
Internet Engineering Task Force P. Hallam-Baker
Internet-Draft Comodo Group Inc.
Intended status: Standards Track June 13, 2013
Expires: December 15, 2013

JSON Service Connect (JCX) Protocol
draft-hallambaker-wsconnect-02

Abstract

JSON Service Connect (JCX) is a JSON/REST Web Service that may be used to establish and
maintain a 'connection binding' of a device to an account held with a Web Service Provider. Multiple
connection bindings may be established under the same account to support multiple devices
and/or multiple users of a single device. A connection binding permits a device to securely connect
to one or more services offered by the Web Service Provider with support for protocol and protocol
version agilty and fault tollerance.

The protocol is presented as a HTTP/JSON Web Service and uses the HTTP session continuation
mechanism for authentication of transaction messages and supports negotiation of a HTTP
session continuation mechanism context for the established endpoint connections.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 15, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Definitions

1.1. Requirements Language

2. Introduction and Purpose

2.1. Establishing a Web Service Provider Account

2.2. Establishing a Connection Binding

2.2.1. PIN Code Establishement.

2.2.2. Out of Band Completion.

2.2.3. QR Code Preauthorization.

3. Example Uses

3.1. PIN code establishment

3.2. Unbinding

3.3. Out of Band Completion

4. OBPConnection

4.1. Message: Message

4.2. Message: Response

4.3. Message: ErrorResponse

4.4. Message: Request

4.5. Structure: Cryptographic

4.6. Structure: ImageLink

4.7. Structure: Connection

4.8. Bind

4.9. Message: BindRequest

4.10. Message: BindResponse

4.11. Message: OpenRequest

4.12. Message: OpenResponse

4.13. Message: TicketRequest

4.14. Message: TicketResponse

4.15. Unbind

4.16. Message: UnbindRequest

4.17. Message: UnbindResponse

5. Mutual Authentication

5.1. PIN Authentication

5.2. Example: Latin PIN Code

5.3. Example: Cyrillic PIN Code

5.4. Out of Band Confirmation

6. Protocol Binding

6.1. JSON encoding

6.2. HTTP Session Layer

6.3. TLS transport

7. Service Identification and Discovery

8. Acknowledgements

9. Security Considerations

9.1. Denial of Service

9.2. Breach of Trust

9.3. Coercion

10. IANA Considerations

11. References

11.1. Normative References

11.2. Non Normative References

Appendix A. Stateless server

A.1. Temporary ID

A.2. Connection Binding ID

Author's Address

1. Definitions

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in [RFC2119].

2. Introduction and Purpose

JSON Service Connect (JCX) is a Web Service that may be used to establish and maintain a
'connection binding' of a device to an account held with a Web Service Provider (WSP).

JCX is presented in JSON encoding [RFC4627] over a HTTP Session [RFC2616] using HTTP Session
Continuation [I-D.hallambaker-httpsession] for message layer authentication and TLS transport for
confidentiality and server authentication.[RFC4627]

A Connection Binding comprises a set of long term credentials used to authenticate interactions
with the JCX service itself and a set of 'Service Connections' to specific services offered by the Web
Service Provider.

Each service connection in turn comprises a collection of 'Instance Connections' which describe a
specific instances of the Web Service.

For example Alice is a consumer and example.com a provider of a range of Web Services including
anti-malware protection and management of home automation devices. Alice has 42 devices of
different types that each make use of one or more of the Web Services proviced by example.com.
All the devices are enrolled in the same JCX account 'alice@example.com' but each device has a
unique connection binding and different devices make use of different Web Services.

The centralized account provides Alice with a single point of control from which she can authorize
the addition of new devices to the account or the removal of devices that are deactivated. This
allows Alice to avoid the need to manage a device such as a network-enabled lightswitch through
the lightswitch itself.

To ensure continuity of service in case of network failure or administration work, example.com
provides multiple instances of its Web Services hosted on different machines. Different users MAY
be granted access to a different collection of service instances according to their needs and the
service tier they are subscribed to.

2.1. Establishing a Web Service Provider Account

The means by which the Web Service Provider Account is established is outside the scope of this
document.

In a typical case the user would establish an account with their chosen Web Service Provider
through the normal process of using a Web Browser to access the Web Service Provider's site and
entering such data as the Web Service Provider requires into a HTML form.

Depending on the circumstances, the data provided by the applicant may require verification
before the account is created.

[Default accounts for appliances that are going to be implicitly authenticated by reference to the
network they are on.]

2.2. Establishing a Connection Binding

A connection binding represents a long term association between a device and an account at the
Web Service Provider. The association includes the establishment of an authentication context
between the device and the JCX service.

An authentication context consists of:

A Context Identifier.

An authentication algorithm.

A secret key.

The context identifier is an opaque string assigned by the JCX service. Following the approach
introduced in Kerberos, a JCX service MAY eliminate the need to store authentication context
information by encoding the authentication algorithm and encrypted secret key in the context
identifier.

The authentication context can ensure that future communications are secured against
impersonation if and only if the original process of establishing a connection binding was secured
against communication. Mutual authentication is therefore an essential requirement.

The means by which the connection binding is established depend on the affordances of the device
in question. Establishing a connection binding to a device with a keyboard is easily accomplished
through use of a one-time PIN code. But many embedded devices do not provide a keyboard or
similar affordance.

The following modes of session establishement are supported:

PIN Code Establishement.

Out of Band Completion.

QR Code Establishement.

2.2.1. PIN Code Establishement.

To establish a connection binding for a new mobile phone, Alice logs into her JCX account manager
and requests a new PIN code. She then starts the application that makes use of a JCX account and
selects 'create new binding'. She is prompted for and enters her account name
(alice@example.com) and PIN.

The client connects to the JCX service and verifies that the TLS certificate presented is correct for
example.com and has been issued in accordance with issue practices that ensure an appropriately
high degree of trust (e.g. the CABForum Extended Validation requirements).

2.2.2. Out of Band Completion.

To establish a connection binding for her new toaster oven, Alice plugs the appliance into her local
network and enters her account name into the device. Since she has not obtained a PIN code in
advance, she leaves the entry blank.

To complete the process, Alice logs into her JCX account where she sees that a new device is
available to add to the account. To help identify the correct device, there is a picture of the toaster
oven, the model name and serial number.

2.2.3. QR Code Preauthorization.

Alice decides to remodel the kitchen completely and plans to install a dozen new network enabled
LED light fixtures. Using an application on the mobile phone she enabled earlier, Alice scans a QR
code attached to each fixture before the devices are installed. When the fixtures are installed and
powered, the connection binding is preauthorized.

3. Example Uses

3.1. PIN code establishment

Alice buys a new laptop computer which she wishes to use with the malware protection service
provided by example.com. Alice has an existing account 'alice' with this Web Service Provider and
obtains a pin code Q80370-1RA606-F04B from the Web Service Provider Web site.

Alice enters the values alice@example.com and Q80370-1RA606-F04B into the Web Service client
she wishes to use with the Web Service Provider on the new laptop.

The client obtains the JCX service for example.com using DNS SRV discovery. The client

establishes a TLS connection to the service and verifies that the certificate provided has a valid
certificate path, has not been revoked and meets the validation criteria of the client. Since the
purpose of this particular Web Service client is to provide security, the client requires that an
Extended Validation certificate be presented.

Having established a TLS connection to the JCX Service, the client sends the following HTTP
request:

Post / HTTP/1.1
Host: example.com
Cache-Control: no-store
Content-Type: Application/json;charset=UTF-8
Content-Length: 470

{
 "OpenRequest": {
 "Encryption": ["HS256",
 "HS384",
 "HS512",
 "HS256T128"],
 "Authentication": ["A128CBC",
 "A256CBC",
 "A128GCM",
 "A256GCM"],
 "Account": "alice",
 "Domain": "example.com",
 "HavePasscode": true,
 "HaveDisplay": true,
 "Challenge": "d2gdVeQesS3UTOgtK4JSEg==",
 "DeviceID": "Serial:0002212",
 "DeviceURI": "http://comodo.com/dragon/v3.4",
 "DeviceName": "Comodo Dragon"}}

To prevent man in the middle attack, the client does not send the PIN code in the initial request.
The PIN code is only sent after the service responds with a challenge nonce to be used to prevent
replay attack.

The service receives the request, determines that is meets its access control policy and selects a
set of cryptographic parameters from the set proposed by the client. In this case the service
prefers the use of AES128CBC for encryption and the HS256 Message Authentication Code for
authentication.

The service determines that a PIN code has been issued for the account and uses the value of that
PIN to generate a response to the challenge presented by the client. A new challenge is generated
to test the client knowledge of the PIN.

[TBS: Is there a need for the service to be able to support multiple outstanding PIN codes for the
same account? This could be supported by providing the last 2 significant characters of the PIN
code to the service which could use it as an index. This would enable several hundred simultaneous
outstanding requests which should be enough for most applications. Large volume applications
would need to use a different scheme.]

The service sends the following response to the client:

HTTP/1.1 203 Passcode
Content-Type: application/json;charset=UTF-8
Content-Length: 500

{ "Status" : "Authenticate",
 "OpenResponse": {
 "Status": 203,
 "StatusDescription": "Passcode",
 "Cryptographic": [{
 "Secret": "11bmdFi9Et7KIUg8aeN2AQ==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket":

 "TUMnorO0SjHHS7D2uFcGlRYJ0Hd3eibwe0ogptoNMQuCYmCHfHAJcJlyvi
 j8WoXDglTSOkctnmoBzl8W0NLSlcgSyZcmsAyoWs8y1Rn2ZlO2WBgoWrFIO
 qPa4oB29dgs/ei6ieINZtmvXNCm2NUkWA=="}],
 "Challenge": "alX8aAWH6acSqO3FTT94HA==",
 "ChallengeResponse": "enT5myMw8w2hV4H32Ntx/g=="}}

To complete the transaction, the client sends a TicketRequest message to the service containing a
response to the PIN challenge sent by the service (ChallengeResponse).

The TicketRequest message is authenticated using HTTP Session authentication under the shared
secret specified in the OpenResponse message:

Post / HTTP/1.1
Host: example.com
Cache-Control: no-store
Content-Type: Application/json;charset=UTF-8
Content-Length: 78
Session:
 Value=cjkMkfnnYP8JYWZAbRLvtpqImmOK3rsrOT1XcvAgHDk=;
 Id=TUMnorO0SjHHS7D2uFcGlRYJ0Hd3eibwe0ogptoNMQuCYmCHfHAJcJlyvi
 j8WoXDglTSOkctnmoBzl8W0NLSlcgSyZcmsAyoWs8y1Rn2ZlO2WBgoWrFIOqPa4
 oB29dgs/ei6ieINZtmvXNCm2NUkWA==

{
 "TicketRequest": {
 "ChallengeResponse": "TctLOG74cwpm26YNpEibcQ=="}}

The service checks the value of ChallengeResponse against the known PIN and if the result is
correct establishes parameters for the Connection Binding for the device.

In this case the server uses the Session Id parameter to encode permissions associated with the
request as described in [Appendix TBS]. Accordingly the server must replace the Session Id
whenever the associated permissions change. Accordingly, the server replaces the cryptographic
parameters specified in the OpenResponse request for use in future JCX service requests. In this
case the server returns three connections, each offering a different transport protocol option. Each
connection specifies its own set of cryptographic parameters (or will when the code is written for
that).

The service also returns a service connection the malware protection service the client requested
access to. This service connection specifies three different service instances. Each service instance
has its own set of cryptographic parameters for use with HTTP session authentication. In this case
the three different service instances offer different means of accessing the same service: as a
JSON Web Service over HTTP, using a binary encoding over a UDP transport and tunnelling via
DNS.

HTTP/1.1 200 Complete
Content-Type: application/json;charset=UTF-8
Content-Length: 1907
Session:
 Value=nKhjR1r2eYPga0rmDfHT4HOvgQ+EuUoQPwzIl0btljs=;
 Id=TUMnorO0SjHHS7D2uFcGlRYJ0Hd3eibwe0ogptoNMQuCYmCHfHAJcJlyvi
 j8WoXDglTSOkctnmoBzl8W0NLSlcgSyZcmsAyoWs8y1Rn2ZlO2WBgoWrFIOqPa4
 oB29dgs/ei6ieINZtmvXNCm2NUkWA==

{ "Status" : "Success",
 "TicketResponse": {
 "Status": 200,
 "StatusDescription": "Complete",
 "Cryptographic": [{
 "Protocol": "OBPConnection",
 "Secret": "HQuQg4GkzTwTVoGxar0EXg==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket":
 "0ulMVMMfY/pLHZ0FlIy2zDnNycYz9Znvs3JJYQGlZ+dWaxMNxm/jLEsJd/
 0qsAc5qp8fjBoMN49V9DkDgM4UYJxVriqfr64RyTTgug2taHY="}],

 "Service": [{
 "Name": "obp1.example.com",
 "Port": 443,
 "Address": "10.1.2.3",
 "Priority": 1,
 "Weight": 100,
 "Transport": "WebService",
 "Cryptographic": {
 "Protocol": "OBPQuery",
 "Secret": "kezeXxhkzXgxY7vpkHUb1g==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket":
 "jpBXvI7/0WTmwI2NN4n7Vvw96nbS9LpSsSNMIkdapiUoLikSkjpgMrtb
 VKz5lHOPloCgAyZXxfZpQRsp4oPY4BcRaMw6F5na62IHnBVDeXg="}},
 {
 "Name": "dns1.example.com",
 "Port": 53,
 "Address": "10.1.2.2",
 "Priority": 1,
 "Weight": 100,
 "Transport": "DNS",
 "Cryptographic": {
 "Protocol": "OBPQuery",
 "Secret": "Wk3m7DlL/GStBBm3xUjyzg==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket":
 "Q9r4hXefHhLvgpKHVg3w2p7VptVH9qidGiIa4Nw3Zp5hZR816h9+PRj5
 sye1jmIhy4sYA/jfK/g4OrSngK9xWO7Qg3/iQ+YTAchKQjdJtN4="}},
 {
 "Name": "udp.example.com",
 "Port": 5000,
 "Address": "10.1.2.2",
 "Priority": 1,
 "Weight": 100,
 "Transport": "UDP",
 "Cryptographic": {
 "Protocol": "OBPQuery",
 "Secret": "wBiguG9FGj08nS/c/njp4Q==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket":
 "F8LPKTL+XaAX0eJsM22fdJ37BRS816dKXD66UbD8NAVKOgOu556uS8WW
 AMj+dJbJaErUzo/vw7tY0icCu1bw8qHmOO4gzhbSbD4Nga2EAU4="}}]}
 }

3.2. Unbinding

After a year of use, Alice decides to replace the laptop with a new one. Before selling the old laptop
on EBay, she tells the Web Service client to cancel the connection to the Web Service Provider.

The client sends the following mesasage to the provider:

Post / HTTP/1.1
Host: example.com
Cache-Control: no-store
Content-Type: Application/json;charset=UTF-8
Content-Length: 25
Session:
 Value=bZU61eCOW4nVnfdJNS719HL4IsNVxtoTgoRt+mqLbWY=;
 ID=0ulMVMMfY/pLHZ0FlIy2zDnNycYz9Znvs3JJYQGlZ+dWaxMNxm/jLEsJd/
 0qsAc5qp8fjBoMN49V9DkDgM4UYJxVriqfr64RyTTgug2taHY=

{
 "UnbindRequest": {}}

The Session ID specifies the connection binding. Since the Unbind Request is only valid for that
connection binding, there is no need to specify the connection binding further in the request.

The server verifies that the request was authenticated and returns a successful response:

HTTP/1.1 200 Complete
Content-Type: application/json;charset=UTF-8
Content-Length: 26
Session:
 Value=9P1FmroeFU7y9qHgXdSFXH2qSImh0cQpaSgZrx5IswM=;
 Id=0ulMVMMfY/pLHZ0FlIy2zDnNycYz9Znvs3JJYQGlZ+dWaxMNxm/jLEsJd/
 0qsAc5qp8fjBoMN49V9DkDgM4UYJxVriqfr64RyTTgug2taHY=

{ "Status" : "Success",
 "UnbindResponse": {}}

[TBS: Add in the status response back into the JSON message.]

3.3. Out of Band Completion

Alice purchases an Internet enabled coffee pot. The installer configures the coffee pot in her
kitchen but does not have access to Alice's JCX account or a PIN code to configure it.

The installer configures the coffee pot to use the JCX account specified by Alice. The coffee pot
does not have a pssscode to enter but does have a link to an image of the coffee pot.

The client sends the following request:

[TBS: non pin code example]

Since the client does not have a PIN code, there is no need to return a challenge. Instead the
service returns the status "OOB" to indicate that the transaction will be completed out of band.

[TBS: non pin code example]

By default the coffee pot attempts to complete the JCX connection at ten second intervals for the
first ten minutes, every thirty seconds for the next hour, every five minutes for the following 24
hours and once an hour thereafter.

The client sends the following request to check the status of the request:

[TBS: should add in a parameter 'don't call again for x seconds']

The first service response tells the coffee pot not to ask again until five minutes have elapsed:

[TBS: non pin code example]

The installer calls Alice to tell her that the coffee pot is ready to connect. Alice authorizes the
connection remotely via the Web Service Provider's Web site. Alice identifies the request to
connect the coffee pot by means of the image provided. She can also use the same image to help
determine which connection to cancel when the coffee pot is replaced.

The next time the coffee pot requests a status update, the service responds with the connection
binding parameters:

[TBS: non pin code example]

4. OBPConnection

4.1. Message: Message

4.2. Message: Response

Status : Integer [0..1]

Application layer server status code

StatusDescription : String [0..1]

Describes the status code (ignored by processors)

4.3. Message: ErrorResponse

An error response MAY be returned in response to any request.

Note that requests MAY be rejected by the code implementing the transport binding before
application processing begins and so a server is not guaranteed to provide an error response
message.

4.4. Message: Request

Ticket : Binary [1..1]

Opaque ticket issued by the server that identifies the cryptographic parameters for
encryption and authentication of the message payload.

4.5. Structure: Cryptographic

Parameters describing a cryptographic context.

Protocol : Label [0..1]

OBP tickets MAY be restricted to use with either the management protocol (Management) or
the query protocol (Query). If so a service would typically specify a ticket with a long expiry
time or no expiry for use with the management protocol and a separate ticket for use with
the query protocol.

Secret : Binary [1..1]

Shared secret

Encryption : Label [1..1]

Encryption Algorithm selected

Authentication : Label [1..1]

Authentication Algorithm selected

Ticket : Binary [1..1]

Opaque ticket issued by the server that identifies the cryptographic parameters for
encryption and authentication of the message payload.

Expires : DateTime [0..1]

Date and time at which the context will expire

4.6. Structure: ImageLink

Algorithm : Label [0..1]

Image encoding algorithm (e.g. JPG, PNG)

Image : Binary [0..1]

Image data as specified by algorithm

4.7. Structure: Connection

Contains information describing a network connection.

Name : Name [0..1]

DNS Name. Since one of the functions of an OBP service is name resolution, a DNS name is
only used to establish a connection if connection by means of the IP address fails.

Port : Integer [0..1]

TCP or UDP port number.

Address : String [0..1]

IPv4 (32 bit) or IPv6 (128 bit) service address

Priority : Integer [0..1]

Service priority. Services with lower priority numbers SHOULD be attempted before those
with higher numbers.

Weight : Integer [0..1]

Weight to be used to select between services of equal priority.

Transport : Label [0..1]

OBP Transport binding to be used valid values are HTTP, DNS and UDP.

Expires : DateTime [0..1]

Date and time at which the specified connection context will expire.

4.8. Bind

Binding a device is a two step protocol that begins with the Start Query followed by a sequence of
Ticket queries.

4.9. Message: BindRequest

The following parameters MAY occur in either a StartRequest or TicketRequest:

Encryption : Label [0..Many]

Encryption Algorithm that the client accepts. A Client MAY offer multiple algorithms. If no
algorithms are specified then support for the mandatory to implement algorithm is
assumed. Otherwise mandatory to implement algorithms MUST be specified explicitly.

Authentication : Label [0..Many]

Authentication Algorithm that the client accepts. If no algorithms are specified then support
for the mandatory to implement algorithm is assumed. Otherwise mandatory to implement
algorithms MUST be specified explicitly.

4.10. Message: BindResponse

The following parameters MAY occur in either a StartResponse or TicketResponse:

Cryptographic : Cryptographic [0..Many]

Cryptographic Parameters.

Service : Connection [0..Many]

A Connection describing an OBP service point

4.11. Message: OpenRequest

The OpenRequest Message is used to begin a device binding transaction. Depending on the
authentication requirements of the service the transaction may be completed in a single query or
require a further Ticket Query to complete.

If authentication is required, the mechanism to be used depends on the capabilities of the device,
the requirements of the broker and the existing relationship between the user and the broker.

If the device supports some means of data entry, authentication MAY be achieved by entering a
passcode previously delivered out of band into the device.

The OpenRequest specifies the properties of the service (Account, Domain) and Device (ID, URI,
Name) that will remain constant throughout the period that the device binding is active and
parameters to be used for the mutual authentication protocol.

Account : String [0..1]

Account name of the user at the OBP service

Domain : Name [0..1]

Domain name of the OBP broker service

HavePasscode : Boolean [0..1] Default =False

If 'true', the user has entered a passcode value for use with passcode authentication.

HaveDisplay : Boolean [0..1] Default =False

Specifies if the device is capable of displaying information to the user or not.

Challenge : Binary [0..1]

Client challenge value to be used in authentication challenge

DeviceID : URI [0..1]

Device identifier unique for a particular instance of a device such as a MAC or EUI-64
address expressed as a URI

DeviceURI : URI [0..1]

Device identifier specifying the type of device, e.g. an xPhone.

DeviceName : String [0..1]

Descriptive name for the device that would distinguish it from other similar devices, e.g.
'Alice's xPhone".

4.12. Message: OpenResponse

An Open request MAY be accepted immediately or be held pending completion of an inband or
out-of-band authentication process.

The OpenResponse returns a ticket and a set of cryptographic connection parameters in either
case. If the

Challenge : Binary [0..1]

Challenge value to be used by the client to respond to the server authentication challenge.

ChallengeResponse : Binary [0..1]

Server response to authentication challenge by the client

VerificationImage : ImageLink [0..Many]

Link to an image to be used in an image verification mechanism.

4.13. Message: TicketRequest

The TicketRequest message is used to (1) complete a binding request begun with an OpenRequest
and (2) to refresh ticket or connection parameters as necessary.

ChallengeResponse : Binary [0..1]

The response to a server authentication challenge.

4.14. Message: TicketResponse

The TicketResponse message returns cryptographic and/or connection context information to a
client.

4.15. Unbind

Requests that a previous device association be deleted.

4.16. Message: UnbindRequest

Since the ticket identifies the binding to be deleted, the only thing that the unbind message need
specify is that the device wishes to cancel the binding.

4.17. Message: UnbindResponse

Reports on the success of the unbinding operation.

If the server reports success, the client SHOULD delete the ticket and all information relating to
the binding.

A service MAY continue to accept a ticket after an unbind request has been granted but MUST NOT
accept such a ticket for a bind request.

5. Mutual Authentication

A Connection Service MAY require that a connection request be authenticated. Two authentication
mechanisms are defined.

PIN Code: The client and server demonstrate mutual knowledge of a PIN code previously
exchanged out of band.

Out of Band Confirmation: The request for access is confirmed out of band.

In addition, services MAY accept the use of any message or transport layer authentication scheme.
For example HTTP Session Continuation or Transport Layer Security with client authentication.

5.1. PIN Authentication

PIN code authentication provides users with a simple and often familiar mechanism for
authenticating the connection request. The means by which the user obtains the PIN code is
outside the scope of this document. Possible methods for distributing the PIN code include
obtaining the code from an account management Web site provided by the Web Service Provider,
letter post, email and in person.

Although the PIN value is never exposed on the wire in any form, the protcol considers the PIN
value to be text encoded in UTF8 encoding.

To encourage readability, the use of space (0x20) and hyphen (0x2D) characters to arrange PIN
characters into groups of four to seven characters is encouraged. To avoid the risk of this practice
introducing user error, space and hyphen characters are ignored when processing the PIN value.

Support for the full UNICODE character set in PIN codes is intended to facilitate provision of PIN
codes in the user's native language. Web Service Providers MAY make use of any UNICODE
characters they choose but capricious choices are likely to cause users difficulty. For example a
PIN code MAY contain the ZAPF Dingbats thick tick mark (U+2704) but users would almost
certainly find it difficult to enter and may confuse it with the similar thin tick mark (U+2703).

Servers that support PIN Authorization SHOULD offer the choice of a PIN that only uses numeric
digits ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9'). Clients that support PIN Authorization MUST allow entry
of PINS that only contain numeric digits.

The PIN Mechanism is a three step process:

The client sends an OpenRequest message to the Service containing a challenge value CC.

The service returns an OpenResponse message containing to the client a server challenge
value SV and a server response value SR.

The client sends a TicketRequest message to the service containing a client response value
CR.

Since no prior authentication key has been established the OpenRequest and OpenResponse
messages are sent without message authentication.

The Challenge values CC, and SC are cryptographic nonces. The nonces SHOULD be generated
using an appropriate cryptographic random source. The nonces MUST be at least as long as 128
bits, MUST be at least the minimum key size of the authentication algorithm used and MUST NOT
more than 640 bits in length (640 bits should be enough for anybody).

The server response and client response values are generated using an authentication algorithm
selected by the server from the choices proposed by the client in the OpenRequest message.

The algorithn chosen may be a MAC algorithm or an encrypt-with-authentication (EWA) algorithm.
If an EWA is specified, the encrypted data is discarded and only the authentication value is used in
its place.

Let A(d,k) be the authentication value obtained by applying the authentication algorithm with key k
to data d.

To create the Server Response value, the UTF8 encoding of the PIN value 'P' is first pre-processed

to remove space and hyphen characters, then converted into a symmetric key KPC by using the
Client challenge value as the key truncating if necessary and then applied to the of the
OpenRequest message:

 KPC = A (PIN, CC)
 SR = A (Secret + SC + OpenRequest, KPC)

In the Web Service Binding, the Payload of the message is the HTTP Body as presented on the
wire. The Secret and Server Challenge are presented in their binary format and the '+' operator
stands for simple concatenation of the binary sequences.

This protocol construction ensures that the party constructing SR:

Knows the PIN code value (through the construction of KPC).

Is responding to the Open Request Message (SR depends on OpenRequest).

Has knowlege of the secret key which MUST be used to authenticate the following
TicketRequest/TicketResponse interaction that will establish the actual connection.

Does not provide an oracle the PIN value. That is, the protocol does not provide a service
that reveals the (since the value SR includes the value SC which is a random nonce
generated by the server and cannot be predicted by the client).

To create the Client Response value, secret key is applied to the PIN value and server Challenge:

 CR = A (PIN + SC + OpenRequest, Secret)

Note that the server can calculate the value of the Client Response token at the time that it
generates the Server Challenge. This minimizes the amount of state that needs to be carried from
one request to the next in the Ticket value when using the stateless server implementation
described in section Appendix A

This protocol construction ensures that the generator of CR

Knows the PIN value.

Is respoding to the OpenResponse generated by the server.

Note that while disclosure of an oracle for the PIN value is a concern in the construction of CR, this
is not the case in the construction of SR since the client has already demonstrated knowledge of
the PIN value.

5.2. Example: Latin PIN Code

The Connection Request example of section Section 3 demonstrates the use of an alphanumeric
PIN code using the Latin alphabet.

The PIN code is [Q80370-1RA606-F04B] and the authentication algorithm is [HS256]. The value KP
is thus:

[TBS]

The data over which the hash value is calulated is Secret + SC + OpenRequest:

[TBS]

Applying the derrived key to the data produces the server response:

The data for the client response is PIN + SC:

[TBS]

Applying the secret key to the data produces the client response:

[TBS]

5.3. Example: Cyrillic PIN Code

If the PIN code in the earlier example was [] the value KP would be:

[TBS]

The Server Response would be:

[TBS]

The rest of the protocol would then continue as before.

5.4. Out of Band Confirmation

The Out Of Band Confirmation mechanism is a three step process in which:

The client makes an OpenRequest message to the service and obtains an OpenResponse
message.

The connection binding is authorized through an out of band process.

The client makes a TicketRequest to the service and obtains a TicketResponse message to
complete the exchange.

Since no prior authentication key has been established the OpenRequest and OpenResponse
messages are sent without authentication.

The principal concern in the Out Of Band Confirmation mechanism is ensuring that the party
authorizing the request is able to identify which party originated the request they are attempting to
identify.

If a device has the ability to display an image it MAY set the HasDisplay=true in the OpenRequest
message. If the broker recieves an OpenRequest with the HasDisplay value set to true, the
OpenResponse MAY contain one or more VerificationImage entries specifying image data that is to
be displayed to the user by both the client and the confirmation interface.

Before confirming the request, the user SHOULD verify that the two images are the same and
reject the request in the case that they are not.

Many devices do not have a display capability, in particular an embedded device such as a network
switch or a thermostat. In this case the device MAY be identified by means of the information
provided in DeviceID, DeviceURI, DeviceImage and DeviceName.

6. Protocol Binding

A single protocol binding is defined:

JSON encoding is used to express JCX messages.

A HTTP session layer with HTTP session continuation is used for message authentication.

TLS transport is required for confidentiality and service authentication.

Implementations MAY support use of alternative encodings, session layers or transports provided
that the necessary confidentiality and authentication criteria described below are met. The means
by which negotiation of the use of such encodings is achieved is outside the scop of this document.

6.1. JSON encoding

Messages are expressed in JSON encoding [RFC4627].

6.2. HTTP Session Layer

Messages are presented over a HTTP session layer [RFC2616]. The use of HTTP as a session layer
permits multiple Web Services on the same host to share the same DNS name, IP address and
port number and enables use of HTTP Session Continuation [I-D.hallambaker-httpsession] for
message authentication.

Use of HTTP Session Continuation mechanism allows message authentication data to be
presented in the HTTP message header rather than the message content provides a clean
separation of the message authentication data from the data being authenticated. The scope of
the authentication data is simply the message content after transport encoding (e.g. chunked) has
been removed.

The use of HTTP session continuation is necessary to achieve mutual authentication even though
TLS transport is required.

Only the HTTP Session header is used. The negotiation of the Session parameters is performed
within JCX.

[TO-DO: Specify TLS binding options?]

[TO-DO: Switch back from using JOSE algorithm names to HTTP Session algorithm names]

6.3. TLS transport

TLS transport [RFC4627] is used

Support for the PKIX logotype extension [RFC3709] is highly recommended

Use of an enhanced assurance certificate (e.g. CABForum EV) is likely to be required in most
applications and is strongly recommended if Lotypes are used.

7. Service Identification and Discovery

The prefix '[PREFIX-TBD]' has been registered for use as a protocol identifier for JCX in the URI, SRV
and Well Known Location registries.

The URI form identifying a JCX account identifier is:

PREFIX-TBD:<service>:<account>:< or PREFIX-TBD:<service>:<account>:<:subaccount>

Where <service> is the DNS name of the Web Service Provider, <account> is the name of the
account at the service provider and <subaccount> is an optional sub-account specifier.

Use of the URI form is only needed in cases where the purpose of the identifier is not clear from
the context, in a HTML anchor for example. A JCX client requesting entry of the service account
identifier MUST support entry of the short form identifier:

<account>@<service> or <:subaccount>/<account>@<service>

DNS Service (SRV) record discovery is the preferred method of host discovery as this provides for
fault tollerance and load balancing.

JCX clients SHOULD support use of DNS SRV records for host discovery and MUST support use of
DNS A/AAAA records for host discovery.

A compliant JCX service MUST be offered at the .well-known location /.well-known/PREFIX-TBD. Use
of JCX protocol at other service locations is permissible for testing and protocol development
purposes but such configurations are not compliant and clients are not required to support them.
The URL for the JCX service is therefore:

https://<service>/.well-known/PREFIX-TBD

8. Acknowledgements

[List of contributors]

9. Security Considerations

9.1. Denial of Service

9.2. Breach of Trust

9.3. Coercion

10. IANA Considerations

[TBS list out all the code points that require an IANA registration]

11. References

11.1. Normative References

[I-D.hallambaker-httpsession] Hallam-Baker, P., "HTTP Session Management", Internet-Draft
draft-hallambaker-httpsession-01, May 2013.

[RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, November 1987.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach,
P. and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",
RFC 2616, June 1999.

[RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J. and T.
Wright, "Transport Layer Security (TLS) Extensions", RFC 4366,
April 2006.

[RFC4627] Crockford, D., "The application/json Media Type for JavaScript
Object Notation (JSON)", RFC 4627, July 2006.

[X.509] International Telecommunication Union , "ITU-T Recommendation
X.509 (11/2008): Information technology - Open systems
interconnection - The Directory: Public-key and attribute
certificate frameworks ", ITU-T Recommendation X.509,
November 2008.

[X.680] International Telecommunication Union , "ITU-T Recommendation
X.680 (11/2008): Information technology - Abstract Syntax
Notation One (ASN.1): Specification of basic notation ", ITU-T
Recommendation X.680, November 2008.

11.2. Non Normative References

[RFC3709] Santesson, S., Housley, R. and T. Freeman, "Internet X.509 Public Key Infrastructure:
Logotypes in X.509 Certificates", RFC 3709, February 2004.

Appendix A. Stateless server

The protocol is designed to permit but not require the server to store connection binding state in
the Session ID of the HTTP Session Continuation authentication mechanism.

The Session IDs are opaque as far as the client is concerned. The client receives the Session ID
from the service and returns it with each request. The internal structure of the Session ID is
therefore outside the scope of this specification but is provided here to assist implementers.

In the PIN Authentication example, two SessionIDs are issued by the server, a temporary ID issued
in response to the initial client OpenRequest and a connection binding ID issued when the client PIN
confirmation is accepted and the connection binding is created.

A.1. Temporary ID

[TBS]

A.2. Connection Binding ID

Author's Address

http://tools.ietf.org/html/draft-hallambaker-httpsession-01
http://tools.ietf.org/html/rfc1035
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc4366
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc3709

Phillip Hallam-Baker
Comodo Group Inc.
EMail: philliph@comodo.com

mailto:philliph@comodo.com

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Definitions
	1.1. Requirements Language
	2. Introduction and Purpose
	2.1. Establishing a Web Service Provider Account
	2.2. Establishing a Connection Binding
	2.2.1. PIN Code Establishement.
	2.2.2. Out of Band Completion.
	2.2.3. QR Code Preauthorization.
	3. Example Uses
	3.1. PIN code establishment
	3.2. Unbinding
	3.3. Out of Band Completion
	4. OBPConnection
	4.1. Message: Message
	4.2. Message: Response
	4.3. Message: ErrorResponse
	4.4. Message: Request
	4.5. Structure: Cryptographic
	4.6. Structure: ImageLink
	4.7. Structure: Connection
	4.8. Bind
	4.9. Message: BindRequest
	4.10. Message: BindResponse
	4.11. Message: OpenRequest
	4.12. Message: OpenResponse
	4.13. Message: TicketRequest
	4.14. Message: TicketResponse
	4.15. Unbind
	4.16. Message: UnbindRequest
	4.17. Message: UnbindResponse
	5. Mutual Authentication
	5.1. PIN Authentication
	5.2. Example: Latin PIN Code
	5.3. Example: Cyrillic PIN Code
	5.4. Out of Band Confirmation
	6. Protocol Binding
	6.1. JSON encoding
	6.2. HTTP Session Layer
	6.3. TLS transport
	7. Service Identification and Discovery
	8. Acknowledgements
	9. Security Considerations
	9.1. Denial of Service
	9.2. Breach of Trust
	9.3. Coercion
	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Non Normative References
	Appendix A. Stateless server
	A.1. Temporary ID
	A.2. Connection Binding ID
	Author's Address

