MPLS Working Group R. Gandhi, Ed. Internet-Draft Z. Ali Updates: 5586 (if approved) F. Brockners Intended status: Standards Track Cisco Systems, Inc. Expires: 3 September 2022 B. Wen Comcast B. Decraene Orange V. Kozak Comcast 2 March 2022 MPLS Data Plane Encapsulation for In-situ OAM Data draft-gandhi-mpls-ioam-04 Abstract In-situ Operations, Administration, and Maintenance (IOAM) is used for recording and collecting operational and telemetry information while the packet traverses a path between two points in the network. This document defines how IOAM data fields are transported with MPLS data plane encapsulation using new Generic Associated Channel (G-ACh) and updates the RFC 5586. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on 3 September 2022. Copyright Notice Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved. Gandhi, et al. Expires 3 September 2022 [Page 1] Internet-Draft In-situ OAM for MPLS Data plane March 2022 This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. Requirement Language . . . . . . . . . . . . . . . . . . 3 2.2. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 3 3. MPLS Extensions for IOAM Data Fields . . . . . . . . . . . . 4 3.1. IOAM Generic Associated Channel . . . . . . . . . . . . . 4 3.2. IOAM Indicators . . . . . . . . . . . . . . . . . . . . . 6 4. Edge-to-Edge IOAM . . . . . . . . . . . . . . . . . . . . . . 6 4.1. IOAM Indicator . . . . . . . . . . . . . . . . . . . . . 6 4.2. Procedure for Edge-to-Edge IOAM . . . . . . . . . . . . . 7 5. Hop-By-Hop IOAM . . . . . . . . . . . . . . . . . . . . . . . 8 5.1. Hop-By-Hop Indicator . . . . . . . . . . . . . . . . . . 8 5.2. Procedure for Hop-By-Hop IOAM . . . . . . . . . . . . . . 8 6. Considerations for IOAM . . . . . . . . . . . . . . . . . . . 9 6.1. Considerations for ECMP . . . . . . . . . . . . . . . . . 9 6.2. Node Capability . . . . . . . . . . . . . . . . . . . . . 9 6.3. Nested MPLS Encapsulation . . . . . . . . . . . . . . . . 9 7. Security Considerations . . . . . . . . . . . . . . . . . . . 10 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 10 9. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . 10 9.1. MPLS Encapsulation with Control Word and Another G-ACh for IOAM Data Fields . . . . . . . . . . . . . . . . . . . . 10 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 12 10.1. Normative References . . . . . . . . . . . . . . . . . . 12 10.2. Informative References . . . . . . . . . . . . . . . . . 13 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 14 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 14 1. Introduction In-situ Operations, Administration, and Maintenance (IOAM) is used for recording and collecting operational and telemetry information while the packet traverses a path between two points in the network. The term "in-situ" refers to the fact that the IOAM data fields are added to the data packets rather than being sent within the probe packets specifically dedicated to OAM. The IOAM data fields are defined in [I-D.ietf-ippm-ioam-data]. The IOAM data fields are Gandhi, et al. Expires 3 September 2022 [Page 2] Internet-Draft In-situ OAM for MPLS Data plane March 2022 further updated in [I-D.ietf-ippm-ioam-direct-export] for direct export use-cases. This document defines how IOAM data fields are transported with MPLS data plane encapsulations using new Generic Associated Channel (G-ACh) and updates the [RFC5586]. 2. Conventions 2.1. Requirement Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 2.2. Abbreviations Abbreviations used in this document: IOI IOAM Indicator ECMP Equal Cost Multi-Path E2E Edge-To-Edge EL Entropy Label ELI Entropy Label Indicator ELC Entropy Label Control G-ACh Generic Associated Channel HBH Hop-By-Hop HBI Hop-By-Hop Indicator IOAM In-situ Operations, Administration, and Maintenance Gandhi, et al. Expires 3 September 2022 [Page 3] Internet-Draft In-situ OAM for MPLS Data plane March 2022 MPLS Multiprotocol Label Switching OAM Operations, Administration, and Maintenance POT Proof-of-Transit PW PseudoWire 3. MPLS Extensions for IOAM Data Fields 3.1. IOAM Generic Associated Channel The IOAM header is added containing different IOAM-Data-Fields in the MPLS header as shown in Figure 1. The IOAM-Data-Fields MUST follow the definitions corresponding to IOAM-Option-Types (e.g. see Section 5 of [I-D.ietf-ippm-ioam-data] and Section 3.2 of [I-D.ietf-ippm-ioam-direct-export]). More than one trace options can be present in the IOAM-Data-Fields. G-ACh [RFC5586] provides a mechanism to transport OAM and other control messages over MPLS data plane. The IOAM G-ACh header [RFC5586] with new IOAM G-ACh type MUST be added immediately after the MPLS label stack in the MPLS header as shown in Figure 1, before the IOAM-Data-Fields. The G-ACh label (GAL) [RFC5586] MUST NOT be added in the MPLS label stack. This document updates the following paragraph in Section 2.1 of [RFC5586]: "The G-ACh MUST NOT be used to transport user traffic" to "The G-ACh MAY be used with user traffic to transport OAM information". Note that the G-ACh is not really used to transport the user traffic in this document but to transport the IOAM-Data-Fields with the user traffic. Gandhi, et al. Expires 3 September 2022 [Page 4] Internet-Draft In-situ OAM for MPLS Data plane March 2022 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |0 0 0 1|Version| Length | IOAM G-ACh | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | IOAM-OPT-Type | IOAM HDR Len | Block Number | Reserved | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I | | O | | A ~ IOAM Option and Data Space ~ M | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | | | | | Optional Payload + Padding | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: IOAM Generic Associated Channel with IOAM Data Fields The IOAM-Data-Fields are encapsulated using the following fields in the MPLS header: IP Version Number 0001b: The first four octets are IP Version Field part of a G-ACh header, as defined in [RFC5586]. Version: The Version field is set to 0, as defined in [RFC4385]. Length: Length of IOAM G-ACh data in 4-octet units. Note that this field is marked as Reserved in [RFC5586] and is updated for the new IOAM G-ACh type by this document. IOAM G-ACh: Generic Associated Channel (G-ACh) Type (value TBA1) for IOAM [RFC5586]. Reserved: Reserved Bits MUST be set to zero upon transmission and ignored upon receipt. Block Number: The Block Number can be used to aggregate the IOAM data collected in data plane, e.g. to compute measurement metrics for each block of a data flow. It is also used to correlate the IOAM data on different nodes. IOAM-OPT-Type: 8-bit field defining the IOAM Option type, as defined Gandhi, et al. Expires 3 September 2022 [Page 5] Internet-Draft In-situ OAM for MPLS Data plane March 2022 in the "IOAM Option-Type Registry" specified in [I-D.ietf-ippm-ioam-data]. IOAM HDR Length: 8-bit unsigned integer. Length of the IOAM Header in 4-octet units. IOAM Option and Data Space: IOAM-Data-Fields as specified by the IOAM-OPT-Type field. IOAM-Data-Fields are defined corresponding to the IOAM-Option-Type (e.g. see Section 5 of [I-D.ietf-ippm-ioam-data] and Section 3.2 of [I-D.ietf-ippm-ioam-direct-export]. 3.2. IOAM Indicators An IOAM Indicator MUST be used to indicate the presence of the IOAM- Data-Fields in the MPLS header. If both edge and intermediate nodes need to process IOAM data then both IOAM Indicator and HBH Indicator MUST be used. The HBH Indicator allows to optimize the IOAM processing on intermediate nodes and avoids the need to check all IOAM-Data-Fields. A flag called IOI (IOAM Indicator) in the TTL of the X-Label is defined in this document to indicate the presence of IOAM. A flag called HBI (Hop-By-Hop Indicator) in the TTL of the X-Label is defined to indicate that HBH processing is required. The bit positions of these flags in the TTL field can be user-defined, consistently in the network. Alternatively, the bit positions of these flag can be allocated by IANA. The X-Label can be a Special Purpose Label (value TBA1) assigned by IANA or a Network Programming Label (NPL) provisioned by a user [I-D.jags-mpls-ext-hdr] or an Entropy Label [I-D.decraene-mpls-slid-encoded-entropy-label-id]. 4. Edge-to-Edge IOAM 4.1. IOAM Indicator The IOAM Indicator is used to indicate the presence of the IOAM-Data- Fields in the MPLS header as shown in Figure 2. Gandhi, et al. Expires 3 September 2022 [Page 6] Internet-Draft In-situ OAM for MPLS Data plane March 2022 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Label | TC |S| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | X-Label | TC |1| TTL(IOI) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Packet as shown in Figure 1 | . . +---------------------------------------------------------------+ Figure 2: Example MPLS Encapsulation for IOAM The E2E IOAM-Data-Fields carry the Option-Type(s) that require processing on the encapsulating and decapsulating nodes only. The IOAM Option-Type carried can be IOAM Edge-to-Edge Option-Type [I-D.ietf-ippm-ioam-data]. The E2E IOAM-Data-Fields SHOULD NOT carry any IOAM Option-Type that require IOAM processing on the intermediate nodes as it will not be processed by them. 4.2. Procedure for Edge-to-Edge IOAM The E2E IOM procedure is summarized as following: * The encapsulating node inserts the X-Label with the IOAM Indicator (Flag IOI) below the label whose FEC is the end (decapsulating) node and one or more IOAM-Data-Fields in the MPLS header. * The intermediate nodes do not process IOAM-Data-Fields. * The penultimate node MUST NOT remove the MPLS header. This is ensured by the encapsulating node by adding required MPLS header. * The decapsulating node MAY punt a copy of the packet with the receive timestamp to the slow path for IOAM-Data-Fields processing when the node recognizes the IOAM Indicator. The receive timestamp is required by the various E2E OAM use-cases, including streaming telemetry. Note that the packet is not necessarily punted to the control-plane. * The decapsulating node processes the IOAM-Data-Fields using the procedures defined in [I-D.ietf-ippm-ioam-data]. An example of IOAM processing is to export the IOAM-Data-Fields, send IOAM-Data- Fields via streaming telemetry, etc. Gandhi, et al. Expires 3 September 2022 [Page 7] Internet-Draft In-situ OAM for MPLS Data plane March 2022 * The decapsulating node MUST remove the IOAM-Data-Fields from the received packet. The decapsulated packet is forwarded downstream or terminated locally similar to the regular IOAM-Data-Fields. 5. Hop-By-Hop IOAM 5.1. Hop-By-Hop Indicator The IOAM Indicator (Flag IOI) along with Hop-By-Hop Indicator (Flag HBI) are used to indicate the presence of the HBH IOAM-Data-Fields in the MPLS header as shown in Figure 3. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Label | TC |S| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | X-Label | TC |1| TTL(IOI, HBI) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Packet as shown in Figure 1 | . . +---------------------------------------------------------------+ Figure 3: Example MPLS Encapsulation for HBH IOAM The HBH IOAM-Data-Fields carry the Option-Type(s) that require processing at the intermediate and/or encapsulating and decapsulating nodes. The IOAM Option-Type carried can be IOAM Pre-allocated Trace Option-Type, IOAM Incremental Trace Option-Type and IOAM Proof of Transit (POT) Option-Type, as well as Edge-to-Edge Option-Type [I-D.ietf-ippm-ioam-data]. 5.2. Procedure for Hop-By-Hop IOAM The HBH IOAM procedure is summarized as following: * The encapsulating node inserts the X-Label with the IOAM Indicator (Flag IOI) and HBH Indicator (Flag HBI) below the label whose FEC is the end (decapsulating) node and one or more IOAM-Data-Fields in the MPLS header. * The intermediate node enabled with HBH IOAM function processes the data packet including the IOAM-Data-Fields as defined in [I-D.ietf-ippm-ioam-data] when the node recognizes the HBH Indicator in the MPLS header. Gandhi, et al. Expires 3 September 2022 [Page 8] Internet-Draft In-situ OAM for MPLS Data plane March 2022 * The intermediate node MAY punt a copy of the packet with the receive timestamp to the slow path for IOAM-Data-Fields processing when the node recognizes the HBH Indicator. The receive timestamp is required by the various HBH OAM use-cases, including streaming telemetry. Note that the packet is not necessarily punted to the control-plane. * The intermediate node forwards a copy of the processed data packet downstream. * The penultimate node MUST NOT remove the MPLS header. This is ensured by the encapsulating node by adding required MPLS header. * The processing on the decapsulating node is same as E2E case. 6. Considerations for IOAM 6.1. Considerations for ECMP The encapsulating node needs to make sure the IOAM-Data-Fields do not start with a well-known IP Version Number (e.g. 0x4 for IPv4 and 0x6 for IPv6) as that can alter the hashing function for ECMP that uses the IP header. This is achieved by using the IOAM G-ACh with IP Version Number 0001b after the MPLS label stack [RFC5586]. When entropy label [RFC6790] is used for hashing function for ECMP, the procedure defined in this document does not alter the ECMP behaviour. 6.2. Node Capability The decapsulating node that has to remove the IOAM-Data-Fields and perform the IOAM function may not be capable of supporting it. The encapsulating node needs to know if the decapsulating node can support the IOAM function. The signaling extension for this capability exchange is outside the scope of this document. The intermediate node that is not capable of supporting the IOAM functions defined in this document, can simply skip the IOAM processing. 6.3. Nested MPLS Encapsulation When a packet is received with IOAM, the nested MPLS encapsulating node that supports a different IOAM, the node MUST add a new X-Label with the supported IOAM as part of the new MPLS encapsulation. Gandhi, et al. Expires 3 September 2022 [Page 9] Internet-Draft In-situ OAM for MPLS Data plane March 2022 7. Security Considerations The security considerations of IOAM in general are discussed in [I-D.ietf-ippm-ioam-data] and apply to the procedure defined in this document. IOAM is considered a "per domain" feature, where one or several operators decide on configuring IOAM according to their needs. IOAM is intended for deployment in limited domains [RFC8799]. As such, it assumes that a node involved in IOAM operation has previously verified the integrity of the path. Still, operators need to properly secure the IOAM domain to avoid malicious configuration and use, which could include injecting malicious IOAM packets into the domain. Routers that support G-ACh are subject to the same security considerations as defined in [RFC4385] and [RFC5586]. 8. IANA Considerations IANA maintains G-ACh Type Registry (see https://www.iana.org/assignments/g-ach-parameters/g-ach- parameters.xhtml). IANA is requested to allocate a value for IOAM G-ACh Type from "MPLS Generalized Associated Channel (G-ACh) Types (including Pseudowire Associated Channel Types)" registry. +=======+=================+===============+ | Value | Description | Reference | +=======+=================+===============+ | TBA1 | IOAM G-ACh Type | This document | +-------+-----------------+---------------+ Table 1: IOAM G-ACh Type 9. Appendix 9.1. MPLS Encapsulation with Control Word and Another G-ACh for IOAM Data Fields The IOAM-Data-Fields, including IOAM G-ACh header are added in the MPLS encapsulation immediately after the MPLS header. Any Control Word [RFC4385] or another G-ACh [RFC5586] MUST be added after the IOAM-Data-Fields in the packet as shown in the Figure 6 and Figure 7, respectively. This allows the intermediate nodes to easily access the HBH IOAM-Data-Fields located immediately after the MPLS header. The decapsulating node can remove the MPLS encapsulation including the IOAM-Data-Fields and then process the Control Word or another G-ACh following it. The subsequent G-ACh and Control Word are Gandhi, et al. Expires 3 September 2022 [Page 10] Internet-Draft In-situ OAM for MPLS Data plane March 2022 located through the use of the "Length" field in the IOAM G-ACh. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | X-Label | TC |1| TTL(IOI, HBI) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0 0 0 1|Version| Length | IOAM G-ACh | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | IOAM-OPT-Type | IOAM HDR Len | Block Number | Reserved | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I | | O | | A ~ IOAM Option and Data Space ~ M | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |0 0 0 0| Specified by PW Encapsulation [RFC4385] | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | ~ Payload + Padding ~ | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 4: Example MPLS Encapsulation with Generic PW Control Word with HBH IOAM Gandhi, et al. Expires 3 September 2022 [Page 11] Internet-Draft In-situ OAM for MPLS Data plane March 2022 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | X-Label | TC |1| TTL(IOI, HBI) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0 0 0 1|Version| Length | IOAM G-ACh | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | IOAM-OPT-Type | IOAM HDR Len | Block Number | Reserved | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I | | O | | A ~ IOAM Option and Data Space ~ M | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |0 0 0 1|Version| Reserved | Channel Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | ~ Payload + Padding ~ | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 5: Example MPLS Encapsulation with Another G-ACh with HBH IOAM 10. References 10.1. Normative References [I-D.ietf-ippm-ioam-data] Brockners, F., Bhandari, S., and T. Mizrahi, "Data Fields for In-situ OAM", Work in Progress, Internet-Draft, draft- ietf-ippm-ioam-data-17, 13 December 2021, . [I-D.ietf-ippm-ioam-direct-export] Song, H., Gafni, B., Zhou, T., Li, Z., Brockners, F., Bhandari, S., Sivakolundu, R., and T. Mizrahi, "In-situ OAM Direct Exporting", Work in Progress, Internet-Draft, draft-ietf-ippm-ioam-direct-export-07, 13 October 2021, . Gandhi, et al. Expires 3 September 2022 [Page 12] Internet-Draft In-situ OAM for MPLS Data plane March 2022 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC5586] Bocci, M., Ed., Vigoureux, M., Ed., and S. Bryant, Ed., "MPLS Generic Associated Channel", RFC 5586, DOI 10.17487/RFC5586, June 2009, . [RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and L. Yong, "The Use of Entropy Labels in MPLS Forwarding", RFC 6790, DOI 10.17487/RFC6790, November 2012, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . 10.2. Informative References [I-D.decraene-mpls-slid-encoded-entropy-label-id] Decraene, B., Filsfils, C., Henderickx, W., Saad, T., Beeram, V. P., and L. Jalil, "Using Entropy Label for Network Slice Identification in MPLS networks.", Work in Progress, Internet-Draft, draft-decraene-mpls-slid- encoded-entropy-label-id-03, 11 February 2022, . [I-D.jags-mpls-ext-hdr] Rajamanickam, J., Gandhi, R., Bhattacharya, J., Decraene, B., Zigler, R., Cheng, W., and L. Jalil, "MPLS Extension Header Encodings Using Entropy Label", Work in Progress, Internet-Draft, draft-jags-mpls-ext-hdr-00, 2 March 2022, . [RFC4385] Bryant, S., Swallow, G., Martini, L., and D. McPherson, "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN", RFC 4385, DOI 10.17487/RFC4385, February 2006, . [RFC8799] Carpenter, B. and B. Liu, "Limited Domains and Internet Protocols", RFC 8799, DOI 10.17487/RFC8799, July 2020, . Gandhi, et al. Expires 3 September 2022 [Page 13] Internet-Draft In-situ OAM for MPLS Data plane March 2022 Acknowledgements The authors would like to thank Patrick Khordoc, Sagar Soni, Shwetha Bhandari, Clarence Filsfils, and Vengada Prasad Govindan for the discussions on IOAM. The authors would also like to thank Tarek Saad, Loa Andersson, Greg Mirsky, Stewart Bryant, Xiao Min, and Cheng Li for providing many useful comments. The authors would also like to thank Mach Chen, Andrew Malis, Matthew Bocci, and Nick Delregno for the MPLS-RT reviews. Authors' Addresses Rakesh Gandhi (editor) Cisco Systems, Inc. Canada Email: rgandhi@cisco.com Zafar Ali Cisco Systems, Inc. Email: zali@cisco.com Frank Brockners Cisco Systems, Inc. Hansaallee 249, 3rd Floor DUESSELDORF, NORDRHEIN-WESTFALEN 40549 Germany Email: fbrockne@cisco.com Bin Wen Comcast Email: Bin_Wen@cable.comcast.com Bruno Decraene Orange Email: bruno.decraene@orange.com Voitek Kozak Comcast Email: Voitek_Kozak@comcast.com Gandhi, et al. Expires 3 September 2022 [Page 14]