6Lo Working Group L. Del Carpio Vega Internet-Draft M. Robles Intended status: Standards Track R. Morabito Expires: April 21, 2016 Ericsson October 19, 2015 IPv6 over 802.11ah draft-delcarpio-6lo-wlanah-01 Abstract IEEE 802.11 is an established Wireless LAN (WLAN) technology which provides radio connectivity to a wide range of devices. The IEEE 802.11ah amendment defines a WLAN system operating at sub 1 GHz license-exempt bands designed to operate with low-rate/low-power consumption. This amendment supports large number of stations and extends the radio coverage to several hundreds of meters. This document describes how IPv6 is transported over 802.11ah using 6LoWPAN techniques. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on April 21, 2016. Copyright Notice Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect Del Carpio Vega, et al. Expires April 21, 2016 [Page 1] Internet-Draft IPv6 over 802.11ah October 2015 to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Terminology and Language Requirements . . . . . . . . . . . . 3 3. Overview of 802.11ah . . . . . . . . . . . . . . . . . . . . 3 3.1. Link Layer Topology of 802.11ah . . . . . . . . . . . . . 4 3.2. Device Addressing and Frame Structure . . . . . . . . . . 5 3.3. Protocol Version 0 . . . . . . . . . . . . . . . . . . . 6 3.4. Protocol Version 1 . . . . . . . . . . . . . . . . . . . 6 3.5. Link Layer Control . . . . . . . . . . . . . . . . . . . 7 3.6. Ad Hoc Mode and Extended Service Set . . . . . . . . . . 8 3.7. Relation with other 802.11 Versions . . . . . . . . . . . 9 4. Uses Cases . . . . . . . . . . . . . . . . . . . . . . . . . 9 5. 6LoWPAN over 802.11ah . . . . . . . . . . . . . . . . . . . . 9 6. Stateless Address Autoconfiguration . . . . . . . . . . . . . 11 7. Neighbour Discovery in 802.11ah . . . . . . . . . . . . . . . 12 8. Header Compression . . . . . . . . . . . . . . . . . . . . . 12 9. Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . 13 10. Multicast at IP Level . . . . . . . . . . . . . . . . . . . . 13 11. Internet Connection . . . . . . . . . . . . . . . . . . . . . 13 12. Management of the Network . . . . . . . . . . . . . . . . . . 13 13. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 14 14. Security Considerations . . . . . . . . . . . . . . . . . . . 14 15. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 14 16. References . . . . . . . . . . . . . . . . . . . . . . . . . 14 16.1. Normative References . . . . . . . . . . . . . . . . . . 14 16.2. Informative References . . . . . . . . . . . . . . . . . 15 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17 1. Introduction IEEE 802.11 [IEEE802.11], also known as Wi-Fi, is an established Wireless LAN (WLAN) technology operating in unlicensed Industrial, Scientific and Medical (ISM) bands. Its IEEE 802.11ah [IEEE802.11ah] amendment is tailored for Internet of Things (IoT) use-cases and at the moment of writing this draft it is in the final stages of IEEE standardization. IEEE 802.11ah operates in the Sub-1 GHz spectrum which helps reducing the power consumption. It also supports a larger number of stations on a single Basic Service Set (BSS) and it provides power-saving mechanisms that allow radio stations to sleep in order to save power. Del Carpio Vega, et al. Expires April 21, 2016 [Page 2] Internet-Draft IPv6 over 802.11ah October 2015 However, the system achieves lower throughput compared to 802.11n/ac amendments. IEEE 802.11 specifies only the MAC and PHY layers of the radio technology. In other words, 802.11 does not specify a networking layer but it is compatible with commonly used internet protocol such as IPv4 and IPv6. As 802.11ah is a low-rate/low-power technology, the communication protocols used above MAC should also take power- efficiency into consideration. This motivates the introduction of 6LoWPAN techniques [RFC4944] [RFC6282] for efficient transport of IPv6 packets over IEEE 802.11ah radio networks. This document specifies how to use 6LoWPAN techniques for 802.11ah. 2. Terminology and Language Requirements The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. Terminology from 802.11ah: Station (STA): defined in 802.11-2012 [IEEE802.11-2012] as a wireless station which is an addressable unit. Sensor-STA: defined in 802.11ah as a device having low-power consumption requirements. This device might be a battery operated device. Non-sensor STA: defined in 802.11ah as device which usually does not have low-power consumption requirements. In this document, any type STA (sensor STA/non-sensor STA) is associated with a 6LoWPAN Node(6LN). Access Point (AP): entity maintaining the WLAN Basic Service Set (BSS) and it is associated with the 6LoWPAN Border Router (6LBR). It is assumed that APs are connected to the power-line. The terms 6LoWPAN Router (6LR) and 6LoWPAN Border Router (6LBR) are defined as in [RFC6775] and in this context 6LoWPAN Nodes (6LN) do not refer to a router (Access Point), just to a host (STA). 3. Overview of 802.11ah The IEEE 802.11 technology uses the unlicensed spectrum in different ISM bands, using CSMA/CA techniques. Specifically 802.11ah is designed to operate in ISM band below Sub-1 Ghz with a basic Del Carpio Vega, et al. Expires April 21, 2016 [Page 3] Internet-Draft IPv6 over 802.11ah October 2015 bandwidth of 1Mhz/2Mhz (depending of configuration). The system is formed by an Access Point (AP) which maintains a Basic Service Set (BSS) and stations (STAs). STAs are connected to the AP in a star topology. The 802.11ah is more energy efficient compared to other conventional 802.11 technologies because of it uses mechanisms which allow STAs to doze periodically and STAs request downlink data when switching to active mode i.e. Traffic Indication Map (TIM) operation, non-TIM operation, Target Wakeup Time (TWT) An exemplary deployment of a 802.11ah BSS may include a large number of STAs associated to a BSS where STAs are sleeping (dozing) most of the time and they may monitor periodic beacon-frame transmissions containing Traffic Indication Maps (TIM). Data packets intended to STAs cannot be delivered when STAs sleep, thus the TIM indicates which STAs have downlink data buffered at the AP. After reading the TIM, STAs request their buffered data by transmitting a Power-Saving Poll (PS-Poll) frame to the AP. After the downlink data is delivered, STAs enter into sleep mode again. For uplink data delivery, STAs might transmit as soon as their data is available. There might be STAs that do not monitor constantly the TIM and request downlink data sporadically after waking up. 3.1. Link Layer Topology of 802.11ah The 802.11ah defines a star topology at L2 link connectivity, where the STAs are connected to the AP and any communication between STAs passes through the AP. It also includes L2 relays to extend the range of the system. As in other 802.11 amendments, the ad-hoc topology is also suported. Finally, the 802.11 standard does not define its own networking layer but is compatible with commonly used protocols e.g. IPv4, IPv6 via the Link Layer Control. Del Carpio Vega, et al. Expires April 21, 2016 [Page 4] Internet-Draft IPv6 over 802.11ah October 2015 +---+ |STA| +-+-+ +---+ | |STA+------+ | +---+ | | +---+---+ +---+ | AP +----+STA| ++-----++ +---+ +----+ | | |STA +-----+ | +----+ +-+--+ |STA | +----+ Figure 1: Star Link Layer Topology It is important to note that the communication link is unidirectional at any given point in time and that the medium is shared by CSMA/CA techniques which avoid that two or more STAs utilize the medium simultaneously. 3.2. Device Addressing and Frame Structure The 802.11 physical transmission is composed by a preamble which is used to prepare a receiver for frame decoding, basic physical layer information, and the physical layer payload which encapsulates the MAC Protocol Data Unit (MPDU). There can be different classes of MAC frames in 802.11, the MAC data frame is the only one carrying higher layer data. Other frames are control and management frames which are used to maintain MAC layer functions. In general in 802.11 MAC addresses use the EUI-48 bit address space. A MAC data frame in 802.11 is composed by a MAC header, a MAC payload and a Frame Check Sequence (FCS) which are encoded in an MPDU. The MAC payload carries Link Layer Control PDUs which encapsulates, for example, IP packets. There are two protocol versions for MAC frame formats, the Protocol Version 0 (PV0) which is the default format of 802.11 and it is inherited to 802.11ah and the Protocol Version 1 (PV1) which has less overhead that PV0 and can be optionally supported by 802.11ah non-sensor STA and it is mandatory supported for 802.11ah sensor STA. In 802.11ah, the maximum size of the MSDU (MAC payload) is given by the maximum size of a A-MSDU which is constrained by the maximum size Del Carpio Vega, et al. Expires April 21, 2016 [Page 5] Internet-Draft IPv6 over 802.11ah October 2015 of the A-MPDU of 7991 bytes. This maximum of the A-MPDU is independent of Protocol Version. In addition, segmentation at 802.11 MAC layer level is supported if required. 3.3. Protocol Version 0 The elements of the MAC data frame with PV0 are defined in 802.11-2012, Section 8.2 [IEEE802.11-2012] and are depicted in the picture below. +-------+--------+----+----+----+------+----+-----+----+-------+---+ + Frame +Duration+ A1 + A2 + A3 + Seq. + A4 + QoS + HT + Frame +FCS+ +Control+ /ID + + + + Ctrl + + Crl +Crl + Body + + +-------+--------+----+----+----+------+----+-----+----+-------+---+ 2 2 6 6 6 2 6/0 2 4 0-7951 4 Figure 2: MAC frame PV0 Frame Control: contains information relevant in link layer such as the Protocol Version, frame type and subtype, Power Management, Fragmentation Information, among others. A1, A2, A3: indicate the recipient, the transmitter and the BSSID which in infraestructure mode is the value of the STA contained in the AP (AP MAC address in practice). They follow 48-bits MAC address format. A4, Sequence control, QoS control, HT control: The meaning of these field are out of scope of this draft. Please refer to 802.11-2012, Section 8.2.4 [IEEE802.11-2012] for further information. Frame Body: is of variable-length field and contains the MAC payload for example L3 packets. FCS: The Frame Check Sequence field is a 32-bit field containing a 32-bit CRC which is calculated over all the fields of the MAC header and the Frame Body field 3.4. Protocol Version 1 The MAC header for the PV1 format is at least formed by a Frame Control field and the address fields. Other fields are optional. Please refer to 802.11-2012, Section 8.8.1 [IEEE802.11ah] for further information. Del Carpio Vega, et al. Expires April 21, 2016 [Page 6] Internet-Draft IPv6 over 802.11ah October 2015 +---------------+-------+--------+---------------------+ + Frame Control + A1 + A2 + Frame Body + FCS + +---------------+-------+--------+---------------------+ Bytes: 2 6/2 2/6 0-7951 4 Figure 3: MAC frame PV1 of 802.11ah Frame control: see above. A1, A2: indicates the recipient and the transmitter respectively of the frame and it contains the 6-bytes MAC address or the Short ID (2-bytes) provided by the AP after association in a given BSS. Short ID includes the Association Identifier (AID) field which is used in TIM and power-saving mode. Frame Body: The minimum length for non-data frames is 0 bytes. The maximum length of A-MSDU is constrained by the maximum size of the A-MPDU of 7991 bytes. 3.5. Link Layer Control The Logical Link Control (LLC) layers works as the interface between higher layers, for example IP, and the 802.11 MAC. It supports higher layer protocol discrimination via the EtherType value utilizing the LLC SNAP or RFC1042. +----------------------------------------------------+ | DSAP | SSAP | CTL | OUI | Ethertype | SDU | | 0xAA | 0xAA | 0x03=UI| 00+00+00 | | | +----------------------------------------------------+ Figure 4: Format of LPD compatible with current 802.11 recommendations Examples of EtherTypes are 0x0800 and 0x8DD, which are used to identify IPv4 and IPv6, respectively. Del Carpio Vega, et al. Expires April 21, 2016 [Page 7] Internet-Draft IPv6 over 802.11ah October 2015 +-----------------------+ | Upper Layer | +-----------------------+ | 802 LLC | +-----------------------+ | MAC Layer (802.11ah) | +-----------------------+ | PHY Layer (802.11ah) | +-----------------------+ Figure 5: WLAN Protocol Stack 3.6. Ad Hoc Mode and Extended Service Set The standard allows to connect devices through ad-hoc mechanisms. In this mode the devices are connected using implementation specific protocols e.g. between two STAs or between two APs and the power- saving mechanism of 802.11ah cannot be used (as AP-STA hierarchy is required). The following figure describes STAs connected to AP through 802.11ah and connections between APs are not based on 802.11ah, but are implementation specific. +---+ +---+ +----+ +-----+ |STA+-----+AP +-----------+AP +------+STA | +---+ +--++ +--+-+ +-----+ | | | | | +---+-+ +-----+ +-----------+AP +------+STA | +-----+ +-----+ Figure 6: WLAN Ad Hoc Mode In an Extented Service Set(ESS), the connections between Base Service Station (BSS) happen through a distribution system. The distribution system (DS) maybe realised by a different technology or it can be composed by AP connections. +------------------+ +------------------+ | +---+ +---+ | | +----+ +----+ | | |STA+-----+AP +------------ DS -----------+AP +----+STA | | | +---+ +---+ | | +----+ +----+ | +----------+-------+ +------------------+ BSS | | BSS +---------------> ESS <-----------------+ Figure 7: WLAN Protocol Stack Del Carpio Vega, et al. Expires April 21, 2016 [Page 8] Internet-Draft IPv6 over 802.11ah October 2015 3.7. Relation with other 802.11 Versions In principle, the 6Lo stack might be used for other 802.11 versions such as 802.11b, 802.11n and 802.11ac, due to these standards support LLC compatibility. LLC 6lo indentifier would be the same for all mentioned WiFi versions. 4. Uses Cases [RFC7548] defines use cases for the management of constrained networks: Environmental Monitoring, Infrastructure Monitoring, Industrial Applications, Energy Management, Medical Applications, Building Automation, Home Automation, Transport Applications, Community Network Applications and Field Operations. These uses cases are apply as well to 802.11ah. As a starting point in 802.11ah specification work, the Task Group AH proposed the following use-case categories [ReferenceUseCase802.11ah]: - Sensor and Meters, where large number of sensor deliver data through 802.11ah connectivity - Backhaul Sensor and meter data, where 802.11ah STA can be either directly integrated with a sensor or it will aggregate data from other tree of wireless sensors and then deliver 802.11ah connectivity - Extended Range Wi-Fi, where the typical range of the Wi-Fi connection will extended due to the use of lower frequencies and other techniques. 5. 6LoWPAN over 802.11ah IPv4 and IPv6 are compatible with 802.11ah via the LLC. However, 802.11ah technology presents a trade-off between energy consumption and link bitrate. Consequently, 6LoWPAN techniques are beneficial to reduce the overhead of transmissions, save energy and improve throughput. With 6LoWPAN, the nodes, i.e. 6LN, 6LBR, are co-located on the same devices with 802.11 features. The typical 802.11ah network uses a star topology where the 6LBR functionally is co- located with the AP. 6LNs are co-located with STAs and are connected to the 6LBR through 802.11ah links. As mesh topology at MAC level is not defined by the 802.11ah standard, 6LBR is the only router present in the network. Thus, there is no presence of 6LR. Del Carpio Vega, et al. Expires April 21, 2016 [Page 9] Internet-Draft IPv6 over 802.11ah October 2015 +---------+ |+-------+| +---------+ || 6LN || 802.11ah |+-------+| |+-------+| || 6LN || |+-------++------------+---------|+-------+| || STA || | |+-------+| |+-------+| | || STA || +---------+ | |+-------+| 6LN-STA | +---------+ +-----+-----+ |+----+----+| || 6LBR || |+---------+| +---------+ | | +---------+ |+-------+| |+---------++ ++-------+| || 6LN || || AP || || 6LN || |+-------+| |+---------+| |+-------+| |+-------++---+----+------+ | | || STA || | 6LBR-AP |+-------+| |+-------+| | || STA || +--------+| | |+-------+| +---------+ +-----------+---------+ Figure 8: Network Topology There exists the possibility to have a 802.11ah relay node at L2 to extend the range of an AP. This however is an L2 feature and it is experienced as a single hop by the 6LoWPAN network. In case there is need to connect wirelessly several APs and ad hoc solution needs to be considered. Devices in this kind of networks, not necessarily have constrained resources (memory, CPU, etc), but the radio link capacity is limited. It might be that APs are connected to mains power and STAs might be for example battery operated sensors. Therefore 6LoWPAN techniques might be good to support transmission of IPv6 packets over 802.11ah battery operated devices. Related to performance gain, a reduction in air-time is achieved if the stack is compressed. The communication 6LN-6LN is not supported directly using link-local addresses, it is done through the 6LBR using the shared prefix used on the subnet. This specification requires IPv6 header compression format specified in [RFC6282]. The Figure below shows the stack for PHY/MAC and IPv6 including 6LoWPAN Del Carpio Vega, et al. Expires April 21, 2016 [Page 10] Internet-Draft IPv6 over 802.11ah October 2015 +---------------------+ | Upper Layers | +---------------------+ | IPv6 | +---------------------+ | 6LoWPAN | +---------------------+ | 802 LLC | +---------------------+ | MAC Layer(802.11ah) | +---------------------+ | PHY Layer(802.11ah) | +---------------------+ Figure 9: Protocol Stack with 6LoWPAN 6. Stateless Address Autoconfiguration The IPv6 link local address follows Section 5.3 of [RFC4862] based on the 48-bit MAC device address. To get the 64-bit Interface Identifier (IID) RFC 7136 [RFC7136] MUST be followed. Section 5 of this RFC states: "For all unicast addresses, except those that start with the binary value 000, Interface IDs are required to be 64 bits long. If derived from an IEEE MAC-layer address, they must be constructed in Modified EUI-64 format." 10 bits 54 bits 64 bits +----------+-----------------+----------------------+ |1111111010| 0 | Interface Identifier | +----------+-----------------+----------------------+ Figure 10: IPv6 link local address Following Appendix-A of RFC 4291 [RFC4291] the IID is formed inserting two octets, with hexadecimal values of 0xFF and 0xFE in the middle of the 48-bit MAC. The IID would be as follow where "a" is a bit of the 48 MAC address. |0 1|1 3|3 4|4 6| |0 5|6 1|2 7|8 3| +----------------+----------------+----------------+----------------+ |aaaaaaaaaaaaaaaa|aaaaaaaa11111111|11111110aaaaaaaa|aaaaaaaaaaaaaaaa| +----------------+----------------+----------------+----------------+ Figure 11: Modified EUI-64 format Del Carpio Vega, et al. Expires April 21, 2016 [Page 11] Internet-Draft IPv6 over 802.11ah October 2015 For non-link-local addresses a 64-bit IID MAY be formed by utilizing the 48-bit MAC device address. Random IID can be generated for 6LN using alternative methods such as [I-D.ietf-6man-default-iids]. 7. Neighbour Discovery in 802.11ah Neighbour Discovery approach for 6LoWPAN [RFC6775] is applicable to 802.11ah topologies. Related to Host-initiated process, use of Address Registration Option (ARO), through the Neighbour Solicitation (NS) and Neighbour Advertisement (NA). Router Solicitation and Router Advertisement are applicable as well following [RFC6775]. As the topology is star, Multihop Distribution of prefix and 6LoWPAN header compression; and Multihop Duplicated Address Detection (DAD) mechanism are not applicable, since this technology does not cover multihop topology. 8. Header Compression For header compression, the rules proposed in [RFC6282] are applicable. Section 3.1.1 mentions the base Encoding principle applicable to 802.11ah. 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ | 0 | 1 | 1 | TF |NH | HLIM |CID|SAC| SAM | M |DAC| DAM | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Figure 12: LOWPAN_IPHC base Encoding TF: Traffic Class; Flow Label; For 802.11ah case would apply this field as defined in [RFC6282]. NH: Next Header; as defined in [RFC6282]. HLIM: Hop Limit; as star topology the common value would be HLIM=1. CID: Context Identifier Extension; as defined in [RFC6282]. SAC: Source Address Compression; as defined in [RFC6282]. SAM: Source Address Mode; In this case, the combinations for 16-bits are not applicable to this technology since 802.11 uses 48-bits for addresses. M: Multicast Compression; as defined in [RFC6282]. Del Carpio Vega, et al. Expires April 21, 2016 [Page 12] Internet-Draft IPv6 over 802.11ah October 2015 DAC: Destination Address Compression; as defined in [RFC6282]. DAM: Destination Address Mode. In this case, the combinations for 16-bits are not applicable to this technology since 802.11 uses 48-bits for addresses. 9. Fragmentation 802.11ah perform fragmentation at L2, thus the fragmentation at L3 would be not necessary. 10. Multicast at IP Level 802.11ah supports broadcast and multicast at link layer level, both can be used to carry multicast IP transmission depending on the system's configuration. TBD: add an example. 11. Internet Connection For Internet connection, the 6LBR acts as router and forwarding packets between 6LNs to and from Internet. +-----+ | 6LN +--------+ +-----+ | | +-----------+ +----+----+ | | | | | Internet | +------+ 6LBR +----+ | +--+--+ | | | | | 6LN | +----+----+ +-----------+ +-----+ | +--+--+ | 6LN | +-----+ Figure 13: Internet connection of 6Lo network 12. Management of the Network TBD: how LightWeight Machine to Machine (LWM2M) or CoAP Management Interface (COMI) [I-D.vanderstok-core-comi] aspects can be applied to this technology, considering [RFC7547] Del Carpio Vega, et al. Expires April 21, 2016 [Page 13] Internet-Draft IPv6 over 802.11ah October 2015 13. IANA Considerations There are no IANA considerations related to this document. 14. Security Considerations The security considerations defined in [RFC4944] and its update [RFC6282] can be assumed valid for the 802.11ah case as well. Indeed, the transmission of IPv6 over 802.11ah links meets all the requirements for security as for IEEE 802.15.4. The standard IEEE 802.11ah defines all those aspects related with Link Layer security. As well as for other existing WiFi solutions, 802.11ah Link Layer supports security mechanism such as WPA, WPS, 802.1X. To have a deeper understanding on how the Key Management processes are handled in 802.11ah, please refer to [TBD] Implementations defined in [I-D.ietf-6man-default-iids], [RFC3972], [RFC4941], or [RFC5535], can be considered, for example, as methods to support non-link local addresses. For what concerns privacy issues, the draft [I-D.thaler-6lo-privacy-considerations] introduces a series of recommendations which can be applied in order to overcome possible privacy threats in the particular case of technologies designed for IPv6 over networks of resource-constrained nodes. 15. Acknowledgements This work is partially funded by the FP7 Marie Curie Initial Training Network (ITN) METRICS project (grant agreement No. 607728). The authors are thankful to the members of IEEE Task Group AH for their valuable comments. 16. References 16.1. Normative References [IEEE802.11ah] Institute of Electrical and Electronics Engineers (IEEE), "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment- Sub 1 GHz License- Exempt Operation", January 2015. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . Del Carpio Vega, et al. Expires April 21, 2016 [Page 14] Internet-Draft IPv6 over 802.11ah October 2015 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, DOI 10.17487/RFC4291, February 2006, . [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address Autoconfiguration", RFC 4862, DOI 10.17487/RFC4862, September 2007, . [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282, DOI 10.17487/RFC6282, September 2011, . [RFC6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C. Bormann, "Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)", RFC 6775, DOI 10.17487/RFC6775, November 2012, . [RFC7136] Carpenter, B. and S. Jiang, "Significance of IPv6 Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136, February 2014, . 16.2. Informative References [I-D.ietf-6lo-btle] Nieminen, J., Savolainen, T., Isomaki, M., Patil, B., Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low Energy", draft-ietf-6lo-btle-17 (work in progress), August 2015. [I-D.ietf-6man-default-iids] Gont, F., Cooper, A., Thaler, D., and S. LIU, "Recommendation on Stable IPv6 Interface Identifiers", draft-ietf-6man-default-iids-08 (work in progress), October 2015. [I-D.thaler-6lo-privacy-considerations] Thaler, D., "Privacy Considerations for IPv6 over Networks of Resource-Constrained Nodes", draft-thaler-6lo-privacy- considerations-01 (work in progress), October 2015. [I-D.vanderstok-core-comi] Stok, P., Bierman, A., Schoenwaelder, J., and A. Sehgal, "CoAP Management Interface", draft-vanderstok-core-comi-08 (work in progress), October 2015. Del Carpio Vega, et al. Expires April 21, 2016 [Page 15] Internet-Draft IPv6 over 802.11ah October 2015 [IEEE802-2014] Institute of Electrical and Electronics Engineers (IEEE), "IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture", 2014. [IEEE802.11] Institute of Electrical and Electronics Engineers (IEEE), "Wireless LAN", 2011. [IEEE802.11-2012] Institute of Electrical and Electronics Engineers (IEEE), "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", 2012. [ReferenceUseCase802.11ah] Institute of Electrical and Electronics Engineers (IEEE), "Potential compromise of 80211ah use case", 2012. [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)", RFC 3972, DOI 10.17487/RFC3972, March 2005, . [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005, . [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007, . [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007, . [RFC5535] Bagnulo, M., "Hash-Based Addresses (HBA)", RFC 5535, DOI 10.17487/RFC5535, June 2009, . [RFC7547] Ersue, M., Ed., Romascanu, D., Schoenwaelder, J., and U. Herberg, "Management of Networks with Constrained Devices: Problem Statement and Requirements", RFC 7547, DOI 10.17487/RFC7547, May 2015, . Del Carpio Vega, et al. Expires April 21, 2016 [Page 16] Internet-Draft IPv6 over 802.11ah October 2015 [RFC7548] Ersue, M., Ed., Romascanu, D., Schoenwaelder, J., and A. Sehgal, "Management of Networks with Constrained Devices: Use Cases", RFC 7548, DOI 10.17487/RFC7548, May 2015, . Authors' Addresses Luis Felipe Del Carpio Vega Ericsson Hirsalantie 11 Jorvas 02420 Finland Email: felipe.del.carpio@ericsson.com Maria Ines Robles Ericsson Hirsalantie 11 Jorvas 02420 Finland Email: maria.ines.robles@ericsson.com Roberto Morabito Ericsson Hirsalantie 11 Jorvas 02420 Finland Email: roberto.morabito@ericsson.com Del Carpio Vega, et al. Expires April 21, 2016 [Page 17]