CCAMP Working Group Alberto Bellato (Alcatel) Category: Internet Draft Michele Fontana (Alcatel) Expiration Date: May 2002 Germano Gasparini (Alcatel) Gert Grammel (Alcatel) Jim Jones (Alcatel) Dimitri Papadimitriou (Alcatel) November 2001 Traffic Engineering Routing Extensions to OSPF and ISIS for GMPLS Control of G.709 Optical Transport Networks draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026 [1]. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet- Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Conventions used in this document: The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [2]. D.Papadimitriou (Editor) et al. û Expires May 2002 1 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 Abstract This document proposes the traffic engineering extensions to OSPF and IS-IS IGP routing protocols to support dynamic Label Switched Path (LSP) processing when using Generalized MPLS signalling as defined in [GMPLS-SIG] and [GMPLS-G709] control for G.709 Optical Transport Networks (OTN). 1. Introduction A framework for controlling G.709 Optical Transport Networks (OTN) is described in [G709-FRM]. This document is based on TE extensions defined in [OSPF-TE] and [ISIS-TE] which have been extended for GMPLS in [GMPLS-OSPF-TE] and [GMPLS-ISIS-TE]. It also refers to the notion of Forwarding Adjacency (FA) defined in [MPLS-HIER] and supports Link Bundling as defined in [MPLS-BDL]. Routing information is transported by OSPF in Link State Advertisements (LSAs) grouped in OSPF PDUs, and is transported by IS-IS in Link State PDUs (LSPs). A set of data bearing link between two adjacent LSRs is defined as a TE link (and identified by a link ID). GMPLS integrates the TE-link notion by defining the following concepts: - links that are not Packet Switch Capable (PSC) may have TE properties; however, a Routing Adjacency (RA) cannot be brought up directly on such links - LSP can be advertised as a point-to-point TE-links in IGP routing protocol, i.e. as a Forwarding Adjacency (FA); thus, an advertised TE-link need no longer be between two direct neighbors (Forwarding Adjacencies (FA) are more extensively considered in [MPLS-HIER]). - several links having the same Traffic Engineering (TE) capabilities (i.e. same TE metric, same set of Resource Class and same Link Multiplexing capability) can be advertised as a single TE-link, such TE-links are referred to as link bundles whose individual link (or data bearing links) are referred to as component links; so there is no longer a one-to-one association between a regular routing adjacency and a TE-link. In [G709-FRM], we describe the G.709 hierarchy as composed by a digital hierarchy and an optical transport hierarchy. The first one includes the Digital Path Layer (i.e. the ODUk layers) while the OTH one includes the Optical Channel Layer (i.e. the OCh layer). Consequently we can define for of each of these hierarchies a separated set of specific TLV. We refer to the first set as LD (Link Digital) and to the second as LO (Link Optical). Moreover for each of these sets, two specific sub-sets of information must be transported by an extended routing protocol to enable Traffic-Engineering of the G.709 LSPs (ODUk and OCh LSPs) in OTN. First, a set of information describing the TE-link capabilities (i.e. the OTM-n.m/OTM-nr.m/OTM-0.m interface capabilities) independently of their usage must be defined. Then a set of D.Papadimitriou (Editor) et al. û Expires May 2002 2 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 information describing the resources utilization (also referred to as ODUk or OCh component allocation) used on each TE-link, i.e. the operational status of a link. This will reduce the amount of static information (changes are less frequent when considering TE-link capabilities) flooded throughout the routing domain while keeping the more dynamic one (changes are more frequent when considering TE- link component allocation) confined to the layer to which this information is relevant. Therefore, for each of these sets, new TLVs are defined: 1. G.709 TE-link capabilities: - LD-MP TLV : Link ODUk Mapping Capability TLV - LD-MT TLV : Link ODUk Multiplexing Capability TLV - LD-VC TLV : Link ODUk Virtual Concatenation Capability TLV - LO-MT TLV : Link OCh Multiplexing Capability TLV 2. G.709 TE-link allocation: - LD-CA TLV : Link ODUk Component Allocation TLV - LO-CA TLV : Link OCh Component Allocation TLV It results from the TE-link definition (see [MPLS-BDL]) that each component link of a bundled link must have the same G.709 multiplexing and concatenation capabilities as defined hereafter. The corresponding TLVs (LD-MT, LO-MT and LD-VC) are specified once, and apply to each component link. No per component information or identification is required for these TLVs. 2. TE-Link Capabilities This section detail the TE-Link capabilities defined for the Digital Path (section 2.1) and the Optical Channel layer (section 2.2). 2.1 Digital Path Layer At the digital path layer (i.e. the ODUk layers) the TE-link capability TLVs includes: - LD-MP TLV : Link ODUk Mapping Capability TLV - LD-MT TLV : Link ODUk Multiplexing Capability TLV - LD-VC TLV : Link ODUk Virtual Concatenation Capability TLV 2.1.1 Link ODUk Mapping Capability TLV (LD-MP TLV) The Link ODUk Mapping TLV (LD-MP TLV) represents the maximum number ODUk (k = 1, 2, 3) that can be allocated on a given TE link. The ODUk mapping capability simply translates the TE-link capacity in terms of the maximum number of supported ODUk signal components. D.Papadimitriou (Editor) et al. û Expires May 2002 3 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 In IS-IS, the LD-MP TLV is defined as a sub-TLV of the Extended IS Reachability TLV whose Type is TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose Type is TBD. OSPF Link ODUk Mapping Capability TLV (LD-MP TLV) coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum MP ODU1 | Maximum MP ODU2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum MP ODU3 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ISIS Link ODUk Component Allocation TLV coding (Sub-TLV Type TBD and Length = 8): 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum MP ODU1 | Maximum MP ODU2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum MP ODU3 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The Maximum MP ODUk field indicates the number of ODUk (k = 1, 2, 3) that can be mapped into the corresponding OTUk. 2.1.2 Link ODUk Multiplexing Capability TLV (LD-MT TLV) Link ODUk Multiplexing Capability TLV (LD-MT TLV) describes the ODUk multiplexing structure available on a given link. This TLV indicates the signals that can be potentially allocated in an ODUk multiplex. At this layer, ODUk (flexible) multiplexing as described in [GMPLS- G709], two levels of ODUk multiplexing are defined: - ODU1 multiplexing: four ODU1 are multiplexed into one OPU2 which is mapped into one ODU2 or sixteen ODU1 are multiplexed into one OPU3 which is mapped into one ODU3 - ODU2 multiplexing: four ODU2 are multiplexed into one OPU3 which is mapped into one ODU3 More precisely, ODUj into ODUk multiplexing (k > j) is defined when an ODUj is multiplexed into an ODUk Tributary Unit Group (i.e. an ODTUG constituted by ODU tributary slots) which is mapped into an OPUk. The resulting OPUk is mapped into an ODUk and the ODUk is mapped into an OTUk. The OTUk is mapped into an OCh/OChr which is then modulated onto an OCC/OCCr. D.Papadimitriou (Editor) et al. û Expires May 2002 4 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 In IS-IS, the LD-MT TLV is defined as a sub-TLV of the Extended IS Reachability TLV with type TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose type is TBD. OSPF Link ODUk Multiplexing Capability TLV (LD-MT TLV) coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|2|3|4|5|6|7|8| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ISIS ODUk Multiplexing Capability TLV coding (Sub-TLV Type TBD and Length = 4): 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|2|3|4|5|6|7|8| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The following values are currently defined: - Bit 1 is set to 1: support of ODU1 multiplexing into ODU2. - Bit 2 is set to 1: support of ODU1 multiplexing into ODU3 - Bit 3 is set to 0 and reserved for future use - Bit 4 is set to 1: support of ODU2 multiplexing into ODU3 - Bit 5 to 8 are set to 0 and reserved for future use When Bit 1 to 8 are set to zero (in addition to the reserved field), ODUk multiplexing is not supported on the link: the corresponding ODUk signal is unstructured. The support of ODU1 into ODU2 into ODU3 multiplexing is defined by setting Bit 1 and 4 to one. 2.1.2 Link ODUk Virtual Concatenation Capability TLV (LD-VC TLV) ODUk Inverse multiplexing is currently under specification at the ITU-T. Inverse multiplexing is implemented by means of virtual concatenation of two or more than two ODUk signals. The resulting signal is defined as ODUk-Xv. The ODUk-Xv signal can then transport a non-OTN client signal, for instance, an ODU2-4v may transport an STM-256 client signal. The characteristic information of a virtual concatenated ODUk (ODUk- Xv) layer network is transported via a set of X ODUk LSP, each LSP having its own transfer delay. The egress G709-LSR terminating the ODUk-Xv LSP has to compensate this differential delay in order to provide a contiguous payload at the output. In IS-IS, the Link ODUk Concatenation Capability TLV (LD-VC TLV) is defined as a sub-TLV of the Extended IS Reachability TLV whose Type D.Papadimitriou (Editor) et al. û Expires May 2002 5 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 is TBD. In OSPF, this TLV is a sub-TLV of the Link TLV, with type TBD. OSPF Link ODUk Concatenation Capability TLV (LD-VC TLV) coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 8 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Max VC ODU1 | Max VC ODU2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Max VC ODU3 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where Max VC means the Maximum number of virtually concatenated ODUk (k = 1, 2, 3) ISIS Link ODUk Concatenation Capability TLV coding (Sub-TLV Type TBD and Length = 8): 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Max VC ODU1 | Max VC ODU3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Max VC ODU3 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where Max VC is the Maximum number of virtually concatenated ODUk (k = 1, 2, 3) The Max VC ODUk field (16-bit) indicates the maximum number of ODUk (k = 1, 2, 3) that can be virtually concatenated on the corresponding link. When Max VC ODUk = 0, it means that ODUk virtual multiplexing is not supported for the corresponding k index. Notice that we assume here that levels of virtually concatenated signals are only discrete and given by the 2 x 2^N formula (N > 1) other levels usage are left for further study. 2.2 Optical Channel Layer At the Optical Channel layer (i.e. the OCh layer) the TE-link capability TLV includes only: - LO-MT TLV : Link OCh Multiplexing Capability TLV 2.2.1 Link OCh Multiplexing Capability TLV (LO-MT TLV) As described in [G709-FRM], with reduced stack functionality: up to n (n >= 1) OCCr are multiplexed into an OCG-nr.m using wavelength division multiplexing. The OCCr tributary slots of the OCG-nr.m can D.Papadimitriou (Editor) et al. û Expires May 2002 6 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 be of different size. The number of OCCr that can be multiplexed into an OCG-nr.m is bounded by the following formula: 1 =< i + j + k =< n where i (respectively, k and j) represents the number of OChr carrying an OTU1 (respectively, OTU2 and OTU3). The OCG-nr.m is transported via the OTM-nr.m. With full stack functionality: up to n (n >= 1) OCC are multiplexed into an OCG-n.m using wavelength division multiplexing. The OCC tributary slots of the OCG-n.m can be of different size. The number of OCC that can be multiplexed into an OCG-n.m is bounded by the following formula: 1 =< i + j + k =< n where i (respectively, k and j) represents the number of OCh carrying an OTU1 (respectively, OTU2 and OTU3). The OCG-n.m is transported via the OTM-n.m. In IS-IS, the LO-MT TLV is defined as a sub-TLV of the Extended IS Reachability TLV with type TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose type is TBD. OSPF Link OCh Multiplexing Capability TLV (LO-MT TLV) coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 8 (16) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | R | Reserved | i | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | j | k | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved | Extended i | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Extended j | Extended k | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ISIS Link OCh Multiplexing Capability TLV coding (Sub-TLV Type TBD and Length = 8 (or 16)): 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | R | Reserved | i | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | j | k | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved | Extended i | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Extended j | Extended k | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The R field indicates the OTM-x.m (x = rn or n) interfaces functionality support: - Value 0x00: each component link (OTM-n.m interface) belonging to the same link bundle can only have a full functionality support D.Papadimitriou (Editor) et al. û Expires May 2002 7 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 - Value 0x01: each component link (OTM-nr.m interface) belonging to the same link bundle can only have a reduced functionality support - Value 0x10: each component link (OTM-nr.m or OTM-n.m interface) belonging to the same link bundle can only have a reduced functionality or a full functionality support. This flag is used to indicate the extended form of the LO-MC TLV. In this case three additional fields representing the number of OCh having a non- associated overhead (naOH), each of these fields represents the number of OCh carrying an OTU1 (respectively, OTU2 and OTU3). - Value 0x11: each component link (OTM-n.m interface) belonging to the same link bundle has a vendor-specific implementation of the naOH transported through a specific supervisory channel The Extended i, j and k fields are therefore defined as follows: - Value i (16 bits): represents the number represents the number of OCh (or OChr) carrying an OTU1 within a given TE-Link - Value j (16 bits): represents the number represents the number of OCh (or OChr) carrying an OTU2 within a given TE-Link - Value k (16 bits): represents the number represents the number of OCh (or OChr) carrying an OTU3 within a given TE-Link 3. TE-Link Component Allocation To detail the actual status of a TE-link (representing either a single component link or a bundled link), the following Component Allocation TLVs are defined: - LD-CA TLV : Link ODUk Component Allocation TLV - LO-CA TLV : Link OCh Component Allocation TLV 3.1 Digital Path Layer The Link ODUk Component Allocation TLV (LD-CA TLV) represents the number of ODUk actually allocated for a TE link expressed in term of unallocated ODUk. Therefore, when advertised for the first time, the Number of Unallocated ODUk represents the Maximum Number of ODUk supported on a given TE link. The LD-CA TLV is defined in IS-IS as a sub-TLV of the Extended IS Reachability TLV whose Type is TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose Type is TBD. OSPF Link ODUk Component Allocation TLV (LD-CA TLV) coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ D.Papadimitriou (Editor) et al. û Expires May 2002 8 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 |V| Number Unallocated ODU3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where the V bit is reserved for future use (by default V = 0) ISIS Link ODUk Component Allocation TLV coding (Sub-TLV Type TBD and Length = 12): 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where the V bit is reserved for future use (by default V = 0) 3.2 Optical Channel Layer The Link OCh Component Allocation TLV (LO-CA TLV) represents the number of OCh actually allocated for a given TE link including one (single link) or more than one (bundled link) OTM-nr.m or OTM-n.m interface. This allocation is expressed in terms of the number of unallocated OCh1, OCh2 and OCh3. Therefore, when advertised for the first time, the Number of Unallocated OCh1, OCh2 and OCh3 represents the Maximum Number of optical channels supported on a given TE link. The LO-CA TLV is defined in IS-IS as a sub-TLV of the Extended IS Reachability TLV whose Type is TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose Type is TBD. OSPF Link OCh Component Allocation TLV (LO-CA TLV) coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The R bit indicates a reduced functionality stack (R = 1). So that when R = 0, the interface signal refers to an OTM-n.m. The value of this bit is irrelevant in other situations. D.Papadimitriou (Editor) et al. û Expires May 2002 9 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 ISIS Link OCh Component Allocation TLV coding (Sub-TLV Type TBD and Length = 12): 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The R bit indicates a reduced functionality stack (R = 1). So that when R = 0, the interface signal refers to an OTM-n.m. The value of this bit is irrelevant in other situations. 4. Security Considerations Security considerations are not discussed in this document. 5. References 1. [GMPLS-ARCH] E. Mannie et al., æGeneralized Multi-Protocol Label Switching (GMPLS) ArchitectureÆ, Internet Draft, Work in progress, draft-ietf-ccamp-gmpls-architecture-01.txt, July 2001. 2. [GMPLS-G709] A. Bellato et al., æGeneralized MPLS Signalling Extensions for G.709 Optical Transport NetworksÆ, Internet Draft, Work in progress, draft-fontana-ccamp-gmpls-g709-01.txt, November 2001. 3. [GMPLS-ISIS-TE] K. Kompella et al., æIS-IS Extensions in Support of Generalized MPLS,Æ Internet Draft, Work in progress, draft-ietf- isis-gmpls-extensions-01.txt, September 2001. 4. [GMPLS-LDP] P. Ashwood-Smith et al., æGeneralized MPLS Signaling - CR-LDP ExtensionsÆ, Internet Draft, Work in progress, draft-ietf- mpls-generalized-cr-ldp-04.txt, May 2001. 5. [GMPLS-OSPF-TE] K. Kompella et al., æOSPF Extensions in Support of Generalized MPLS,Æ Internet Draft, Work in progress, draft-ietf- ccamp-ospf-gmpls-extensions-00.txt, September 2001. 6. [GMPLS-RSVP] P. Ashwood-Smith, L. Berger et al., æGeneralized MPLS Signaling - RSVP-TE ExtensionsÆ, Internet Draft, Work in progress, draft-ietf-mpls-generalized-rsvp-te-05.txt, October 2001. 7. [GMPLS-SIG] P. Ashwood-Smith, L. Berger et al., æGeneralized MPLS - Signaling Functional DescriptionÆ, Internet Draft, Work in progress, draft-ietf-mpls-generalized-signaling-06.txt, October 2001. D.Papadimitriou (Editor) et al. û Expires May 2002 10 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 8. [GMPLS-SSS] E. Mannie et al., æGeneralized MPLS û SDH/Sonet SpecificsÆ, Internet Draft, Work in progress, draft-ietf-ccamp-gmpls- sonet-sdh-02.txt, October 2001. 9. [G709-FRM] A. Bellato et al., æG.709 Optical Transport Networks GMPLS Control FrameworkÆ, Internet Draft, Work in progress, draft- bellato-ccamp-g709-framework-01.txt, November 2001. 10. [ITUT-G707] æNetwork node interface for the synchronous digital hierarchy (SDH)Æ, ITU-T Recommendation, April 2000. 11. [ITUT-G709] æInterface for the Optical Transport Network (OTN)Æ, ITU-T Recommendation, February 2001. 12. [ITUT-G872] æArchitecture of Optical Transport NetworkÆ, ITU-T draft version, February 2001. 13. [ISIS-TE] T. Li et al.,æIS-IS Extensions for Traffic EngineeringÆ, draft-ietf-isis-traffic-04.txt, Internet Draft, Work in Progress, August 2001. 14. [MPLS-BDL] K. Kompella et al., æLink Bundling in MPLS Traffic Engineering,Æ Internet Draft, draft-kompella-mpls-bundle-05.txt, March 2001. 14. [OSPF-TE] D. Katz et al., "Traffic Engineering Extensions to OSPF", draft-katz-yeung-ospf-traffic-06.txt, Internet Draft, Work in progress, September 2001. 15. [RFC-2370] R. Coltun, RFC 2370, "The OSPF Opaque LSA Option", July 1998. 6. Acknowledgments The authors would like to be thank Bernard Sales, Emmanuel Desmet, Jean-Loup Ferrant, Mathieu Garnot and Massimo Canali for their constructive comments and inputs. This draft incorporates concepts and ideas developed draft-mannie- mpls-sdh-ospf-isis-00.txt. 7. Author's Addresses Michele Fontana Alcatel Via Trento 30, I-20059 Vimercate, Italy Phone: +39 039 686-7053 Email: michele.fontana@netit.alcatel.it Germano Gasparini Alcatel Via Trento 30, D.Papadimitriou (Editor) et al. û Expires May 2002 11 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 I-20059 Vimercate, Italy Phone: +39 039 686-7670 Email: germano.gasparini@netit.alcatel.it Alberto Bellato Alcatel Via Trento 30, I-20059 Vimercate, Italy Phone: +39 039 686-7215 Email: alberto.bellato@netit.alcatel.it Gert Grammel Alcatel Via Trento 30, I-20059 Vimercate, Italy Phone: +39 039 686-7060 Email: gert.grammel@netit.alcatel.it Jim Jones Alcatel 3400 W. Plano Parkway, Plano, TX 75075, USA Phone: +1 972 519-2744 Email: Jim.D.Jones1@usa.alcatel.com Dimitri Papadimitriou (Editor) Alcatel Francis Wellesplein 1, B-2018 Antwerpen, Belgium Phone: +32 3 240-8491 Email: Dimitri.Papadimitriou@alcatel.be D.Papadimitriou (Editor) et al. û Expires May 2002 12 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 Appendix 1 û Abbreviations 1R Re-amplification 2R Re-amplification and Re-shaping 3R Re-amplification, Re-shaping and Re-timing AI Adapted information AIS Alarm Indication Signal APS Automatic Protection Switching BDI Backward Defect Indication BEI Backward Error Indication BI Backward Indication BIP Bit Interleaved Parity CBR Constant Bit Rate CI Characteristic information CM Connection Monitoring EDC Error Detection Code EXP Experimental ExTI Expected Trace Identifier FAS Frame Alignment Signal FDI Forward Defect Indication FEC Forward Error Correction GCC General Communication Channel IaDI Intra-Domain Interface IAE Incoming Alignment Error IrDI Inter-Domain Interface MFAS MultiFrame Alignment Signal MS Maintenance Signal naOH non-associated Overhead NNI Network-to-Network interface OCC Optical Channel Carrier OCG Optical Carrier Group OCI Open Connection Indication OCh Optical Channel (with full functionality) OChr Optical Channel (with reduced functionality) ODU Optical Channel Data Unit OH Overhead OMS Optical Multiplex Section OMU Optical Multiplex Unit OOS OTM Overhead Signal OPS Optical Physical Section OPU Optical Channel Payload Unit OSC Optical Supervisory Channel OTH Optical transport hierarchy OTM Optical transport module OTN Optical transport network OTS Optical transmission section OTU Optical Channel Transport Unit PCC Protection Communication Channel PLD Payload PM Path Monitoring PMI Payload Missing Indication PRBS Pseudo Random Binary Sequence PSI Payload Structure Identifier D.Papadimitriou (Editor) et al. û Expires May 2002 13 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 PT Payload Type RES Reserved RS Reed-Solomon SM Section Monitoring TC Tandem Connection TCM Tandem Connection Monitoring UNI User-to-Network Interface Appendix 2 û G.709 Indexes - Index k: The index "k" is used to represent a supported bit rate and the different versions of OPUk, ODUk and OTUk. k=1 represents an approximate bit rate of 2.5 Gbit/s, k=2 represents an approximate bit rate of 10 Gbit/s, k = 3 an approximate bit rate of 40 Gbit/s and k = 4 an approximate bit rate of 160 Gbit/s (under definition). The exact bit-rate values are in kbits/s: . OPU: k=1: 2 488 320.000, k=2: 9 995 276.962, k=3: 40 150 519.322 . ODU: k=1: 2 498 775.126, k=2: 10 037 273.924, k=3: 40 319 218.983 . OTU: k=1: 2 666 057.143, k=2: 10 709 225.316, k=3: 43 018 413.559 - Index m: The index "m" is used to represent the bit rate or set of bit rates supported on the interface. This is a one or more digit ôkö, where each ôkö represents a particular bit rate. The valid values for m are (1, 2, 3, 12, 23, 123). - Index n: The index "n" is used to represent the order of the OTM, OTS, OMS, OPS, OCG and OMU. This index represents the maximum number of wavelengths that can be supported at the lowest bit rate supported on the wavelength. It is possible that a reduced number of higher bit rate wavelengths are supported. The case n=0 represents a single channel without a specific wavelength assigned to the channel. - Index r: The index "r", if present, is used to indicate a reduced functionality OTM, OCG, OCC and OCh (non-associated overhead is not supported). Note that for n=0 the index r is not required as it implies always reduced functionality. D.Papadimitriou (Editor) et al. û Expires May 2002 14 draft-gasparini-ccamp-gmpls-g709-ospf-isis-01.txt November 2001 Full Copyright Statement "Copyright (C) The Internet Society (date). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE." D.Papadimitriou (Editor) et al. û Expires May 2002 15