
 TOC Internet Engineering Task Force P. Hallam-Baker

Internet-Draft Comodo Group Inc.

Intended status: Standards Track July 16, 2012

Expires: January 17, 2013

OmniBroker Protocol
draft-hallambaker-omnibroker-01

Abstract

An Omnibroker is an agent chosen and trusted by an Internet user to provide information
such as name and certificate status information that are in general trusted even if they are
not trustworthy. Rather than acting as a mere conduit for information provided by existing
services, an Omnibroker is responsible for curating those sources to protect the user.

The Omnibroker Protocol (OBP) provides an aggregated interface to trusted Internet services
including DNS, OCSP and various forms of authentication service. Multiple transport bindings
are supported to permit efficient access in virtually every common deployment scenario and
ensure access in any deployment scenario in which access is not being purposely denied.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on January 17, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Definitions
 1.1. Requirements Language
2. Purpose
 2.1. A Curated Service
 2.2. Connection Broker
 2.2.1. Service Connection Broker
 2.2.2. Peer Connection Broker
 2.2.3. Connection Broker API
 2.3. Service Advertisement
 2.3.1. Connection Advertisement API

 2.4. Credential Validation Broker
 2.5. Authentication Gateway
 2.6. Credential Announcement
3. Omnibroker Connection Maintenance Service
 3.1. Authentication
 3.1.1. Broker Authentication
 3.1.2. Device Authentication
 3.1.3. Illustrative example
 3.2. OBPConnection
 3.2.1. Message: Request
 3.2.2. Structure: Cryptographic
 3.2.3. Structure: ImageLink
 3.2.4. Structure: Connection
 3.2.5. Bind
 3.2.6. Message: BindRequest
 3.2.7. Message: BindResponse
 3.2.8. Message: OpenRequest
 3.2.9. Message: OpenResponse
 3.2.10. Message: TicketRequest
 3.2.11. Message: TicketResponse
 3.2.12. Unbind
 3.2.13. Message: UnbindRequest
 3.2.14. Message: UnbindResponse
4. Omnibroker Query Service
 4.1. OBPQuery
 4.2. Message: Request
 4.3. Message: Response
 4.4. Structure: Identifier
 4.5. Structure: Connection
 4.6. Structure: Advice
 4.7. Structure: Service
 4.8. QueryConnect
 4.9. Message: QueryConnectRequest
 4.10. Message: QueryConnectResponse
 4.11. Advertise
 4.12. Message: AdvertiseRequest
 4.13. Message: AdvertiseResponse
 4.14. Validate
 4.15. Message: ValidateRequest
 4.16. Message: ValidateResponse
 4.17. QueryCredentialPassword
 4.18. Message: CredentialPasswordRequest
 4.19. Message: CredentialPasswordResponse
5. Transport Bindings
 5.1. HTTP over TLS
 5.1.1. Message Encapsulation
 5.1.2. Example
 5.2. DNS Tunnel
 5.2.1. Request
 5.2.2. Response
 5.2.3. Example
 5.3. UDP
 5.3.1. Request
 5.3.2. Response
 5.3.3. Example
6. Acknowledgements
7. Security Considerations
 7.1. Denial of Service
 7.2. Breach of Trust
 7.3. Coercion
8. To do
9. For discussion.
10. IANA Considerations
11. Normative References
Appendix A. Example Data.
 A.1. Ticket A
 A.2. Ticket B
§ Author's Address

 TOC

 TOC

 TOC

 TOC

1. Definitions

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

2. Purpose

An Omnibroker is an agent chosen and trusted by an Internet user to provide information
such as name and certificate status information that are in general trusted even if they are
not trustworthy. Rather than acting as a mere conduit for information provided by existing
services, an Omnibroker is responsible for curating those sources and providing autheticated,
curated results to the endpoint client.

Unlike the traditional trusted information services that are expected to deliver the same
response to a query regardless of who asks the question, OBP permits an Omnibroker to
return a response that is tailored to the specific party asking the question. This permits the
use of an authentication approach that has negligible impact on performance and permits an
Omnibroker to answer questions that a traditional public Internet information service could
not. In particular, an Omnibroker can broker peer to peer connections

2.1. A Curated Service

In the traditional configuration, an Internet host accepts DNS service from the IP address
specified by the local network provider, frequently the DNS server advertised by the local
DHCP service. This approach creates an obvious security risk as DNS is clearly a trusted
service and a random DNS service advertised by the local DNS is clearly not trustworthy.

A policy of only using a chosen DNS service provides a reduction in risk but only a modest
one since the standard DNS service does not provide authenticated results. Many local area
networks intercept all DNS traffic and process it through the local DNS server regardless of
the intended destination IP address. This practice is highly desirable if it would prevent a
client from accessing an untrustworthy DNS service in place of a trustworthy local DNS
service and extreemly undesirable in the contrary case.

In addition to ensuring the authenticity of DNS resolution responses, such services frequently
provide filtering of Internet addresses the network provider considers undesirable. Many
workplaces block access to Web sites that are considered detrimental to productivity. Many
parent subscribe to services that filter content they consider undesirable. While the value of
such services is debatable they are services that those customers have chosen to deploy on
their networks to meet their perceived security requirements. New security proposals that do
not support such capabilities or seek to actually circumvent them will not be acceptable to
those constituencies.

While DNS filtering is a form of censorship, not all forms of DNS filering are intrinsically
undesirable censorship. Spam filtering is also a form of censorship albeit one that is not
normally regarded as such because it most Internet users now consider it to be an essential
security control. Anti-Virus tools are also a form of censorship. DNS filtering tools that block
access to sites that distribute malware are also a form of censorship and are rapidly gaining
popularity for the same reason.

While all forms of censorship raise civil liberties concerns, censorship should not
automatically raise civil liberties objections. It is not the fact that filtering is taking place but
the party that is in control of the filtering that should raise civil liberties concerns. In an

RFC 2119

 TOC

 TOC

Internet of 2 billion users, all users are obliged to perform some filtering. OBP is designed to
make the party that is in control of the filtering process apparent and provide the end user
with the ability to select the Omnibroker of their choice.

DNSSEC provides a means of determining that a DNS record is the authentic record
published by the source but this capability alone does not meet the security requirements for
DNS resolution services as they have come to be understood since the protocol was first
proposed.

Internet users want to be safe from all forms of attack, not just the DNS resolver mani-in-the-
middle attack that 'end-to-end' deployment of DNSSEC is designed to address. An Internet
user is far more likely to be directed to a site with a DNS name controlled by a criminal gang
than be subject to a man-in-the-middle attack.

Most users would prefer to have an Internet connection that is 'curated' to remove at least
some of the locations they consider to be undesirable. The fact that an organised criminal
gang has put a host on the Internet does not mean that any other Internet user should be
obliged to allow it to connect to any of the machines that they own.

The same argument for curating the raw results applies to other forms of trusted information
service. The fact that a Certificate Authority has issued a digital certificate and considers it to
be valid should not mean that the end party is automatically considered trustworthy by
anyone and for any purpose.

The deployment of security policy capabilities presents another case in which direct reliance
on raw data is undesirable. While security policies such as 'host always offers TLS' or 'mail
server always signs outgoing mail with DKIM' can provide considerable security advantages,
only some of the security policy information that is published is accurate and kept up to date.
Curating such data sources typically proves essential if an unacceptable rate of false
positives is to be avoided.

Although a client is permitted to curate its own data sources it rarely has a sufficient amount
of data to make decisions as accurately as a network service that can draw on a wide variety
of additional data including tracking of communication patterns, historical data series and
third party reputation services.

Curation in the network offers better asgility than the client approach. Agility is an important
consideration when an attacker changes their strategy rapidly and repeatedly to counter new
defensive controls.

While curating trusted data sources is an established and proven practice, current practice
has been to curate each source individually. This approach avoids the need to write a new
protocol but limits the information a curator can leverage to detect potential danger.
Leveraging multiple data sources simultaneously allows better accuracy than applying each
individually.

2.2. Connection Broker

The OBP service connection broker answers the query 'what connection parameters should
be used to establish the best connection to interract with party X according to protocol Y.
Where 'best' is determined by the Omnibroker which MAY take into account parameters
specified by the relying party.

2.2.1. Service Connection Broker

The OBP service connection broker supports and extends the traditional DNS resolution
service that resolves a DNS name (e.g. www.example.com) to return an IP address (e.g.
10.1.2.3).

When using an Omnibroker as a service connection broker, a client specifies both the DNS
name (e.g. www.example.com) and the Internet protocol to be used (e.g. _http._tcp). The
returned connection parameters MAY include:

The IP protocol version, address and port number to establish a connection to.

 TOC

 TOC

 TOC

 TOC

If appropriate, a security transport such as TLS or IPSEC.

If appropriate, a description of a service credential such as a TLS certificate or a
constraint on the type of certificates that the client should consider acceptable.

If appropriate, application protocol details such as version and protocol options.

If an attempt to connect with the parameters specified fails, a client MAY report the failure
and request a new set of parameters.

2.2.2. Peer Connection Broker

Each OBP request identifies both the account under which the request is made and the
device from which it is made. An OBP broker is thus capable of acting as a peer connection
broker service or providing a gateway to such a service.

When using Omnibroker as a peer connection broker, a client specifies the account name
and DNS name of the party with which a connection is to be established (e.g.
alice@example.com) and the connection protocol to be used (e.g. _xmpp-client._tcp)

The returned connection parameters are similar to those returned in response to a service
broker query.

2.2.3. Connection Broker API

In the traditional BSD sockets API a network client performs a series of calls to resolve a
network name to a list of IP addresses, selects one and establishes an IP connection to a port
specified by the chosen application protocol.

OBP anticipates a higher level abstract API that encapsulates this complexity, hiding it from
the application code.

In the case that one (or more) OBP services are configured, the library supporting the
SHOULD obtain connection parameters from the OBP service. Otherwise, it SHOULD
establish a connection using the traditional calling sequence of resolving a host name to
obtain an IP address, etc.

2.3. Service Advertisement

Service advertisement is the converse of service resolution. An Internet application wishing to
accept inbound connections specifies one or more sets of connection parameters for the
Omnibroker to register with whatever naming, discovery or other services may be
appropriate.

2.3.1. Connection Advertisement API

OBP anticipates the use of a high level API for connection advertisement that is the converse
of the Connection broker API. Instead of establishing a connection, the API is used to
advertise that a connection is offered either as a service or a peer.

An application MAY offer multiple types of connection with different connection properties
(e.g. IPv4/IPv6, with and without SSL, etc.). This MAY be supported by marking certain
properties as being optional and/or by permitting the API to be called multiple times with
different properties specified.

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

2.4. Credential Validation Broker

A credential validation broker reports on the validity and trustworthiness of credentials
presented to a client by Internet services and/or peers.

The service provided by OBP is similar to that provided by OCSP and SCVP. Like SCVP, OBP is
an agent selected by the relying party to validate certificates and/or construct trust paths on
its behalf.

2.5. Authentication Gateway

Every OBP request is strongly authenticated by means of a shared secret that is unique to
the account and the device. This may be leveraged to permit use as an authentication
gateway, providing access to other credentials that the client has established the right to
use.

An Authentication Gateway MAY provide access to account names and passwords that the
account holder has chosen to store in the cloud for access to sites that do not support a
stronger, cryptographically based form of authentication such as OAuth.

2.6. Credential Announcement

An Authentication Gateway can only provide access to credentials that it has notice of. A
client uses the Credential Announcement transaction to advise the service of a new
credential.

3. Omnibroker Connection Maintenance Service

3.1. Authentication

The principle function of the OBP Connection Maintenance Protocol is to establish and
maintain the cryptographic parameters used to authenticate and encrypt

The user needs to authenticate the broker service regardless of any authentication
requirements of the broker.

3.1.1. Broker Authentication

The OBP connection maintenance protocol transport MUST provide a trustworthy means of
verifying the identity of the broker (e.g. an Extended Validation SSL certificate).

If the device supports a display capability, authentication of the device and user MAY be
achieved by means of an authentication image. Such an authentication image is generated
by the broker and passed to the client in the OpenResponse message. The user then verifies
that the image presented on the device display is the same as that presented on the
account maintenance console.

3.1.2. Device Authentication

If device authentication is required, the mechanism to be used depends on the capabilities of
the device, the requirements of the broker and the existing relationship between the user

 TOC

and the broker.

If the device supports some means of data entry, authentication MAY be achieved by
entering a passcode into the device that was previously delivered to the user out of band.

The passcode authentication mechanism allows the device to establish a proof that it knows
the passcode without disclosing the passcode. This property provides protection against
Man-In-The-Middle type disclosure attacks.

3.1.3. Illustrative example

Alice is an employee of example.com which runs its own local omnibroker service. To
configure her machine for use with this service, Alice contacts her network administrator who
assigns her the account identifier 'alice' and obtains a PIN number from the service '1V0FH0-
3KSF01-501M'

Alice enters the values 'alice@example.com' and '1V0FH0-3KSF01-501M' into her
Omnibroker-enabled Web browser.

The Web browser uses the local DNS to resolve 'example.com' and establishes a HTTPS
connection to the specified IP address. The client verifies that the certificate presented has a
valid certificate chain to an embedded trust anchor under an appropriate certificate policy
(e.g. compliant with the Extended Validation Criteria defined by CA-Browser Forum).

Having established an authenticated and encrypted TLS session to the Omnibroker service,
the client sends an OpenRequest message to begin the process of mutual authentication.
This message specifies the cryptographic parameters supported by the client
(Authentication, Encryption) and a nonce value (Challenge), device identification parameters
(DeviceID, DeviceURI, DeviceName) and the name of the account being requested.

The client does not specify the PIN code in the initial request, nor is the request
authenticated. Instead the client informs the server that it has a PIN code that can be
supplied if necessary.

Post / HTTP/1.0
[HTTP-Headers...]

{"OpenRequest": { "Encryption": ["HS256","HS384","HS512","HS256T128"],
 "Authentication": ["A128CBC","A256CBC","A128GCM","A256GCM"],
 "Account": "alice",
 "Domain": "example.com",
 "HavePasscode": true,
 "HaveDisplay": true,
 "Challenge": "aokb53UJRy3Y75350wo33A==",
 "DeviceID": "Serial:0002212",
 "DeviceURI": "http://comodo.com/dragon/v3.4",
 "DeviceName": "Comodo Dragon"}
}

The service receives the request. If the request is consistent with the access control policy for
the server it returns a reply that specifies the chosen cryptographic parameters
(Cryptographic), responds to the client issued by the client to establish server proof of
knowsledge of the PIN (ChallengeResponse) and issues a challenge to the client (Challenge).

The cryptographic parameters specify algorithms to be used for encryption and
authentication, a shared secret and a ticket value. Note that while the shared secret is
exchanged in plaintext form in the HTTP binding, the connection protocol MUST provide
encryption.

HTTP/1.0 200 OK

{"OpenResponse": { "Status": 203,
 "StatusDescription": "Passcode",

 "Cryptographic": [{ "Protocol": "OBPConnection",
 "Secret": "4Xd1YGY0FLAoricHMgnCUg==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket": "AAAAAOF3dWBmNBSwKK4nBzIJ
 wlIRYWxpY2VAZXhhbXBsZS5jb21qiRv
 ndQlHLdjvnfnTCjfckws0cHInS6oZI
 0K+OZs7XuaiEc0z/HlrYWRUa+uodUoA"}],
 "Challenge": "kws0cHInS6oZI0K+OZs7Xg==",
 "ChallengeResponse": "t5C+tJO/zuIV0uKOhizWTg=="}}

To complete the transaction, the client sends a TicketRequest message to the serice
containing a response to the PIN challenge sent by the service (ChallengeResponse). The
TicketRequest message is authenticated under the shared secret specified in the
OpenResponse message.

Post / HTTP/1.0
[Content-Integrity: JNpUYCKibOcsHksTEJwUlA==;
 ticket=AAAAAOF3dWB...]

{"TicketRequest": { "Ticket": "AAAAAOF3dWBmNBSwKK
 4nBzIJwlIRYWxpY2VAZXhhbXBsZS5jb21qiRv
 ndQlHLdjvnfnTCjfckws0cHInS6oZI0K+OZs7
 XuaiEc0z/HlrYWRUa+uodUoA",
 "ChallengeResponse": "XTjeS06vsPpYaZwmAV+J/Q=="}
}

If the response to the PIN challenge is correct, the service responds with a message that
specifies a set of cryptographic parameters to be used to authenticate future interactions
with the service (Cryptographic) and a set of connection parameters for servers supporting
the Query Service (Service).

In this case the server returns three connections, each offering a different transport protocol
option. Each connection specifies its own set of cryptographic parameters (or will when the
code is written for that).

HTTP/1.0 200 OK

{"TicketResponse": { "Status": 200,
 "StatusDescription": "Complete",
 "Cryptographic": [{ "Protocol": "OBPConnection",
 "Secret": "p59UMqIwDd7lVGb5Zf8m7w==",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket": "AAAAAKefVDKiMA3e5VRm+WX/Ju8BQAzCLTmHk40SOUXQqtJdYgs="}
],
 "Service": [{ "Name": "obp1.example.com",
 "Port": 443,
 "Address": "10.1.2.3",
 "Priority": 1,
 "Weight": 100}
,{ "Name": "dns1.example.com",
 "Port": 53,
 "Address": "10.1.2.2",
 "Priority": 1,
 "Weight": 100}
,{ "Name": "udp.example.com",
 "Port": 5000,
 "Address": "10.1.2.2",
 "Priority": 1,
 "Weight": 100}
]}
}

 TOC

 TOC

 TOC

When Alice's machine is to be transfered to another employee, the Unbind transaction is
used. The only parameter required is the Ticket identifying the device association (Ticket).

{"UnbindRequest": { "Ticket": "AAAAAKefVDKiMA3e5VRm+
WX/Ju8BQAzCLTmHk40SOUXQqtJdYgs="}
}

Since the unbind response represents the termination of the relationship with the
Omnibroker, the response merely reports the success or failure of the request.

 HTTP/1.0 200 OK

{"UnbindResponse": {}}

The 'Ticket' value presented in the foregoing examples is a sequence of binary data
generated by the service that is opaque to the client. Services MAY generate ticket values
with a substructure that enable the service to avoid the need to maintain server side state.

In the foregoing example, the ticket structures generated by the service encode the
cryptographic parameter data, the shared secret, account identifier and an authentication
value. The initial ticket value generated additionally encodes the values of the client and
service challeng values for use in calculating the necessary ChallengeResponse.

3.2. OBPConnection

3.2.1. Message: Request

Every query request contains the following common elements:

Index : Integer [0..1]
Index used to request a specific response when multiple responses are available.

3.2.2. Structure: Cryptographic

Parameters describing a cryptographic context.

Protocol : Label [0..1]
OBP tickets MAY be restricted to use with either the management protocol
(Management) or the query protocol (Query). If so a service would typically specify
a ticket with a long expiry time or no expiry for use with the management protocol
and a separate ticket for use with the query protocol.

Secret : Binary [1..1]
Shared secret

Encryption : Label [1..1]
Encryption Algorithm selected

Authentication : Label [1..1]
Authentication Algorithm selected

Ticket : Binary [1..1]
Opaque ticket issued by the server that identifies the cryptographic parameters
for encryption and authentication of the message payload.

 TOC

 TOC

 TOC

 TOC

 TOC

Expires : DateTime [0..1]
Date and time at which the context will expire

3.2.3. Structure: ImageLink

Algorithm : Label [0..1]
Image encoding algorithm (e.g. JPG, PNG)

Image : Binary [0..1]
Image data as specified by algorithm

3.2.4. Structure: Connection

Contains information describing a network connection.

Name : Name [0..1]
DNS Name. Since one of the functions of an OBP service is name resolution, a
DNS name is only used to establish a connection if connection by means of the IP
address fails.

Port : Integer [0..1]
TCP or UDP port number.

Address : Binary [0..1]
IPv4 (32 bit) or IPv6 (128 bit) service address

Priority : Integer [0..1]
Service priority. Services with lower priority numbers SHOULD be attempted
before those with higher numbers.

Weight : Integer [0..1]
Weight to be used to select between services of equal priority.

Transport : Label [0..1]
OBP Transport binding to be used valid values are HTTP, DNS and UDP.

Expires : DateTime [0..1]
Date and time at which the specified connection context will expire.

3.2.5. Bind

Binding a device is a two step protocol that begins with the Start Query followed by a
sequence of Ticket queries.

3.2.6. Message: BindRequest

The following parameters MAY occur in either a StartRequest or TicketRequest:

Encryption : Label [0..Many]
Encryption Algorithm that the client accepts. A Client MAY offer multiple
algorithms. If no algorithms are specified then support for the mandatory to
implement algorithm is assumed. Otherwise mandatory to implement algorithms
MUST be specified explicitly.

Authentication : Label [0..Many]
Authentication Algorithm that the client accepts. If no algorithms are specified
then support for the mandatory to implement algorithm is assumed. Otherwise
mandatory to implement algorithms MUST be specified explicitly.

3.2.7. Message: BindResponse

The following parameters MAY occur in either a StartResponse or TicketResponse:

 TOC

 TOC

 TOC

Cryptographic : Cryptographic [0..Many]
Cryptographic Parameters.

Service : Connection [0..Many]
A Connection describing an OBP service point

3.2.8. Message: OpenRequest

The OpenRequest Message is used to begin a device binding transaction. Depending on the
authentication requirements of the service the transaction may be completed in a single
query or require a further Ticket Query to complete.

If authentication is required, the mechanism to be used depends on the capabilities of the
device, the requirements of the broker and the existing relationship between the user and
the broker.

If the device supports some means of data entry, authentication MAY be achieved by
entering a passcode previously delivered out of band into the device.

The OpenRequest specifies the properties of the service (Account, Domain) and Device (ID,
URI, Name) that will remain constant throughout the period that the device binding is active
and parameters to be used for the mutual authentication protocol.

Account : String [0..1]
Account name of the user at the OBP service

Domain : Name [0..1]
Domain name of the OBP broker service

HavePasscode : Boolean [0..1] Default =False
If 'true', the user has entered a passcode value for use with passcode
authentication.

HaveDisplay : Boolean [0..1] Default =False
Specifies if the device is capable of displaying information to the user or not.

Challenge : Binary [0..1]
Client challenge value to be used in authentication challenge

DeviceID : URI [0..1]
DeviceURI : URI [0..1]
DeviceName : String [0..1]

3.2.9. Message: OpenResponse

An Open request MAY be accepted immediately or be held pending completion of an inband
or out-of-band authentication process.

The OpenResponse returns a ticket and a set of cryptographic connection parameters in
either case. If the

Challenge : Binary [0..1]
Challenge value to be used by the client to respond to the server authentication
challenge.

ChallengeResponse : Binary [0..1]
Server response to authentication challenge by the client

VerificationImage : ImageLink [0..Many]
Link to an image to be used in an image verification mechanism.

3.2.10. Message: TicketRequest

The TicketRequest message is used to (1) complete a binding request begun with an
OpenRequest and (2) to refresh ticket or connection parameters as necessary.

ChallengeResponse : Binary [0..1]
The response to a server authentication challenge.

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

3.2.11. Message: TicketResponse

The TicketResponse message returns cryptographic and/or connection context information to
a client.

3.2.12. Unbind

Requests that a previous device association be deleted.

3.2.13. Message: UnbindRequest

Since the ticket identifies the binding to be deleted, the only thing that the unbind message
need specify is that the device wishes to cancel the binding.

3.2.14. Message: UnbindResponse

Reports on the success of the unbinding operation.

If the server reports success, the client SHOULD delete the ticket and all information relating
to the binding.

A service MAY continue to accept a ticket after an unbind request has been granted but
MUST NOT accept such a ticket for a bind request.

4. Omnibroker Query Service

4.1. OBPQuery

4.2. Message: Request

Every query request contains the following common elements:

Index : Integer [0..1]
Index used to request a specific response when multiple responses are available.

4.3. Message: Response

Every Query Response contains the following common elements:

Status : Integer [1..1]
Status return code value

Index : Integer [0..1]
Index of the current response.

Count : Integer [0..1]
Number of responses available.

 TOC

 TOC

 TOC

 TOC

4.4. Structure: Identifier

Specifies an Internet service by means of a DNS address and either a DNS service prefix, an
IP port number or both. An Internet peer connection MAY be specified by additionally
specifying an account.

Name : Name [1..1]
The DNS name of the service to connect to.
Internationalized DNS names MUST be encoded in punycode encoding.

Account : Label [0..1]
Identifies the account to connect to in the case that a peer connection is to be
established.

Service : Name [0..1]
The DNS service prefix defined for use with DNS records that take a service prefix
including SRV.

Port : Integer [0..1]
IP Port number.
A service identifier MUST specify either a service or a port or both.

4.5. Structure: Connection

IPVersion : Integer [0..1]
Contains the IP version field. If absent, IPv4 is assumed.

IPProtocol : Integer [0..1]
Contains the IP protocol field. If absent, TCP is assumed.

IPAddress : Binary [0..1]
IP address in network byte order. This will normally be an IPv4 (32 bit) or IPv6 (128
bit) address.

IPPort : Integer [0..1]
IP port. 1-65535

TransportPolicy : String [0..1]
Transport security policy as specified in [TBS]

ProtocolPolicy : String [0..1]
Application security policy specification as specified by the application protocol.

Advice : Advice [0..1]
Additional information that a service MAY return to support a service connection
identification.

4.6. Structure: Advice

Additional information that a service MAY return to support a service connection
identification. For example, DNSSEC signatures chains, SAML assertions, DANE records,
Certificate Transparency proof chains, etc.

Type : Label [0..1]
The IANA MIME type of the content type

Data : Binary [0..1]
The advice data.

4.7. Structure: Service

Describes a service connection

Identifier : Identifier [0..Many]
Internet addresses to which the service is to be bound.

Connection : Connection [0..1]
Service connection parameters.

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

4.8. QueryConnect

Requests a connection context to connect to a specified Internet service or peer.

4.9. Message: QueryConnectRequest

Specifies the Internet service or peer that a connection is to be established to and the
acceptable security policies.

Identifier : Identifier [0..1]
Identifies the service or peer to which a connection is requested.

Policy : Label [0..Many]
Acceptable credential validation policy.

ProveIt : Boolean [0..1]
If set the broker SHOULD send advice to permit the client to validate the proposed
connection context.

4.10. Message: QueryConnectResponse

Returns one or more connection contexts in response to a QueryConnectRequest Message.

Connection : Connection [0..Many]
An ordered list of connection contexts with the preferred connection context listed
first.

Advice : Advice [0..1]
Proof information to support the proposed connection context.

Policy : Label [0..Many]
Policy under which the credentials have been verified.

4.11. Advertise

Advises a broker that one or more Internet services are being offered with particular
attributes.

4.12. Message: AdvertiseRequest

Specifies the connection(s) to be established.

The attributes required depend on the infrastructure(s) that the broker is capable of
registering the service with.

Service : Service [0..Many]
Describes a connection to be established.

4.13. Message: AdvertiseResponse

Specifies the connection(s)

Service : Service [0..Many]
Describes a connection that was established.

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

4.14. Validate

The Validate query requests validation of credentials presented to establish a connection. For
example credentials presented by a server in the process of setting up a TLS session.

4.15. Message: ValidateRequest

Specifies the credentials to be validated and the purpose for which they are to be used.

Service : Service [0..1]
Describes the service for which the credentials are presented for access.

Credential : Credential [0..1]
List of credentials for which validation is requested.

Policy : Label [0..Many]
Policy under which the credentials have been verified.

4.16. Message: ValidateResponse

Reports the status of the credential presented.

Policy : Label [0..Many]
Policy under which the credentials have been verified.

4.17. QueryCredentialPassword

The QueryCredentialPassword query is used to request a password credential that the user
has previously chosen to store at the broker.

4.18. Message: CredentialPasswordRequest

Requests a password for the specified account.

Account : String [0..1]
The account for which a password is requested.

4.19. Message: CredentialPasswordResponse

Returns a password for the specified account.

Password : String [0..1]
The requested password.

5. Transport Bindings

To achieve an optimal balance of efficiency and availability, three transport bindings are
defined:

Supports all forms of OBP transaction in all network environments.

Provides efficient support for a subset of OBP query transactions that is

 TOC

 TOC

 TOC

 TOC

 TOC

accessible in most network environments.

Provides efficient support for all OBP query transactions and is accessible in
most network environments.

Support for the HTTP over TLS binding is REQUIRED.

An OBP message consists of three parts:

Ticket [As necessary]
If specified, identifies the cryptographic key and algorithm parameters to be used
to secure the message payload.

Payload [Required]
If the ticket context does not specify use of an encryption algorithm, contains the
message data. Otherwise contains the message data encrypted under the
encryption algorithm and key specified in the ticket context.

Authenticator [Optional]
If the ticket context specifies use of a Message Authentication Code (MAC),
contains the MAC value calculated over the payload data using the authentication
key bound to the ticket.

Note that although each of the transport bindings defined in this specification entail the use
of a JSON encoding for the message data, this is not a necessary requirement for a transport
binding.

5.1. HTTP over TLS

OBP requests and responses are mapped to HTTP POST requests and responses
respectively. Java Script Object Notation (JSON) encoding is used to encode requests and
responses.

5.1.1. Message Encapsulation

Requests and responses are mapped to HTTP POST transactions. The content of the HTTP
message is the message payload. The Content-Type MUST be specified as application/json.
The Character set MUST be specified as UTF-8.

The Ticket and Authenticator are specified using the Integrity header as follows:

Integrity: <base64 (authenticator)> ; ticket=<base64 (ticket)>

5.1.2. Example

[To be generated from spec]

5.2. DNS Tunnel

The DNS Tunnel mode of operation makes use of DNS TXT resource record requests and
responses to tunnel OBP Query requests. Due to the constraints of this particular mode of
operation, use of this transport is in practice limited to supporting transactions that can be
expressed within 500 bytes. These include the QueryConnect and ValidateRequest
interactions.

5.2.1. Request

 TOC

 TOC

 TOC

 TOC

 TOC

Requests are mapped to DNS TXT queries. The request is mapped onto the DNS name
portion of the query by encoding the Ticket, Authenticator and JSON encoded Payload using
Base32 encoding and appending the result to the service prefix to create a DNS name as
follows:

<base32(payload)>.<base32(authenticator)>.<base32(ticket)>.Suffix

The payload MAY be split across multiple DNS labels at any point.

5.2.2. Response

Responses are mapped to DNS TXT records by encoding the Authenticator and JSON
encoded Payload using Base64 encoding and cocatenating the result with a periods as a
separator as follows:

<base32(payload)>.<base32(authenticator)>

5.2.3. Example

[To be generated from spec]

5.3. UDP

The UDP transport MAY be used for transactions where the request fits into a single UDP
packet and the response can be accomadated in 16 UDP packets. As with the Web Service
Binding, Java Script Object Notation (JSON) encoding is used to encode requests and
responses.

5.3.1. Request

The request consists of four message segments containing a Header, Ticket, Payload and
Authenticator. Each message segment begins with a two byte field that specified the length
of the following data segment in network byte order. The Payload is encoded in JSON
encoding and the remaining fields as binary data without additional encoding.

The header field for this version of the protocol (1.0) contains two bytes that specify the Major
and Minor version number of the transport protocol being 1 and 0 respectively. Future
versions of the transport protocol MAY specify additional data fields.

[TBS diagram]

5.3.2. Response

The response consists of a sequence of packets. Each packet consists of a header section
and a data section.

The header section consists of a two byte length field followed by two bytes that speciofy the
Major and Minor version number of the transport protocol (1 and 0), two bytes that specify
the frame number and the total number of frames and two bytes that specify the message
identifier.

[TBS diagram]

[Question, should the authenticator be over the whole message or should each packet have
its own authenticator?]

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

5.3.3. Example

[To be generated from spec]

6. Acknowledgements

[List of contributors]

7. Security Considerations

7.1. Denial of Service

7.2. Breach of Trust

7.3. Coercion

8. To do

The specification should define and use a JSON security object.

Formatting of the abstract data items needs to be improved

Need to specify the UDP transport binding

Should specify how each data item is represented in JSON format somewhere.
This is obvious for some of the data types but needs to be fully specified for
things like DateTime.

Run the code to produce proper examples.

Write a tool to transclude the example and other xml data into the document
source.

Fully document the API section.

9. For discussion.

Should the specification use the form urlencoded convention like OAUTH does?

How should responses be cryptographically linked to requests?

10. IANA Considerations

 TOC

 TOC

 TOC

 TOC

 TOC

[TBS list out all the code points that require an IANA registration]

11. Normative References

[RFC1035] Mockapetris, P., “Domain names - implementation and specification,” STD 13, RFC 1035, November 1987
(TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and T. Wright, “Transport Layer Security (TLS)
Extensions,” RFC 4366, April 2006 (TXT).

[X.509] International Telecommunication Union, “ITU-T Recommendation X.509 (11/2008): Information technology -
Open systems interconnection - The Directory: Public-key and attribute certificate frameworks,” ITU-T
Recommendation X.509, November 2008.

[X.680] International Telecommunication Union, “ITU-T Recommendation X.680 (11/2008): Information technology -
Abstract Syntax Notation One (ASN.1): Specification of basic notation,” ITU-T Recommendation X.680,
November 2008.

Appendix A. Example Data.

A.1. Ticket A

A.2. Ticket B

Author's Address

 Phillip Hallam-Baker
 Comodo Group Inc.

Email: philliph@comodo.com

http://tools.ietf.org/html/rfc1035
http://www.rfc-editor.org/rfc/rfc1035.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc4366
http://www.rfc-editor.org/rfc/rfc4366.txt
http://www.itu.int/itu-t/recommendations/rec.aspx?rec=X.509
http://www.itu.int/itu-t/recommendations/rec.aspx?rec=X.680
mailto:philliph@comodo.com

	OmniBroker Protocol draft-hallambaker-omnibroker-01
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Definitions
	1.1. Requirements Language
	2. Purpose
	2.1. A Curated Service
	2.2. Connection Broker
	2.2.1. Service Connection Broker
	2.2.2. Peer Connection Broker
	2.2.3. Connection Broker API
	2.3. Service Advertisement
	2.3.1. Connection Advertisement API
	2.4. Credential Validation Broker
	2.5. Authentication Gateway
	2.6. Credential Announcement
	3. Omnibroker Connection Maintenance Service
	3.1. Authentication
	3.1.1. Broker Authentication
	3.1.2. Device Authentication
	3.1.3. Illustrative example
	3.2. OBPConnection
	3.2.1. Message: Request
	3.2.2. Structure: Cryptographic
	3.2.3. Structure: ImageLink
	3.2.4. Structure: Connection
	3.2.5. Bind
	3.2.6. Message: BindRequest
	3.2.7. Message: BindResponse
	3.2.8. Message: OpenRequest
	3.2.9. Message: OpenResponse
	3.2.10. Message: TicketRequest
	3.2.11. Message: TicketResponse
	3.2.12. Unbind
	3.2.13. Message: UnbindRequest
	3.2.14. Message: UnbindResponse
	4. Omnibroker Query Service
	4.1. OBPQuery
	4.2. Message: Request
	4.3. Message: Response
	4.4. Structure: Identifier
	4.5. Structure: Connection
	4.6. Structure: Advice
	4.7. Structure: Service
	4.8. QueryConnect
	4.9. Message: QueryConnectRequest
	4.10. Message: QueryConnectResponse
	4.11. Advertise
	4.12. Message: AdvertiseRequest
	4.13. Message: AdvertiseResponse
	4.14. Validate
	4.15. Message: ValidateRequest
	4.16. Message: ValidateResponse
	4.17. QueryCredentialPassword
	4.18. Message: CredentialPasswordRequest
	4.19. Message: CredentialPasswordResponse
	5. Transport Bindings
	5.1. HTTP over TLS
	5.1.1. Message Encapsulation
	5.1.2. Example
	5.2. DNS Tunnel
	5.2.1. Request
	5.2.2. Response
	5.2.3. Example
	5.3. UDP
	5.3.1. Request
	5.3.2. Response
	5.3.3. Example
	6. Acknowledgements
	7. Security Considerations
	7.1. Denial of Service
	7.2. Breach of Trust
	7.3. Coercion
	8. To do
	9. For discussion.
	10. IANA Considerations
	11. Normative References
	Appendix A. Example Data.
	A.1. Ticket A
	A.2. Ticket B
	Author's Address

