MPLS Working Group R. Gandhi, Ed. Internet-Draft Z. Ali Intended status: Standards Track F. Brockners Expires: January 13, 2022 Cisco Systems, Inc. B. Wen V. Kozak Comcast July 12, 2021 MPLS Data Plane Encapsulation for In-situ OAM Data draft-gandhi-mpls-ioam-00 Abstract In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the data packet while the packet traverses a path between two nodes in the network. This document defines how IOAM data fields are transported with MPLS data plane encapsulation using new Generic Associated Channel (G-ACh). Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on January 13, 2022. Copyright Notice Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect Gandhi, et al. Expires January 13, 2022 [Page 1] Internet-Draft In-situ OAM for MPLS Data plane July 2021 to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. Requirement Language . . . . . . . . . . . . . . . . . . 3 2.2. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 3 3. MPLS Extensions for IOAM Data Fields . . . . . . . . . . . . 3 3.1. IOAM Generic Associated Channel . . . . . . . . . . . . . 3 3.2. IOAM Indicator Labels . . . . . . . . . . . . . . . . . . 5 4. Edge-to-Edge IOAM . . . . . . . . . . . . . . . . . . . . . . 5 4.1. Edge-to-Edge IOAM Indicator Label . . . . . . . . . . . . 5 4.2. Procedure for Edge-to-Edge IOAM . . . . . . . . . . . . . 6 4.3. Edge-to-Edge IOAM Indicator Label Allocation . . . . . . 6 5. Hop-by-Hop IOAM . . . . . . . . . . . . . . . . . . . . . . . 7 5.1. Hop-by-Hop IOAM Indicator Label . . . . . . . . . . . . . 7 5.2. Procedure for Hop-by-Hop IOAM . . . . . . . . . . . . . . 7 5.3. Hop-by-Hop IOAM Indicator Label Allocation . . . . . . . 8 6. Considerations for IOAM Indicator Label . . . . . . . . . . . 8 6.1. Considerations for ECMP . . . . . . . . . . . . . . . . . 8 6.2. Node Capability . . . . . . . . . . . . . . . . . . . . . 9 6.3. Nested MPLS Encapsulation . . . . . . . . . . . . . . . . 9 7. MPLS Encapsulation with Control Word and Another G-ACh for IOAM Data Fields . . . . . . . . . . . . . . . . . . . . . . 9 8. Security Considerations . . . . . . . . . . . . . . . . . . . 11 9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 12 10.1. Normative References . . . . . . . . . . . . . . . . . . 12 10.2. Informative References . . . . . . . . . . . . . . . . . 13 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 13 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 13 1. Introduction In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information within the packet while the packet traverses a particular network domain. The term "in-situ" refers to the fact that the IOAM data fields are added to the data packets rather than being sent within the probe packets specifically dedicated to OAM. The IOAM data fields are defined in [I-D.ietf-ippm-ioam-data], and can be used for various use-cases for OAM. The IOAM data fields are further updated in [I-D.ietf-ippm-ioam-direct-export] for direct export use-cases and in [I-D.ietf-ippm-ioam-flags] for Loopback and Active flags. Gandhi, et al. Expires January 13, 2022 [Page 2] Internet-Draft In-situ OAM for MPLS Data plane July 2021 This document defines how IOAM data fields are transported with MPLS data plane encapsulations using new Generic Associated Channel (G-ACh). 2. Conventions 2.1. Requirement Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 2.2. Abbreviations Abbreviations used in this document: ECMP Equal Cost Multi-Path E2E Edge-To-Edge G-ACh Generic Associated Channel HbH Hop-by-Hop IOAM In-situ Operations, Administration, and Maintenance MPLS Multiprotocol Label Switching OAM Operations, Administration, and Maintenance POT Proof-of-Transit PW PseudoWire 3. MPLS Extensions for IOAM Data Fields 3.1. IOAM Generic Associated Channel The IOAM data fields are defined in [I-D.ietf-ippm-ioam-data]. The IOAM data fields are carried in the MPLS header as shown in Figure 1. More than one trace options can be present in the IOAM data fields. G-ACh [RFC5586] provides a mechanism to transport OAM and other control messages over MPLS data plane. The IOAM G-ACh header [RFC5586] with new IOAM G-ACh type is added immediately after the MPLS label stack in the MPLS header as shown in Figure 1, before the IOAM data fields. The G-ACh label (GAL) [RFC5586] is not added in the MPLS label stack. Gandhi, et al. Expires January 13, 2022 [Page 3] Internet-Draft In-situ OAM for MPLS Data plane July 2021 This document updates the following paragraph in Section 2.1 of [RFC5586]: "The G-ACh MUST NOT be used to transport user traffic" to "The G-ACh MAY be used with user traffic". 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |0 0 0 1|Version| Reserved | IOAM G-ACh | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Reserved | Block Number | IOAM-OPT-Type |IOAM Length | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I | | O | | A ~ IOAM Option and Data Space ~ M | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | | | | | Payload + Padding | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: IOAM Generic Associated Channel with IOAM Data Fields The IOAM data fields are encapsulated using the following fields in the MPLS header: IP Version Number 0001b: The first four octets are IP Version Field part of a G-ACh header, as defined in [RFC5586]. Version: The Version field is set to 0, as defined in [RFC4385]. IOAM G-ACh: Generic Associated Channel (G-ACh) Type (value TBA3) for IOAM [RFC5586]. Reserved: Reserved Bits MUST be set to zero upon transmission and ignored upon receipt. Block Number: The Block Number can be used to aggregate the IOAM data collected in data plane, e.g. compute measurement metrics for each block of a flow. It is also used to correlate the IOAM data on different nodes. IOAM-OPT-Type: 8-bit field defining the IOAM Option type, as defined in Section 8.1 of [I-D.ietf-ippm-ioam-data]. Gandhi, et al. Expires January 13, 2022 [Page 4] Internet-Draft In-situ OAM for MPLS Data plane July 2021 IOAM Length: 8-bit unsigned integer. Length of IOAM in 4-octet units, including IOAM header. IOAM Option and Data Space: IOAM option header and data is present as defined by the IOAM-OPT-Type field, and is defined in Section 5 of [I-D.ietf-ippm-ioam-data]. 3.2. IOAM Indicator Labels An IOAM Indicator Label is used to indicate the presence of the IOAM data fields in the MPLS header. There are two IOAM types defined in this document: Edge-to-Edge (E2E) and Hop-by-Hop (HbH) IOAM. If only edge nodes need to process IOAM data then E2E IOAM Indicator Label is used so that intermediate nodes can ignore it. If both edge and intermediate nodes need to process IOAM data then HbH IOAM Indicator Label is used. Different IOAM Indicator Labels allow to optimize the IOAM processing on intermediate nodes by checking if IOAM data fields need to be processed. 4. Edge-to-Edge IOAM 4.1. Edge-to-Edge IOAM Indicator Label The E2E IOAM Indicator Label is used to indicate the presence of the E2E IOAM data fields in the MPLS header as shown in Figure 2. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Label(1) | TC |S| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Label(n) | TC |S| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | E2E IOAM Indicator Label | TC |1| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Packet as shown in Figure 1 | . . +---------------------------------------------------------------+ Figure 2: MPLS Encapsulation for E2E IOAM The E2E IOAM data fields carry the Option-Type(s) that require processing on the encapsulating and decapsulating nodes only. The IOAM Option-Type carried can be IOAM Edge-to-Edge Option-Type [I-D.ietf-ippm-ioam-data]. The E2E IOAM data fields SHOULD NOT carry Gandhi, et al. Expires January 13, 2022 [Page 5] Internet-Draft In-situ OAM for MPLS Data plane July 2021 any IOAM Option-Type that require IOAM processing on the intermediate nodes as it will not be processed by them. 4.2. Procedure for Edge-to-Edge IOAM The E2E IOM procedure is summarized as following: o The encapsulating node inserts the E2E IOAM Indicator Label and one or more IOAM data fields in the MPLS header. o The intermediate nodes do not process IOAM data fields. o The decapsulating node "punts the timestamped copy" of the received packet as is including the IOAM data fields when the node recognizes the IOAM Indicator Label. The copy of the packet is punted with receive timestamp to the slow path for IOAM data fields processing. The receive timestamp is required by the various E2E OAM use-cases, including streaming telemetry. Note that it is not necessarily punted to the control-plane. o The decapsulating node processes the IOAM data fields using the procedures defined in [I-D.ietf-ippm-ioam-data]. An example of IOAM processing is to export the data fields, send data fields via streaming telemetry, etc. o The decapsulating node also pops the IOAM Indicator Label and the IOAM data fields from the received packet. The decapsulated packet is forwarded downstream or terminated locally similar to the regular data packets. 4.3. Edge-to-Edge IOAM Indicator Label Allocation The E2E IOAM Indicator Label is used to indicate the presence of the E2E IOAM data fields in the MPLS header. The E2E IOAM Indicator Label can be allocated using one of the following three methods: o Label assigned by IANA with value TBA1 from the Extended Special- Purpose MPLS Values [RFC9017]. o Label allocated by a Controller from the global table of the decapsulating node. The Controller provisions the label on both encapsulating and decapsulating nodes. o Label allocated by the decapsulating node and signalled or advertised in the network. The signaling and/or advertisement extension for this is outside the scope of this document. Gandhi, et al. Expires January 13, 2022 [Page 6] Internet-Draft In-situ OAM for MPLS Data plane July 2021 5. Hop-by-Hop IOAM 5.1. Hop-by-Hop IOAM Indicator Label The HbH IOAM Indicator Label is used to indicate the presence of the HbH IOAM data fields in the MPLS header as shown in Figure 3. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Label(1) | TC |S| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Label(n) | TC |S| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HbH IOAM Indicator Label | TC |1| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Packet as shown in Figure 1 | . . +---------------------------------------------------------------+ Figure 3: MPLS Encapsulation for HbH IOAM The HbH IOAM data fields carry the Option-Type(s) that require processing at the intermediate and/or encapsulating and decapsulating nodes. The IOAM Option-Type carried can be IOAM Pre-allocated Trace Option-Type, IOAM Incremental Trace Option-Type and IOAM Proof of Transit (POT) Option-Type, as well as Edge-to-Edge Option-Type [I-D.ietf-ippm-ioam-data]. 5.2. Procedure for Hop-by-Hop IOAM The HbH IOAM procedure is summarized as following: o The encapsulating node inserts the HbH IOAM Indicator Label and one or more IOAM data fields in the MPLS header. o The intermediate node enabled with HbH IOAM functions processes the data packet including the IOAM data fields as defined in [I-D.ietf-ippm-ioam-data] when the node recognizes the HbH IOAM Indicator Label present in the MPLS header. The intermediate node may 'punt the timestamped copy' of the received data packet including the IOAM data fields as required by the IOAM data fields processing. The copy of the packet is punted with receive timestamp to the slow path for IOAM processing. Gandhi, et al. Expires January 13, 2022 [Page 7] Internet-Draft In-situ OAM for MPLS Data plane July 2021 o The intermediate node forwards a copy of the processed data packet downstream. o The decapsulating node "punts the timestamped copy" of the received data packet as is including the IOAM data fields when the node recognizes the IOAM Indicator Label. The copy of the packet is punted with receive timestamp to the slow path for IOAM data fields processing. The receive timestamp is required by the various E2E OAM use-cases, including streaming telemetry. Note that it is not necessarily punted to the control-plane. o The decapsulating node processes the IOAM data fields using the procedures defined in [I-D.ietf-ippm-ioam-data]. An example of IOAM processing is to export the data fields, send data fields via streaming telemetry, etc. o The decapsulating node also pops the IOAM Indicator Label and the IOAM data fields from the received packet. The decapsulated packet is forwarded downstream or terminated locally similar to the regular data packets. 5.3. Hop-by-Hop IOAM Indicator Label Allocation The HbH IOAM Indicator Label is used to indicate the presence of the HbH IOAM data fields in the MPLS header. The HbH IOAM Indicator Label can be allocated using one of the following three methods: o Label assigned by IANA with value TBA2 from the Extended Special- Purpose MPLS Values [RFC9017]. o Label allocated by a Controller from the network-wide global table. The Controller provisions the labels on all nodes participating in IOAM functions along the data traffic path. o Labels allocated by the intermediate and decapsulating nodes and signalled or advertised in the network. The signaling and/or advertisement extension for this is outside the scope of this document. 6. Considerations for IOAM Indicator Label 6.1. Considerations for ECMP The encapsulating node needs to make sure the IOAM data fields do not start with a well-known IP Version Number (e.g. 0x4 for IPv4 and 0x6 for IPv6) as that can alter the hashing function for ECMP that uses the IP header. This is achieved by using the IOAM G-ACh with IP Version Number 0001b after the MPLS label stack [RFC5586]. Gandhi, et al. Expires January 13, 2022 [Page 8] Internet-Draft In-situ OAM for MPLS Data plane July 2021 Note that the hashing function for ECMP that uses the labels from the MPLS header may now include the IOAM Indicator Label. When entropy label [RFC6790] is used for hashing function for ECMP, the procedure defined in this document does not alter the hashing function. 6.2. Node Capability The decapsulating node that has to pop the IOAM Indicator Label, data fields, and perform the IOAM function may not be capable of supporting it. The encapsulating node needs to know if the decapsulating node can support the IOAM function. The signaling extension for this capability exchange is outside the scope of this document. The intermediate node that is not capable of supporting the IOAM functions defined in this document, can simply skip the IOAM processing of the MPLS header. 6.3. Nested MPLS Encapsulation The data packets with IOAM data fields carry only one IOAM Indicator Label in the MPLS header. Any intermediate node that adds additional MPLS encapsulation in the MPLS header may further update the IOAM data fields in the header without inserting another IOAM Indicator Label. When a packet is received with a HbH IOAM Indicator Label, the nested MPLS encapsulating node can add a HbH and/or E2E IOAM Option-Type. However, when a packet is received with an E2E IOAM Indicator Label, the nested MPLS encapsulating node SHOULD NOT add a HbH IOAM Option-Type, as intermediate nodes will not process it. 7. MPLS Encapsulation with Control Word and Another G-ACh for IOAM Data Fields The IOAM data fields, including IOAM G-ACh header are added in the MPLS encapsulation immediately after the MPLS header. Any Control Word [RFC4385] or another G-ACh [RFC5586] MUST be added after the IOAM data fields in the packet as shown in the Figure 4 and Figure 5, respectively. This allows the intermediate nodes to easily access the HbH IOAM data fields located immediately after the MPLS header. The decapsulating node can remove the MPLS encapsulation including the IOAM data fields and then process the Control Word or another G-ACh following it. The subsequent G-ACh is located through the use of the "IOAM Length" field in the IOAM header. Gandhi, et al. Expires January 13, 2022 [Page 9] Internet-Draft In-situ OAM for MPLS Data plane July 2021 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IOAM Indicator Label | TC |1| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |0 0 0 1|Version| Reserved | IOAM G-ACh | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Reserved | Block Number | IOAM-OPT-Type |IOAM Length | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I | | O | | A ~ IOAM Option and Data Space ~ M | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |0 0 0 0| Specified by PW Encapsulation [RFC4385] | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | ~ Payload + Padding ~ | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 4: Example MPLS Encapsulation with Generic PW Control Word with IOAM Gandhi, et al. Expires January 13, 2022 [Page 10] Internet-Draft In-situ OAM for MPLS Data plane July 2021 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IOAM Indicator Label | TC |1| TTL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |0 0 0 1|Version| Reserved | IOAM G-ACh | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Reserved | Block Number | IOAM-OPT-Type |IOAM Length | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I | | O | | A ~ IOAM Option and Data Space ~ M | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |0 0 0 1|Version| Reserved | Channel Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | ~ Payload + Padding ~ | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 5: Example MPLS Encapsulation with Another G-ACh with IOAM 8. Security Considerations The security considerations of IOAM in general are discussed in [I-D.ietf-ippm-ioam-data]. IOAM is considered a "per domain" feature, where one or several operators decide on leveraging and configuring IOAM according to their needs. Still, operators need to properly secure the IOAM domain to avoid malicious configuration and use, which could include injecting malicious IOAM packets into a domain. Routers that support G-ACh are subject to the same security considerations as defined in [RFC4385] and [RFC5586]. 9. IANA Considerations IANA maintains the "Special-Purpose Multiprotocol Label Switching (MPLS) Label Values" registry (see ). IANA is requested to allocate IOAM Indicator Label value from the "Extended Special- Purpose MPLS Label Values" registry: Gandhi, et al. Expires January 13, 2022 [Page 11] Internet-Draft In-situ OAM for MPLS Data plane July 2021 +--------+--------------------------+---------------+ | Value | Description | Reference | +--------+--------------------------+---------------+ | TBA1 | E2E IOAM Indicator Label | This document | +--------+--------------------------+---------------+ | TBA2 | HbH IOAM Indicator Label | This document | +--------+--------------------------+---------------+ Table 1: IOAM Indicator Label Values IANA maintains G-ACh Type Registry (see ). IANA is requested to allocate a value for IOAM G-ACh Type from "MPLS Generalized Associated Channel (G-ACh) Types (including Pseudowire Associated Channel Types)" registry. +-------+-----------------+---------------+ | Value | Description | Reference | +-------+-----------------+---------------+ | TBA3 | IOAM G-ACh Type | This document | +-------+-----------------+---------------+ Table 2: IOAM G-ACh Type 10. References 10.1. Normative References [I-D.ietf-ippm-ioam-data] Brockners, F., Bhandari, S., and T. Mizrahi, "Data Fields for In-situ OAM", draft-ietf-ippm-ioam-data-12 (work in progress), February 2021. [I-D.ietf-ippm-ioam-direct-export] Song, H., Gafni, B., Zhou, T., Li, Z., Brockners, F., Bhandari, S., Sivakolundu, R., and T. Mizrahi, "In-situ OAM Direct Exporting", draft-ietf-ippm-ioam-direct- export-03 (work in progress), February 2021. [I-D.ietf-ippm-ioam-flags] Mizrahi, T., Brockners, F., Bhandari, S., Sivakolundu, R., Pignataro, C., Kfir, A., Gafni, B., Spiegel, M., and J. Lemon, "In-situ OAM Flags", draft-ietf-ippm-ioam-flags-04 (work in progress), February 2021. Gandhi, et al. Expires January 13, 2022 [Page 12] Internet-Draft In-situ OAM for MPLS Data plane July 2021 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC4385] Bryant, S., Swallow, G., Martini, L., and D. McPherson, "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN", RFC 4385, DOI 10.17487/RFC4385, February 2006, . [RFC5586] Bocci, M., Ed., Vigoureux, M., Ed., and S. Bryant, Ed., "MPLS Generic Associated Channel", RFC 5586, DOI 10.17487/RFC5586, June 2009, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . 10.2. Informative References [RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and L. Yong, "The Use of Entropy Labels in MPLS Forwarding", RFC 6790, DOI 10.17487/RFC6790, November 2012, . [RFC9017] Andersson, L., Kompella, K., and A. Farrel, "Special- Purpose Label Terminology", RFC 9017, DOI 10.17487/RFC9017, April 2021, . Acknowledgements The authors would like to thank Patrick Khordoc, Sagar Soni, Shwetha Bhandari, Clarence Filsfils, and Vengada Prasad Govindan for the discussions on IOAM. The authors would also like to thank Tarek Saad, Loa Andersson, Greg Mirsky, Stewart Bryant, Xiao Min, and Cheng Li for providing many useful comments. The authors would also like to thank Mach Chen, Andrew Malis, Matthew Bocci, and Nick Delregno for the MPLS-RT reviews. Authors' Addresses Rakesh Gandhi (editor) Cisco Systems, Inc. Canada Email: rgandhi@cisco.com Gandhi, et al. Expires January 13, 2022 [Page 13] Internet-Draft In-situ OAM for MPLS Data plane July 2021 Zafar Ali Cisco Systems, Inc. Email: zali@cisco.com Frank Brockners Cisco Systems, Inc. Hansaallee 249, 3rd Floor DUESSELDORF, NORDRHEIN-WESTFALEN 40549 Germany Email: fbrockne@cisco.com Bin Wen Comcast Email: Bin_Wen@cable.comcast.com Voitek Kozak Comcast Email: Voitek_Kozak@comcast.com Gandhi, et al. Expires January 13, 2022 [Page 14]