.4. Empty Protocol Values

 In several places, the protocol refers to an ’empty’ UTF-8 string
 element. In MBWS, UTF-8 string protocol elements are length-
 delimited. An ’empty’ element is one with a zero valued length
 delimiter.

4. MBWS/MBLWS Protocol ABNF

mbws-frame = binary-frame / text-frame
;the frame used with a WS binary message
binary-frame =
 binary-connect-frame / binary-acknowledge-frame / binary-message-frame
binary-connect-frame = binary-connect-frame-id binary-connection-name
binary-connect-frame-id = %x01
binary-connection-name = binary-string
binary-acknowledge-frame =

Hapner & Suconic Expires September 28, 2012 [Page 9]

Internet-Draft MBWS and MBLWS March 2012

 binary-acknowledge-frame-id binary-message-sequence-number
binary-acknowledge-frame-id = %x02
binary-message-sequence-number = varint
binary-message-frame =
 binary-message-frame-id binary-message-header binary-message-body
binary-message-frame-id = %x03
binary-message-header =
 binary-address-list binary-content-type binary-property-list
binary-address-list = binary-list-length *binary-address
binary-address = binary-string
binary-content-type = binary-string
binary-property-list = binary-list-length *binary-property
binary-property = binary-property-name binary-property-value
binary-property-name = binary-string
binary-property-value = binary-string
binary-message-body = *OCTET
;the frame used with a WS text message
text-frame =
 text-connect-frame / text-acknowledge-frame / text-message-frame
text-connect-frame = text-connect-frame-id text-connection-name
text-connect-frame-id = %x31 SP
text-connection-name = text-string
text-acknowledge-frame =
 text-acknowledge-frame-id text-message-sequence-number
text-acknowledge-frame-id = %x32 SP
text-message-sequence-number = text-int
text-message-frame =
 text-message-frame-id text-message-header text-message-body
text-message-frame-id = %x33 SP
text-message-header =
 text-address-list text-content-type text-property-list
text-address-list = text-list-length *text-address
text-address = text-string
text-content-type = text-string
text-property-list = text-list-length *text-property
text-property = text-property-name text-property-value
text-property-name = text-string
text-property-value = text-string
text-message-body = UTF8-string
;UTF8 encoded character string
UTF8-string = *(OCTET)
;Google Protocol Buffers base 128 varint
varint = 1*8(OCTET)
;the number of characters in a UTF8 string
binary-string-length = varint
binary-string = binary-string-length UTF8-string
;the number of entries in a list
binary-list-length = varint

Hapner & Suconic Expires September 28, 2012 [Page 10]

Internet-Draft MBWS and MBLWS March 2012

text-int = DIGIT *DIGIT SP
;the number of characters in a UTF8 string
text-string-length = text-int
text-string = text-string-length UTF8-string
;the number of entries in a list
text-list-length = text-int ;the number of entries in a list

 Figure 1

5. Scenarios

5.1. MBWS Connection Recovery Scenario

 1. Broker provides ’ws:’ and/or ’wss:’ URIs for accepting MBWS
 connections.
 2. Client establishes an HTTP session with Broker; identifies
 itself using HTTP client origin; and, authenticates itself using
 HTTP authentication.
 3. If successful, Client requests HTTP upgrade to MBWS Subprotocol.
 4. If upgrade successful, Client sends Connect frame with empty
 connection name.
 5. Broker responds with Connect frame containing a new connection
 name.
 6. Broker starts streaming messages to client; and, Client starts
 streaming messages to Broker.
 7. Client and Broker periodically acknowledge receipt of each
 other’s messages using Acknowledge frames.
 8. Client or Broker may initiate session close as defined by
 WebSocket.
 9. If session abnormally terminates, client recovers connection by
 executing (1) through (3) and then continues with (10)
 10. Client sends Connect frame containing connection name it wishes
 to recover
 11. Broker responds with Connect frame. If Connect frame contains a
 new connection name, broker has rejected recovery and opened a
 new connection, processing continues with (6). If Connect frame
 contains recovery connection name, broker has accepted recovery.
 12. Client sends Acknowledge frame containing the sequence number of
 the last message it has received.
 13. Broker responds with Connect frame. If Connect frame contains a
 new connection name, broker has rejected recovery and opened a
 new connection, processing continues with (6). If Connect frame
 contains recovery connection name, broker has accepted recovery.
 14. Broker sends Acknowledge frame containing the sequence number of
 the last message it has received.

Hapner & Suconic Expires September 28, 2012 [Page 11]

Internet-Draft MBWS and MBLWS March 2012

 15. Client responds with Connect frame. If Connect frame contains
 an empty connection name, client has rejected recovery and
 processing continues with (5). If the connection name is the
 recovery connection name, processing continues at (6)

5.2. MBLWS Session Scenario

 1. Broker provides ’ws:’ and/or ’wss:’ URIs for accepting MBLWS
 sessions.
 2. Client establishes an HTTP session with Broker; identifies itself
 using HTTP client origin; and, authenticates itself using HTTP
 authentication.
 3. Broker starts streaming available messages to client; and, Client
 starts streaming messages to Broker.
 4. Client or Broker may initiate session close as defined by
 WebSocket.

6. Issues Outside the Scope of this Document

 This section is non-normative.

6.1. Messaging Scope

 Message brokers provide message-broker-specific functionality for
 routing, queueing, forwarding, filtering, transporting, etc.
 messages. This results in the broker delivering specific messages to
 specific clients. This document defines how a message broker uses
 the subprotocols defined here to transport messages to/from a client.
 All other message broker functionality is outside the scope of this
 document.

6.2. Message Acknowledgement Interval

 The parties of an MBWS connection decide when to send Acknowledge
 frames. Typically these are sent after some number of messages have
 been received or some time interval has elapsed within which at least
 one message has been received. The choice of acknowledgement
 interval is outside the scope of this document.

6.3. Synchronous Messaging

 Message brokers have a history of supporting synchronous messaging
 where clients make blocking calls to send and to receive messages.
 WebSocket and MBWS are natively asynchronous messaging protocols.
 MBWS is optimized for asynchronous, full duplex message transport.
 It has not been designed for synchronous messaging.

Hapner & Suconic Expires September 28, 2012 [Page 12]

Internet-Draft MBWS and MBLWS March 2012

6.4. End-to-End Reliability

 The responsibility for reliable message delivery over a MBWS
 connection is not the responsibility of the message broker alone - it
 is only achieved when both clients and brokers implement recovery of
 connections. The degree to which clients and message brokers are
 able to recover from failure is outside the scope of this document.

7. References

 [I-D.ietf-hybi-thewebsocketprotocol]
 Fette, I. and A. Melnikov, "The WebSocket protocol",
 draft-ietf-hybi-thewebsocketprotocol-17 (work in
 progress), September 2011.

 [GPBE] "Google Protocol Buffers Encoding <http://code.google.com/
 apis/protocolbuffers/docs/encoding.html>".

 [RFC2045] Freed, N. and Borenstein, N., "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", November 1966.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", January 2008.

Authors’ Addresses

 Mark Hapner (editor)
 Huawei

 Email: mhapner@huawei.com

 Clebert Suconic
 redhat

 Email: csuconic@redhat.com

Hapner & Suconic Expires September 28, 2012 [Page 13]

