
 TOC Internet Engineering Task Force P. Hallam-Baker

Internet-Draft Comodo Group Inc.

Intended status: Standards Track November 14, 2012

Expires: May 18, 2013

HTTP Integrity Header
draft-hallambaker-httpintegrity-02

Abstract

The HTTP Integrity header provides a means of specifying authentication data in HTTP
requests and responses. This document defines the HTTP integrity header and specifies its
use to authenticate and verify specific parts of an HTTP message. The means by which the
symmetric or asymmetric keys used to authenticate the messages is outside the scope of
this document.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on May 18, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
 1.1. Use in conjunction with TLS.
 1.2. Use in Web Services
 1.3. User Authentication and Authorization
2. Use
 2.1. Example of Use
 2.1.1. Client Request
 2.1.2. Server Response
 2.1.3. Design Notes for Key Exchange
3. Syntax and options
 3.1. Required Attributes
 3.1.1. Attribute id=[base64(value)] (required)
 3.1.2. Attribute value=[base64(value)] (required)
 3.1.3. Replay Attack Prevention Attributes

 TOC

 TOC

 3.1.3.1. Attribute nnonce=[base64(value)], rnonce=[base64(value)]
 3.1.3.2. Attribute count=[hex(stream),hex(count)]
 3.1.4. Scope Attributes
 3.1.4.1. Attribute content=[true|false]
 3.1.4.2. Attribute start=[true|false]
 3.1.4.3. Attribute header=[escaped(headers)]
 3.2. TLS Channel Binding Attributes
 3.2.1. Attribute tlsu=[value]
 3.2.2. Attribute tlss=[value]
 3.3. Preparing the Input to the Authentication Algorithm
4. Security Considerations
 4.1. Data outside the specified scope is not authenticated
 4.2. Truncated Hash Algorithms
 4.3. Randomness of Secret Keys and nonces
 4.4. Weak Ciphers
5. IANA Considerations
6. References
 6.1. Normative References
 6.2. Non Normative References
§ Author's Address

1. Introduction

The HTTP Integrity header provides a simple and effective means of authenticating
components of a HTTP message inband without disclosure of the secret(s) used
as the basis for authentication.

This approach has considerable advantages over the traditional approaches of using HTTP
Cookies containing an authentication secret, embedding authentication data
within the HTTP message content or relying on integrity checks in other protocol layers.

Used in conjunction with an appropriate means of key exchange, the Integrity header
provides an equivalent security functionality to the use of authentication cookies without the
vulnerabilities intrinsic to the use of static authentication secrets that are disclosed to the
verifying party en-clair to effect verification.

Use of a HTTP header to provide authentication information offers a simpler and more flexible
approach than including the authentication information in the message content using
schemes such as PKCS#7/CMS , XML Signature or JSON Signature
[TBS]. The chief technical challenge in such specifications being to reliably identify the exact
scope of the data being signed and the form of encoding. Moving the integrity check to a
HTTP header permits the scope of the signature to be defined as the scope of the HTTP
content body and the encoding to be the HTTP transport encoding.

Use of the HTTP Intergity header permits the same mutual authentication guarantees
provided by TLS client authentication without the need to provision client
certificates and with considerably less complexity.

For simplicity, the HTTP Integrity header is strictly limited to identifying a authentication
context, the HTTP transaction item(s) to be authenticated and the resulting authentication
value. The means of establishing the keys and algorithms that make up the authentication
context are outside the scope of this document.

In the typical case the authentication context identifier is a ticket (c.f. Kerberos)
that contains the account identifier, shared secret(s) and algorithm identifier required a Web
Service protocol or Web Browser Authentication protocol. This approach permits a stateless
server design in which the server does not store per-account keys.

1.1. Use in conjunction with TLS.

Transport Layer Security (TLS) provides transport layer enhancements to
protect the confidentiality and integrity of messages. Use of the HTTP Integrity header

[RFC2616]

[RFC2965]

[RFC5652] [RFC3275]

[RFC5246]

[RFC4120]

[RFC5246]

 TOC

 TOC

compliments the use of TLS security rather than replacing TLS.

While TLS provides for server and client authentication, these controls are implemented at
the transport layer and access to these features requires the traversal of a protocol layer
boundary that is frequently undesirable or inappropriate. In particular the API available to the
client may not expose the necessary functionality and many server deployments make use
of external cryptographic accelerator devices that cause the TLS session to be terminated on
an entirely different machine. Access control requires authorization in addition to
authentication. Since authorization is fundamentally an application layer concern, attempts
to carry authorization data at the transport layer tend to be rather unsatisfactory requiring
both the sender and receiver to cross the protocol layer.

1.2. Use in Web Services

The HTTP Integrity header was originally developed to simplify implemenatation of Web
Services. Using the SOAP [TBS] approach a Web Service message is encoded in XML [TBS],
wrapped in a SOAP envelope and a WS-Security [TBS] header with an XML Signature [TBS]
attached. The whole package is then attached to a HTTP message as a content payload.

This approach involves a considerable degree of complexity and in most cases achieves
nothing more than attaching an authentication value. Carrying the authentication value as a
HTTP header eliminates the need for the SOAP and WS-Security layers entirely. For example,
the following example is a HTTP request in the Omnibroker connection protocol [TBS].

Post / HTTP/1.1
Host: example.com
Cache-Control: no-store
Content-Type: Application/json;charset=UTF-8
Content-Length: 78
Integrity: content=true;
 value=cjkMkfnnYP8JYWZAbRLvtpqImmOK3rsrOT1XcvAgHDk=;
 id=TUMnorO0SjHHS7D2uFcGlRYJ0Hd3eibwe0ogptoNMQuCYmCHfHAJcJlyvi
 j8WoXDglTSOkctnmoBzl8W0NLSlcgSyZcmsAyoWs8y1Rn2ZlO2WBgoWrFIOqPa4
 oB29dgs/ei6ieINZtmvXNCm2NUkWA==

{
"TicketRequest": {
"ChallengeResponse": "TctLOG74cwpm26YNpEibcQ=="}}

A single HTTP message MAY have multiple Integrity headers. This facilitates support for multi-
party transactions in which A submits a transaction to B who countersigns it and passes it to
C who is required to chek that she has proof of agreement by both A and B.

Use of the Integrity header permits the developer to isolate integrity and authentication
checks to a single point of control, as is advised by best security practice. The security
monitor examines a HTTP message, verifies that the required integrity data is present and
correct and only passes the payload on for processing by the Web Service itself if and only if
the verification checks have been passed.

1.3. User Authentication and Authorization

The term 'user authentication' is frequently applied indiscriminately to three separate
concerns; credential management, session management and session continuation.

Credential management describes the means by which credentials are created,
issued and revoked.

Session management describes the means by which a party demonstrates
holdership of a credential to establish an authentication session and the means
by which that authentication session may be terminated.

 TOC

 TOC

 TOC

Session continuation describes the means by which a party demonstrates that a
particular transaction is taking place within the context of a particular
authentication session.

The HTTP Integrity header is designed to support only Session Continuation. While a session
continuation mechanism is not in itself a solution to the problem of user authentication, the
provision of a robust session continuation mechanism that does not depend on a bearer
token addresses the most challenging problem facing the designers of SAML, OpenID and
OAUTH.

2. Use

The Integrity header has two required attributes, the id attribute which identifies an
authentication context and the value attribute which authenticates the HTTP message in
which it is presented within the specified authentication context and optional attributes
specified.

The authentication context comprises all the information used to authenticate and validate
HTTP messages. This includes the choice of cryptographic algorithms, the keys and any
protocol options such as the TLS channel binding or protections against replay attack.

Confining the choice of cryptographic algorithm, protocol etc. to the authentication context
eliminates the need for identifiers to specify these attributes in the Integrity header. Note
that while the Integrity header primarily designed for use with a symmetric key authentication
algorithm (MAC), it MAY be employed to support use of an public key based scheme such as
a digital signature.

The means by which the authentication context is established are outside the scope of this
document. In the simplest approach, the authentication context might be passed as in-band
plaintext in a prior HTTP exchange. In a more elaborate scheme the authentication context
might be established using an authentication framework such as Kerberos, SAML or OpenID.

The authentication identifier MAY be of any length up to the maximum permitted by the client
and server. This permits an authentication mechanism to avoid the need to maintain server
side per-session state by encoding the server authentication context as encrypted data in
the authentication identifier. Alternatively, the same approach might be used to avoid the
need to maintain client side state.

The optional attributes are used to provide protection against replay attacks, specify the
scope of the authentication check and protect against TLS man in the middle attacks.

2.1. Example of Use

[The following example is for illustrative purposes only to aid discussion of the draft and
should not be part of a final document.]

The Plaintext Authentication exchange supports message authentication using a MAC and a
key exchanged as plaintext in-band. The communication pattern consists of an initial
exchange in which the server returns the credential and authentication context to the client
followed by an indeterminate number of messages authenticated under that context.

2.1.1. Client Request

By definition, the protocol exchange is initiated by a client request. The client advises the
server that it supports the use of the scheme by means of the Support header (in an actual
protocol mechanism, this should probably be some other header but none appears to be a
precise match).

Get / HTTP/1.1
Host: example.com

 TOC

 TOC

 TOC

Host: example.com
Support: Plaintext

2.1.2. Server Response

The server responds with the Authentication Context identifier, the key and the algorithm to
use:

HTTP/1.1 201 OK
Plaintext:
 id=TUMnorO0SjHHS7D2uFcGlRYJ0Hd3eibwe0ogptoNMQuCYmCHfHAJcJlyvi
 j8WoXDglTSOkctnmoBzl8W0NLSlcgSyZcmsAyoWs8y1Rn2ZlO2WBgoWrFIOqPa4
 oB29dgs/ei6ieINZtmvXNCm2NUkWA==
 key=7eb219188339135ba51e8715f3900bfb974995e145d6e490e4addbbdb26f4bb4
 alg=HMAC-SHA256

From this point on the client and server protect their messages using the Integrity header as
shown in the previous example.

2.1.3. Design Notes for Key Exchange

While the Plaintext mechanism described above offers better security than the use of HTTP
cookes as bearer tokens, the construction is very much sub optimal.

In particular a full key exchange binding should describe the precise manner in which the
scope is and the replay attack protection attributes are fed into the digest algorithm. It is
also desirable for an authentication mechanism to use separate keys for different purposes,
in particular use of separate keys for requests and responses.

As specified, the mechanism only provides protection against passive eavesdropping attacks
if the Plaintext exchange is protected by an adequate confidentiality protection. For example
the use of TLS. A stronger protection MAY be established by passing the key value through a
Diffie Hellman key exchange.

In the Diffie Hellman approach, the key establishment would have the following pattern:

1. Client->Server
Initiate conversation, signal support for DH key exchange option.

2. Server->Client
Pass initial Authentication Context identifier and server Diffie Hellman key
parameters.

3. Client->Server
Pass client Diffie Hellman parameters, authenticate message under established
key.

4. Server->Client
Optionally specify a new Authentication Context identifier to reflect the fact that
the initial aunthentication context has been updated to include the client
information.

Note that even though the key exchange is only completed in the third message, all
messages following and including the third message are protected.

A separate draft describing a lightweight exchange to replace the use of bearer tokens is
planned. Such a draft should probably support both the plaintext and the Diffie Hellman
approaches to ensure that there is no remaining excuse for http authentication cookie
attrocities.

 TOC

 TOC

 TOC

 TOC

 TOC

3. Syntax and options

The Integrity header has the tag 'Integrity' and takes a sequence of attribute values as
follows:

[Insert ABNF here]

Four classes of attribute are currently specified:

Required
Attributes that MUST always be specified. These are the Authentication Context
Identifier attribute 'id' and the Authentication Value attribute 'value'.

Replay Attack Prevention
Attributes used to implement replay prevention mechanisms.

Scope Attributes
Attributes that specify the scope over which the authentication value is calculated

TLS Channel Binding Attributes
Attributes used to protect against TLS channel rebinding and/or TLS channel
stripping attacks.

3.1. Required Attributes

3.1.1. Attribute id=[base64(value)] (required)

The ticket attribute identifies the authentication context under which the authentication value
has been generated. The attribute is an opaque sequence of octets in base64 encoding.

3.1.2. Attribute value=[base64(value)] (required)

The value attribute specifies the value resulting from applying the authentication context and
nonce (if present) to the specified scope.

3.1.3. Replay Attack Prevention Attributes

Three means of protection against replay attack are supported:

Challenge-Response
Challenge response mechanisms are supported by the nnonce and cnnonce
attributes. The challenger specifies a new nonce using the nnonce attribute which
the responder MUST use to calculate the authentication value. In the case that the
nonce value to be used cannot be determined by the context, an authentication
protocol MAY require the reponder to return the value of the challenge nonce
using the rnonce attribute.
This approach provides a very high degree of protection but is limited to sequential
protocols in which there is only one exchange in progress at the same time.

Counter
Counter based mechanisms are supported by the count attribute. The value of a
counter MUST increase for successive transactions within the same transaction
stream. Concurrency MAY be supported by specifying multiple streams but this
requires a separate counter state to be maintained for each transaction stream.

Time
Time based approaches are supported by the time attribute. If the value of the
time attribute falls within the permitted acceptance window, the message MAY be
accepted. Otherwise the message MUST be rejected.
Using a time based approach avoids the need to maintain state at either the
client or server. The principal disadvantage of this approach being that the
mechanism only protects against a replay attack within a specific time.

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

Another disadvantage to the time based approach is that it relies on the sender
and receiver maintaining a tollerably close time synchronization over the duration
of the transaction and for the latency introduced by the communication path being
tollerably small.

An authentication protocol MAY employ multiple replay attack protection schemes within the
same exchange. For example a time based approach MAY be employed to perform an initial
check before retreiving the state information needed to validate a Counter or Challenge
Response based mechanism.

3.1.3.1. Attribute nnonce=[base64(value)], rnonce=[base64(value)]

The nnonce and rnonce attributes specify a nonce value to be used in combination with a
challenge-response mechanism defined by the specified authentication context. The nnonce
attribute is used to specify a new nonce value, the rnonce attribute is used to specify a
returned nonce value.

3.1.3.2. Attribute count=[hex(stream),hex(count)]

Specifies a stream identifier and a count value that MUST increase monotonically for
successive messages with the same identifier. The stream and count values are specified as
hexadecimal encoded positive integers.

3.1.3.2.1. Attribute time=[value]

Specifies a time value to be used in combination with the specified authentication context.
The format of the time value is determined by the authentication context.

3.1.4. Scope Attributes

Scope attributes specify which parts of the message are authenticated.

Separating the scope attribute from the authentication context permits the scope of the
authentication check to be declared to intermediaries and allows the same authentication
context to be used to authenticate different portions of the HTTP message separately.

The scope is specified by the start, header and content attributes. The order in which the
scope attributes are specified is immaterial. The scope is always constructed in the same
order as the elements occur in a HTTP message, i.e. start, headers and content.

3.1.4.1. Attribute content=[true|false]

If set true, the specified scope includes the message body. The content transfer encoding
(e.g. chunked) is ignored for the purpose of determining the content.

3.1.4.2. Attribute start=[true|false]

If set true, the specified scope includes the message start line. This being the request Line in
the case of a request and the status line in the case of a response.

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

3.1.4.3. Attribute header=[escaped(headers)]

Specifies HTTP headers to be included in the specified scope following the escaped encoding
defined in DKIM.

3.2. TLS Channel Binding Attributes

TLS channel binding is used to ensure that the HTTP session is protected by TLS and to
prevent man in the middle attacks against TLS.

3.2.1. Attribute tlsu=[value]

Specifies the TLS unique channel binding as specified in .

3.2.2. Attribute tlss=[value]

Specifies the TLS server end point channel binding as specified in .

3.3. Preparing the Input to the Authentication Algorithm

[Should specify how the content scope is assembles and how the replay attack attributes are
included within it.]

4. Security Considerations

4.1. Data outside the specified scope is not authenticated

The integrity check only extends to the portions of the message that are within the specified
scope.

4.2. Truncated Hash Algorithms

If the authentication context permits the use of a truncated MAC, it MUST specify the
minimum length of the MAC after truncation and verifiers MUST reject MAC values shorter
than that length as invalid.

4.3. Randomness of Secret Keys and nonces

The security of any cryptographic protocol relies on the difficulty of guessing secret keys.
Secret keys and nonces SHOULD be generated using a mechanism that ensures that the
range of possible values is sufficiently large to prevent 'brute force' guessing attacks. For
more information see .

[RFC5929]

[RFC5929]

[RFC4086]

 TOC

 TOC

 TOC

 TOC

 TOC

 TOC

4.4. Weak Ciphers

Specification of the cryptographic algorithms used to construct the Integrity header value is
implicit in the authentication context identifier and thus outside the scope of this
specification.

5. IANA Considerations

Add the 'Integrity' header to the list of provisional HTTP headers.

[Upgrade if/when this becomes an RFC]

Create a registry for Integrity Header attributes. The initial contents of the registry to be:

[Stuff from rest of document.]

6. References

6.1. Normative References

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext
Transfer Protocol -- HTTP/1.1,” RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).

[RFC2965] Kristol, D. and L. Montulli, “HTTP State Management Mechanism,” RFC 2965, October 2000 (TXT, HTML,
XML).

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106, RFC 4086,
June 2005 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5929] Altman, J., Williams, N., and L. Zhu, “Channel Bindings for TLS,” RFC 5929, July 2010 (TXT).

6.2. Non Normative References

[RFC3275] Eastlake, D., Reagle, J., and D. Solo, “(Extensible Markup Language) XML-Signature Syntax and
Processing,” RFC 3275, March 2002 (TXT).

[RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, “The Kerberos Network Authentication Service (V5),”
RFC 4120, July 2005 (TXT).

[RFC5652] Housley, R., “Cryptographic Message Syntax (CMS),” STD 70, RFC 5652, September 2009 (TXT).

Author's Address

 Phillip Hallam-Baker
 Comodo Group Inc.

Email: philliph@comodo.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:dmk@bell-labs.com
mailto:lou@montulli.org
http://tools.ietf.org/html/rfc2965
http://www.rfc-editor.org/rfc/rfc2965.txt
http://xml.resource.org/public/rfc/html/rfc2965.html
http://xml.resource.org/public/rfc/xml/rfc2965.xml
http://tools.ietf.org/html/rfc4086
http://www.rfc-editor.org/rfc/rfc4086.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5929
http://www.rfc-editor.org/rfc/rfc5929.txt
http://tools.ietf.org/html/rfc3275
http://www.rfc-editor.org/rfc/rfc3275.txt
http://tools.ietf.org/html/rfc4120
http://www.rfc-editor.org/rfc/rfc4120.txt
http://tools.ietf.org/html/rfc5652
http://www.rfc-editor.org/rfc/rfc5652.txt
mailto:philliph@comodo.com

	HTTP Integrity Header draft-hallambaker-httpintegrity-02
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Use in conjunction with TLS.
	1.2. Use in Web Services
	1.3. User Authentication and Authorization
	2. Use
	2.1. Example of Use
	2.1.1. Client Request
	2.1.2. Server Response
	2.1.3. Design Notes for Key Exchange
	3. Syntax and options
	3.1. Required Attributes
	3.1.1. Attribute id=[base64(value)] (required)
	3.1.2. Attribute value=[base64(value)] (required)
	3.1.3. Replay Attack Prevention Attributes
	3.1.3.1. Attribute nnonce=[base64(value)], rnonce=[base64(value)]
	3.1.3.2. Attribute count=[hex(stream),hex(count)]
	3.1.3.2.1. Attribute time=[value]
	3.1.4. Scope Attributes
	3.1.4.1. Attribute content=[true|false]
	3.1.4.2. Attribute start=[true|false]
	3.1.4.3. Attribute header=[escaped(headers)]
	3.2. TLS Channel Binding Attributes
	3.2.1. Attribute tlsu=[value]
	3.2.2. Attribute tlss=[value]
	3.3. Preparing the Input to the Authentication Algorithm
	4. Security Considerations
	4.1. Data outside the specified scope is not authenticated
	4.2. Truncated Hash Algorithms
	4.3. Randomness of Secret Keys and nonces
	4.4. Weak Ciphers
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Non Normative References
	Author's Address

