CCAMP Working Group Alberto Bellato (Alcatel) Category: Internet Draft Michele Fontana (Alcatel) Expiration Date: December 2001 Germano Gasparini (Alcatel) Gert Grammel (Alcatel) Jim Jones (Alcatel) Dimitri Papadimitriou (Alcatel) June 2001 Traffic Engineering Routing Extensions to OSPF and ISIS for GMPLS Control of G.709 Optical Transport Networks draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026 [1]. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet- Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Conventions used in this document: The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [2]. D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 1 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 Abstract This document proposes the traffic engineering extensions to OSPF and IS-IS IGP routing protocols to support dynamic Label Switched Path (LSP) processing when using Generalized MPLS signalling as defined in [GMPLS-SIG] and [GMPLS-G709]. 1. Introduction A framework for controlling G.709 Optical Transport Networks (OTN) is described in [G709-FRM]. This document is based on TE extensions defined in [OSPF-TE] and [ISIS-TE] which have been extended for GMPLS in [GMPLS-OSPF-TE] and [GMPLS-ISIS-TE]. It also refers to the notion of Forwarding Adjacency (FA) defined in [MPLS-LH] and supports Link Bundling as defined in [MPLS-BDL]. Routing information is transported by OSPF in Link State Advertisements (LSAs) grouped in OSPF PDUs, and is transported by IS-IS in Link State PDUs (LSPs). Two particular sets of information must be transported by a routing protocol to enable G.709 TE Routing. A static set of information describes the capabilities of an G709-LSR and its G.709 links independently of their usage. A dynamic set of information describes the resources (signals) that are used at each link, i.e. the operational status of a link. For each of these sets, new TLVs are defined as follows: 1) TLVs regarding the static capability of a G709-LSR and its links: - LD-MP TLV : Link ODUk Mapping Capability TLV - LD-MC TLV : Link ODUk Multiplexing Capability TLV - LO-MC TLV : Link OCh Multiplexing Capability TLV - LD-CC TLV : Link ODUk Concatenation Capability TLV - LO-IM TLV : Link OCh Inverse Multiplexing Capability TLV - RO-IW TLV : Router OTN û Pre-OTN Internetworking TLV The LO-IM TLV and RO-IW TLV are only defined for the G.709 Optical Channel layer. 2) TLVs regarding the current status of a link: - LD-CA TLV : Link ODUk Component Allocation TLV - LO-CA TLV : Link OCh Component Allocation TLV A data bearing link between two adjacent LSRs is defined as a TE link (and simply identified by a link ID). GMPLS integrates the TE- link notion by defining the following concepts: - links that are non-Packet Switch Capable (PSC) may yet have TE properties; however, an adjacency cannot be brought up directly on such links - LSP can be advertised as a point-to-point TE links in IGP routing protocol, i.e. as a Forwarding Adjacency (FA); thus, an advertised TE link need no longer be between two neighbors Forwarding D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 2 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 Adjacencies (FA) are more extensively defined in [MPLS-LH]. - several links having the same Traffic Engineering (TE) capabilities (i.e. same TE metric, same set of Resource Class and same Link Multiplexing capability) can be advertised as a single TE link, such TE links are referred to as link bundles whose individual link are referred to as component links; so there is no longer a one-to-one association of a regular adjacency and a TE link. It results that each component link of a bundle must have the same G.709 multiplexing and concatenation capabilities as defined hereafter. The corresponding TLVs (LD-MP, LD-MC, LO-MC, LD-CC and LO-IM) are specified once, and apply to each component. No per component information or identification is required for these TLVs. In [G709-FRM] we described the G.709 hierarchies as composed by a digital hierarchy and an optical transport hierarchy. The first one includes the Digital Path Layer (i.e. the ODUk layers) while the OTH one includes the Optical Channel Layer (i.e. the OCh layer). Consequently we can define for of each of these hierarchies a separated set of specific TLV. This will reduce the amount of static information flooded throughout the routing domain while keeping the dynamic one confined to the layer to which this information is relevant. 2. Static Capabilities Static capabilities at defined for the Digital Path (section 2.1) and the Optical Channel layer (section 2.2). 2.1 Digital Path Layer At the digital path layer (i.e. the ODUk layers) the static capabilities are defined as: - LD-MP TLV : Link ODUk Mapping Capability TLV - LD-MC TLV : Link ODUk Multiplexing Capability TLV - LD-CC TLV : Link ODUk Concatenation Capability TLV 2.1.1 Link ODUk Mapping Capability TLV (LD-MP TLV) The Link ODUk Mapping TLV (LD-CA TLV) represents the maximum number ODUk (k = 1, 2, 3) that can be allocated on a given TE link. The ODUk mapping capability simply translates the TE-link capacity in terms of the maximum number of supported ODUk signal components. The LD-MP TLV is defined in IS-IS as a sub-TLV of the Extended IS Reachability TLV whose Type is TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose Type is TBD. OSPF Link ODUk Mapping Capability TLV coding: D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 3 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum MP ODU1 | Maximum MP ODU2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum MP ODU3 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ISIS Link ODUk Component Allocation TLV coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 6 | Maximum MP ODU1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Maximum MP ODU2 | Maximum MP ODU3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The Maximum MP ODUk field indicates the number of ODUk (k = 1, 2, 3) that can be mapped into the corresponding OTUk. 2.1.2 Link ODUk Multiplexing Capability TLV (LD-MC TLV) Link ODUk Multiplexing Capability TLV describes the ODUk multiplexing structure available on a given link. This TLV indicates the signals that can be potentially allocated in an ODUk multiplex. At this layer, ODUk (flexible) multiplexing as described in [GMPLS- G709], refers to the mapping of an ODU2 into four arbitrary OPU3 tributary slots (i.e. each slot containing one ODU1) arbitrarily selected. Inverse multiplexing currently under definition at ITU-T should also be considered. More generically, ODUk multiplexing is defined when an ODUk (or ODUk Tributary Unit Group) is mapped into the OPU[k+1] if k = 1 or 2 or OPU[k+2] if k = 1. The resulting OPUk is mapped into an ODUk and the ODUk is mapped into an OTUk. The OTUk is mapped into an OChr and the OChr is then modulated onto an OCCr. Therefore, two levels of ODUk multiplexing can be defined: - ODU1 multiplexing: four ODU1 are multiplexed into one OPU2 which is mapped into one ODU2 or sixteen ODU1 are multiplexed into one OPU3 which is mapped into one ODU3 - ODU2 multiplexing: four ODU2 are multiplexed into one OPU3 which is mapped into one ODU3 In IS-IS, this TLV is defined as a sub-TLV of the Extended IS Reachability TLV with type TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose type is TBD. OSPF Link ODUk Multiplexing Capability TLV coding: D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 4 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|2|3|4|5|6|7|8| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ISIS OTN ODUk Multiplexing Capability TLV coding: 0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 1 |1|2|3|4|5|6|7|8| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The following values are currently defined: - Bit 1 is set to 1: support of ODU1 multiplexing into ODU2. - Bit 2 is set to 1: support of ODU1 multiplexing into ODU3 - Bit 3 is set to 0 and reserved for future use - Bit 4 is set to 1: support of ODU2 multiplexing into ODU3 - Bit 5 to 8 are set to 0 and reserved for future use When Bit 1, Bit 2 and Bit 4 are set to 0 (in addition to Bit 3 and Bit 5 to 8), ODUk multiplexing is not supported on the link: the corresponding ODUk signal is unstructured. 2.1.2 Link ODUk Concatenation Capability TLV (LD-CC TLV) ODUk Inverse multiplexing is currently under specification at the ITU-T. It should be implemented by means of virtual concatenation of two or more than two ODUk signals (defined as ODUk-Xv). The ODUk-Xv signal can then transport a non-OTN client signal, for instance, an ODU2-4v may transport an STM-256 client signal. The characteristic information of a virtual concatenated ODUk (ODUk- Xv) layer network is transported via a set of X ODUk LSP, each LSP having its own transfer delay. The egress G709-LSR terminating the ODUk-Xv LSP has to compensate this differential delay in order to provide a contiguous payload at the output. In IS-IS, the Link ODUk Concatenation Capability TLV (LD-CC TLV) is defined as a sub-TLV of the Extended IS Reachability TLV whose Type is TBD. In OSPF, this TLV is a sub-TLV of the Link TLV, with type TBD. OSPF Link ODUk Concatenation Capability TLV coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 5 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 | Max VC ODU1 | Max VC ODU2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Max VC ODU3 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where Max VC means the Maximum number of virtually concatenated ODUk (k = 1, 2, 3) ISIS Link ODUk Concatenation Capability TLV coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 6 | Max VC ODU1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Max VC ODU2 | Max VC ODU3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where Max VC is the Maximum number of virtually concatenated ODUk (k = 1, 2, 3) The Max VC ODUk field (16-bit) indicates the maximum number of ODUk (k = 1, 2, 3) that can be virtually concatenated on the corresponding link. When Max VC ODUk = 0, it means that ODUk virtual multiplexing is not supported for the corresponding k index. Notice that we assume here that levels of virtually concatenated signals are only discrete and given by the 2 x 2^N formula (N > 1) other levels usage are left for further study. 2.2 Optical Channel Layer At the digital path layer (i.e. the ODUk layers) the static capabilities are defined as: - LO-MC TLV : Link OCh Multiplexing Capability TLV - LO-IM TLV : Link OCh Inverse Multiplexing Capability TLV - RO-IW TLV : Router OTN û Pre-OTN Internetworking TLV 2.2.1 Link OCh Multiplexing Capability TLV (LO-MC TLV) As described in [G709-FRM], With reduced stack functionality: up to n (n >= 1) OCCr are multiplexed into an OCG-nr.m using wavelength division multiplexing. The OCCr tributary slots of the OCG-nr.m can be of different size. The number of OCCr that can be multiplexed into an OCG-nr.m is bounded by the following formula: 1 =< i + j + k =< n where i (respectively, k and j) represents the number of OChr carrying an OTU1 (respectively, OTU2 and OTU3). The OCG-nr.m is transported via the OTM-nr.m. With full stack functionality: up to n (n >= 1) OCC are multiplexed into an OCG-n.m using wavelength division multiplexing. The OCC tributary slots of the OCG-n.m can be of different size. The number D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 6 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 of OCCr that can be multiplexed into an OCG-n.m is bounded by the following formula: 1 =< i + j + k =< n where i (respectively, k and j) represents the number of OCh carrying an OTU1 (respectively, OTU2 and OTU3). The OCG-n.m is transported via the OTM-n.m. In IS-IS, the LO-MC TLV is defined as a sub-TLV of the Extended IS Reachability TLV with type TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose type is TBD. OSPF Link OCh Multiplexing Capability TLV (LO-MC TLV) coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 2 (4) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | R | Reserved | i | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | j | k | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Extended i | Extended j | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Extended k | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ISIS Link OCh Multiplexing Capability TLV (LO-MC TLV) coding: 0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type |Length = 8 (16)| R | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | i | j | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | k | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Extended i | Extended j | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Extended k | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The R field indicates the OTM-x.m (x = rn or n) interfaces functionality support: - Value 0x00: each component link (OTM-n.m interface) belonging to the same link bundle can only have a full functionality support - Value 0x01: each component link (OTM-nr.m interface) belonging to the same link bundle can only have a reduced functionality support - Value 0x10: each component link (OTM-nr.m or OTM-n.m interface) belonging to the same link bundle can only have a reduced functionality or a full functionality support. This flag is used to indicate the extended form of the LO-MC TLV. In this case three additional fields representing the number of OCh having a non- associated overhead (naOH), each of these fields represents the D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 7 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 number of OCh carrying an OTU1 (respectively, OTU2 and OTU3). - Value 0x11: each component link (OTM-n.m interface) belonging to the same link bundle has a vendor-specific implementation of the naOH transported through a specific supervisory channel The (Extended) i,j and k field are therefore defined as follows: - Value i (16 bits): represents the number represents the number of OCh (or OChr) carrying an OTU1. - Value j (16 bits): represents the number represents the number of OCh (or OChr) carrying an OTU2. - Value k (16 bits): represents the number represents the number of OCh (or OChr) carrying an OTU3. 2.2.2 Link OCh Inverse Multiplexing Capability TLV (LO-IM TLV) At the Optical Channel layer, inverse multiplexing refers to an optical channel multiplex (i.e. a waveband), denoted as OCh[j.k] (j >= 1 and k = 1, 2 or 3) which is defined as a non-contiguous set of identical optical channels j x OCh. Each of these optical channels are associated to an OTM-x.m (x = nr or n) sub-interface signal. The bit rate of each OCh constituting the waveband (i.e. the composed L- LSP) must be identical, k is unique per OCh multiplex. Today, OTN G.709 specification does not define the optical channel multiplex. Therefore, in this context, any waveband switching development as defined in this specification is purely vendor specific. In IS-IS, the Link OCh Inverse Multiplexing TLV (LO-IM TLV) is defined as a sub-TLV of the Extended IS Reachability TLV whose Type is TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose Type is TBD. OSPF Link OCh Inverse Multiplexing Capability TLV coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Max IM OCh1 | Max IM OCh2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Max IM OCh3 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where Max IM means the Maximum number of inversely multiplexed OCh. ISIS Link OCh Inverse Multiplexing Capability TLV coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 6 | Max IM OCh1 | D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 8 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Max IM OCh2 | Max IM OCh3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where Max IM means the Maximum number of inversely multiplexed OCh. Notice that we assume that levels of inversely multiplexed OCh take only discrete values given by the 2 x 2^N formula (N > 1). 2.2.3 Router OTN û Pre-OTN Interworking TLV TBD. 3. Dynamic Capabilities Dynamic capabilities detail the actual status of a TE link representing either single component link or a bundled link. The following TLVs are currently defined: - LD-CA TLV : Link ODUk Component Allocation TLV - LO-CA TLV : Link OCh Component Allocation TLV 3.1 Digital Path Layer The Link ODUk Component Allocation TLV (LD-CA TLV) represents the number of ODUk actually allocated for a TE link expressed in term of unallocated ODUk. Therefore, when advertised for the first time, the Number of Unallocated ODUk represents the Maximum Number of ODUk supported on a given TE link. The LD-CA TLV is defined in IS-IS as a sub-TLV of the Extended IS Reachability TLV whose Type is TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose Type is TBD. OSPF Link ODUk Component Allocation TLV coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where the V bit is reserved for future use (by default V = 0) ISIS Link ODUk Component Allocation TLV coding: 0 1 2 3 D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 9 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 14 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |V| Number Unallocated ODU3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where the V bit is reserved for future use (by default V = 0) 3.2 Optical Channel Layer The Link OCh Component Allocation TLV (LO-CA TLV) represents the number of OCh actually allocated for a given TE link including one (single link) or more than one (bundled link) OTM-nr.m or OTM-n.m interface. This allocation is expressed in terms of the number of unallocated OCh1, OCh2 and OCh3. Therefore, when advertised for the first time, the Number of Unallocated OCh1, OCh2 and OCh3 represents the Maximum Number of optical channels supported on a given TE link. It is defined in IS-IS as a sub-TLV of the Extended IS Reachability TLV whose Type is TBD. In OSPF, this TLV is a sub-TLV of the Link TLV whose Type is TBD. OSPF Link OCh Component Allocation TLV coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The R bit indicates a reduced functionality stack (R = 1). So that when R = 0, the interface signal refers to an OTM-n.m. The value of this bit is irrelevant in other situation. ISIS Link OCh Component Allocation TLV coding: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length = 14 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh1 | D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 10 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Number Unallocated OCh3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The R bit indicates a reduced functionality stack (R = 1). So that when R = 0, the interface signal refers to an OTM-n.m. The value of this bit is irrelevant in other situation. 4. Security Considerations Security considerations are not discussed in this document. 5. References 1. [GMPLS-ARCH] E. Mannie et al., æGeneralized Multi-Protocol Label Switching (GMPLS) ArchitectureÆ, Internet Draft, Work in progress, draft-many-gmpls-architecture-00.txt, February 2001. 2. [GMPLS-G709] A. Bellato et al., æGeneralized MPLS Signalling Extensions for G.709 Optical Transport NetworksÆ, Internet Draft, Work in progress, draft-fontana-ccamp-gmpls-g709-00.txt, June 2001. 3. [GMPLS-ISIS-TE] K. Kompella et al., æIS-IS Extensions in Support of MPL(ambda)S,Æ Internet Draft, draft-ietf-isis-gmpls-extensions- 01.txt, March 2001. 4. [GMPLS-LDP] P. Ashwood-Smith et al., æGeneralized MPLS Signaling - CR-LDP ExtensionsÆ, Internet Draft, Work in progress, draft-ietf- mpls-generalized-cr-ldp-03.txt, May 2001. 5. [GMPLS-OSPF-TE] K. Kompella et al., æOSPF Extensions in Support of MPL(ambda)S,Æ Internet Draft, draft-kompella-ospf-gmpls-extensions- 01.txt, February 2001. 6. [GMPLS-RSVP] P. Ashwood-Smith et al., æGeneralized MPLS Signaling - RSVP-TE ExtensionsÆ, Internet Draft, draft-ietf-mpls-generalized- rsvp-te-03.txt, May 2001. 7. [GMPLS-SIG] P. Ashwood-Smith et al., æGeneralized MPLS - Signaling Functional DescriptionÆ, Internet Draft, Work in progress, draft- ietf-mpls-generalized-signaling-04.txt, May 2001. 8. [GMPLS-SSS] S. Ansorge et al., æGeneralized MPLS û SDH/Sonet SpecificsÆ, Internet Draft, Work in progress, draft-ietf-ccamp-gmpls- sonet-sdh-00.txt, May 2001. 9. [G709-FRM] A. Bellato et al., æG.709 Optical Transport Networks GMPLS Control FrameworkÆ, Internet Draft, Work in progress, draft- bellato-ccamp-gmpls-control-g709-00.txt, June 2001. D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 11 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 10. [ITUT-G707] æNetwork node interface for the synchronous digital hierarchy (SDH)Æ, ITU-T Recommendation, April 2000. 11. [ITUT-G709] æInterface for the Optical Transport Network (OTN)Æ, ITU-T Recommendation, February 2001. 12. [ITUT-G872] æArchitecture of Optical Transport NetworkÆ, ITU-T draft version, February 2001. 13. [ISIS-TE] T. Li et al.,æIS-IS Extensions for Traffic EngineeringÆ, draft-ietf-isis-traffic-03.txt, Internet Draft, Work in Progress, June 2001. 14. [MPLS-BDL] K. Kompella et al., æLink Bundling in MPLS Traffic Engineering,Æ Internet Draft, draft-kompella-mpls-bundle-05.txt, March 2001. 14. [OSPF-TE] D. Katz et al., "Traffic Engineering Extensions to OSPF", draft-katz-yeung-ospf-traffic-05.txt, Internet Draft, Work in progress, June 2001. 15. [RFC-2370] R. Coltun, RFC 2370, "The OSPF Opaque LSA Option", July 1998. 6. Acknowledgments The authors would like to be thank Bernard Sales, Emmanuel Desmet, Jean-Loup Ferrant, Mathieu Garnot and Massimo Canali for their constructive comments and inputs. This draft incorporates material and ideas from draft-mannie-mpls- sdh-ospf-isis-00.txt. 7. Author's Addresses Michele Fontana Alcatel TND-Vimercate Via Trento 30, I-20059 Vimercate, Italy Phone: +39 039 686-7053 Email: michele.fontana@netit.alcatel.it Germano Gasparini Alcatel TND-Vimercate Via Trento 30, I-20059 Vimercate, Italy Phone: +39 039 686-7670 Email: germano.gasparini@netit.alcatel.it Alberto Bellato Alcatel TND-Vimercate Via Trento 30, I-20059 Vimercate, Italy D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 12 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 Phone: +39 039 686-7215 Email: alberto.bellato@netit.alcatel.it Gert Grammel Alcatel TND-Vimercate Via Trento 30, I-20059 Vimercate, Italy Phone: +39 039 686-7060 Email: gert.grammel@netit.alcatel.it Jim Jones Alcatel TND-USA 3400 W. Plano Parkway, Plano, TX 75075, USA Phone: +1 972 519-2744 Email: Jim.D.Jones1@usa.alcatel.com Dimitri Papadimitriou (Editor) Senior R&D Engineer û Optical Networking Alcatel IPO-NSG Francis Wellesplein 1, B-2018 Antwerpen, Belgium Phone: +32 3 240-8491 Email: Dimitri.Papadimitriou@alcatel.be D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 13 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 Appendix 1 û Abbreviations 1R Re-amplification 2R Re-amplification and Re-shaping 3R Re-amplification, Re-shaping and Re-timing AI Adapted information AIS Alarm Indication Signal APS Automatic Protection Switching BDI Backward Defect Indication BEI Backward Error Indication BI Backward Indication BIP Bit Interleaved Parity CBR Constant Bit Rate CI Characteristic information CM Connection Monitoring EDC Error Detection Code EXP Experimental ExTI Expected Trace Identifier FAS Frame Alignment Signal FDI Forward Defect Indication FEC Forward Error Correction GCC General Communication Channel IaDI Intra-Domain Interface IAE Incoming Alignment Error IrDI Inter-Domain Interface MFAS MultiFrame Alignment Signal MS Maintenance Signal naOH non-associated Overhead NNI Network-to-Network interface OCC Optical Channel Carrier OCG Optical Carrier Group OCI Open Connection Indication OCh Optical Channel (with full functionality) OChr Optical Channel (with reduced functionality) ODU Optical Channel Data Unit OH Overhead OMS Optical Multiplex Section OMU Optical Multiplex Unit OOS OTM Overhead Signal OPS Optical Physical Section OPU Optical Channel Payload Unit OSC Optical Supervisory Channel OTH Optical transport hierarchy OTM Optical transport module OTN Optical transport network OTS Optical transmission section OTU Optical Channel Transport Unit PCC Protection Communication Channel PLD Payload PM Path Monitoring PMI Payload Missing Indication PRBS Pseudo Random Binary Sequence PSI Payload Structure Identifier D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 14 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 PT Payload Type RES Reserved RS Reed-Solomon SM Section Monitoring TC Tandem Connection TCM Tandem Connection Monitoring UNI User-to-Network Interface Appendix 2 û G.709 Indexes - Index k: The index "k" is used to represent a supported bit rate and the different versions of OPUk, ODUk and OTUk. k=1 represents an approximate bit rate of 2.5 Gbit/s, k=2 represents an approximate bit rate of 10 Gbit/s, k = 3 an approximate bit rate of 40 Gbit/s and k = 4 an approximate bit rate of 160 Gbit/s (under definition). The exact bit-rate values are in kbits/s: . OPU: k=1: 2 488 320.000, k=2: 9 995 276.962, k=3: 40 150 519.322 . ODU: k=1: 2 498 775.126, k=2: 10 037 273.924, k=3: 40 319 218.983 . OTU: k=1: 2 666 057.143, k=2: 10 709 225.316, k=3: 43 018 413.559 - Index m: The index "m" is used to represent the bit rate or set of bit rates supported on the interface. This is a one or more digit ôkö, where each ôkö represents a particular bit rate. The valid values for m are (1, 2, 3, 12, 23, 123). - Index n: The index "n" is used to represent the order of the OTM, OTS, OMS, OPS, OCG and OMU. This index represents the maximum number of wavelengths that can be supported at the lowest bit rate supported on the wavelength. It is possible that a reduced number of higher bit rate wavelengths are supported. The case n=0 represents a single channel without a specific wavelength assigned to the channel. - Index r: The index "r", if present, is used to indicate a reduced functionality OTM, OCG, OCC and OCh (non-associated overhead is not supported). Note that for n=0 the index r is not required as it implies always reduced functionality. D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 15 draft-gasparini-ccamp-gmpls-g709-ospf-isis-00.txt June 2001 Full Copyright Statement "Copyright (C) The Internet Society (date). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE." D.Papadimitriou (Editor)- Internet Draft û Expires December 2001 16