CCAMP Working Group D. Ceccarelli Internet-Draft D. Caviglia Intended status: Standards Track Ericsson Expires: January 10, 2011 F. Zhang D. Li Huawei Technologies Y. Xu CATR S. Belotti P. Grandi Alcatel-Lucent July 9, 2010 Traffic Engineering Extensions to OSPF for Generalized MPLS (GMPLS) Control of Evolving G.709 OTN Networks draft-ceccarelli-ccamp-gmpls-ospf-g709-02 Abstract The recent revision of ITU-T Recommendation G.709 [G709-V3] has introduced new fixed and flexible ODU containers, enabling optimized support for an increasingly abundant service mix. This document describes OSPF routing protocol extensions to support Generalized MPLS (GMPLS) control of all currently defined ODU containers, in support of both sub-lambda and lambda level routing granularity. Status of this Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on January 10, 2011. Copyright Notice Ceccarelli, et al. Expires January 10, 2011 [Page 1] Internet-Draft OSPF-TE extensions for OTN support July 2010 Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. OSPF Extensions . . . . . . . . . . . . . . . . . . . . . . . 4 2.1. OTN Interface Switching Capability Descriptor . . . . . . 4 2.2. Example using OTN-ISCD . . . . . . . . . . . . . . . . . . 9 3. Compatibility Considerations . . . . . . . . . . . . . . . . . 16 4. Security Considerations . . . . . . . . . . . . . . . . . . . 16 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 16 6. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 16 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 17 8. References . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8.1. Normative References . . . . . . . . . . . . . . . . . . . 17 8.2. Informative References . . . . . . . . . . . . . . . . . . 18 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 18 Ceccarelli, et al. Expires January 10, 2011 [Page 2] Internet-Draft OSPF-TE extensions for OTN support July 2010 1. Introduction An Opaque OSPF (Open Shortest Path First) LSA (Link State Advertisements) carrying application-specific information can be generated and advertised to other nodes following the flooding procedures defined in [RFC5250]. Three types of opaque LSA are defined, i.e. type 9 - link-local flooding scope, type 10 - area- local flooding scope, type 11 - AS flooding scope. Traffic Engineering (TE) LSA using type 10 opaque LSA is defined in [RFC3630] for TE purposes. This type of LSA is composed of a standard LSA header and a payload including one top-level TLV (Type/ Length/Value triplet) and possible several nested sub-TLVs. [RFC3630] defines two top-level TLVs: Router Address TLV and Link TLV; and nine possible sub-TLVs for the Link TLV, used to carry link related TE information. The Link type sub-TLVs are enhanced by [RFC4203] in order to support GMPLS networks and related specific link information. In GMPLS networks each node generates TE LSAs to advertise its TE information and capabilities (link-specific or node-specific), through the network. The TE information carried in the LSAs are collected by the other nodes of the network and stored into their local Traffic Engineering Databases (TED). In GMPLS enabled G.709 Optical Transport Networks (OTNs), routing serves as the foundation for automatically establishing ODUk connections through GMPLS RSVP-TE signaling. G.709 OTN [G709-V3] includes new fixed and flexible ODU containers, two types of Tributary Slots (i.e., 1.25Gbps and 2.5Gbps), and supports various multiplexing relationships (e.g., ODUj multiplexed into ODUk (j<k)), two different tributary slots for ODUk (K=1, 2, 3) and ODUflex signal type, which is being standardized in ITU-T. In order to present this information in the routing process, the OSPF protocol needs to be extended. For a short overview of OTN evolution and implications of OTN requirements on GMPLS routing please refer to [OTN-FWK]. The information model and an evaluation against the current solution are provided in [OTN-INFO]. This document describes OSPF LSA extensions to support the G.709v3 OTNs under the control of GMPLS. The routing information for Optical Channel Layer (OCh) (i.e., wavelength) is out of the scope of this document. Please refer to Ceccarelli, et al. Expires January 10, 2011 [Page 3] Internet-Draft OSPF-TE extensions for OTN support July 2010 [WSON-Frame] for further information. 2. OSPF Extensions In terms of GMPLS based OTN networks, each OTUk can be viewed as a component link, and each component link can carry one or more types of ODUj (j<k). Each TE LSA can carry a top-level link TLV with several nested sub- TLVs to describe different attributes of a TE link. Two top-level TLVs are defined in [RFC 3630]. (1) The Router Address TLV (referred to as the Node TLV) and (2) the TE link TLV. One or more sub-TLVs can be nested into the two top-level TLVs. The sub-TLV set for the two top-level TLVs are also defined in [RFC 3630] and [RFC 4203]. This document defines a new link sub-TLV, called OTN ISCD sub-TLV (Sub-tlv value TBA by IANA, suggested 26). One or more component links can be bundled as a TE link. In case of link bundling an OTN-ISCD will be used to describe several component links. As discussed in [OTN-FWK]and [OTN-INFO], usage of multi-stage multiplexing implies the advertisement of cascaded adaptation capabilities together with matrix access constraints. Modifications to ISCD/IACD [RFC4202][RFC5339] and [MLN-EXT], if needed, are for further study. 2.1. OTN Interface Switching Capability Descriptor The format of the OTN Interface Switching Capability Descriptor is defined in Figure 1. Ceccarelli, et al. Expires January 10, 2011 [Page 4] Internet-Draft OSPF-TE extensions for OTN support July 2010 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Switching Cap | Encoding | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|1|2|3|4|5|6|7| T | | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P5 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P6 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ... ... ... | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P5 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P6 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type |F| Bandwidth @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: OTN-ISCD format Where: Ceccarelli, et al. Expires January 10, 2011 [Page 5] Internet-Draft OSPF-TE extensions for OTN support July 2010 o Switching Capability (8 bits): the values for this field are defined in [RFC4203] section 1.4. The only valid value is 100 (TDM). o Encoding (8 bits): the values for this field are defined in [RFC3471] section 3.1.1 and [RFC4328] section 3.1.1 and the only possible ones are: o 7 - Digital Wrapper o 8 - Lambda (Photonic) o 12 - G.709 ODUk (Digital Path) o 13 - G.709 Optical Channel o Priority flags (8 bits): Indicate the priorities supported on the advertised link. When the flag is set, the corresponding priority is supported. As per IETF definition the highest priority is 0 and the lowest is 7. o T (3 bits): Indicates the type of the Tributary Slot of the advertised TE link. Possible values are: o 0 - 1.25 Gbps o 1 - 2.5 Gbps o 2-7 for future uses o Data Rows: Data rows contain Signal type, Field Qualifier(F) and bandwidth at priority Pi. For the definition of each field refer below. The number of data rows depends on the number of signal types and priority supported. Rows declared in the LSA MUST contain a supported signal type. Rows declaring bandwidth at priority Pi, MUST NOT be declared in case the flag associated to priority Pi is set to 0. Data "rows" are ordered from the highest to the lowest priority. If no priority is supported, just the 0 priority MUST be advertised. Please see the Example section for further details. o Signal Type (8 bits): Indicates the type of ODU/OTU supported by TE link. Different Signal Types are defined for full lambda and sub- lambda capabilities. Possible values are: Ceccarelli, et al. Expires January 10, 2011 [Page 6] Internet-Draft OSPF-TE extensions for OTN support July 2010 o 0 - ODU0 (sub-lambda) o 1 - ODU1 (sub-lambda) o 2 - ODU2 (sub-lambda) o 3 - ODU3 (sub-lambda) o 4 - ODU4 (sub-lambda) o 5 - ODU2e 8TSs (sub-lambda) o 6 - ODU2e 9TSs (sub-lambda) o 7 - ODUflex inside ODU1 (sub-lambda) o 8 - ODUflex inside ODU2 (sub-lambda) o 9 - ODUflex inside ODU3 (sub-lambda) o 10 - ODUflex inside ODU4 (sub-lambda) o 11 - ODUflex* o 12 - ODUflex resizable inside ODU1 (sub-lambda) o 13 - ODUflex resizable inside ODU2 (sub-lambda) o 14 - ODUflex resizable inside ODU3 (sub-lambda) o 15 - ODUflex resizable inside ODU4 (sub-lambda) o 16 - ODUflex resizable* o 20 - ODU1 (Full Lambda) o 21 - ODU2 (Full Lambda) o 22 - ODU3 (Full Lambda) o 23 - ODU4 (Full Lambda) o 24 - ODU2e (Full Lambda) * Please note that a distinction between different ODUflex signal types is needed, for path computation scopes, when optimizing the number of TS used depending on the server layer (i.e. OTUk). If such distinction is not needed, the value 11 must be used for non Ceccarelli, et al. Expires January 10, 2011 [Page 7] Internet-Draft OSPF-TE extensions for OTN support July 2010 resizable ODU-flex and the value 16 must be used for ODU-flex resizable. Each ODUk in a component link can be advertised only once, either as sub-lambda bandwidth or full lambda bandwidth. o Unreserved TS at Pi (12 bits): Indicates the number of unreserved TSs at priority Pi inside all the component links of the TE link. In the GMPLS based OTN networks, the Unreserved Bandwidth of a (bundled) TE link is the sum of the unreserved bandwidths of all the component links in the (bundled) TE-link. o Flag F (1 bits): This flag defines the meaning of the following field. It can assume the following values: 0 - Unreserved bandwidth at priority Pi expressed in number of TS 1 - Max LSP bandwidth at priority Pi expressed in number of TS The Maximum Bandwidth that an LSP can occupy in a TE link is determined by the component link with the maximum unreserved bandwidth in such TE link. For example, if two OTU3 component links are bundled in a TE link, the unreserved bandwidth of the first component link is 20*1.25G TSs, and the unreserved bandwidth of the second component link is 24*1.25G TSs, then the unreserved bandwidth of this TE link is 44*1.25G TSs, but the maximum TSs that a LSP can occupy in this TE link is 24, not 44. In case of non flexible signal type (i.e. non ODUflex) the bit MUST be ignored and set to 0. In case of flexible signal type both records MUST be included: Unreserved resources per priority and MAX LSP bandwidth per priority. Ceccarelli, et al. Expires January 10, 2011 [Page 8] Internet-Draft OSPF-TE extensions for OTN support July 2010 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |0| Unreserved resources per signal type @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |0| Unreserved resources per signal type @ P1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |0| Unreserved resources per signal type @ P2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |0| Unreserved resources per signal type @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |0| Unreserved resources per signal type @ P4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |0| Unreserved resources per signal type @ P5 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |0| Unreserved resources per signal type @ P6 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |0| Unreserved resources per signal type @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |1| Max LSP Bandwidth (ODUflex) @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |1| Max LSP Bandwidth (ODUflex) @ P1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |1| Max LSP Bandwidth (ODUflex) @ P2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |1| Max LSP Bandwidth (ODUflex) @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |1| Max LSP Bandwidth (ODUflex) @ P4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |1| Max LSP Bandwidth (ODUflex) @ P5 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |1| Max LSP Bandwidth (ODUflex) @ P6 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 7<=ST<=12 |1| Max LSP Bandwidth (ODUflex) @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: OTN-ISCD for ODUFlex All the reserved fields MUST be set to zero and SHOULD be ignored when received. 2.2. Example using OTN-ISCD The examples in the following pages are not normative and are not intended to infer or mandate any specific implementation. Figure 3 shows the case of a TE-link composed of two component links. Ceccarelli, et al. Expires January 10, 2011 [Page 9] Internet-Draft OSPF-TE extensions for OTN support July 2010 +------+ component link 1 +------+ | +------------------+ | | N1 +------------------+ N2 | | | component link 2 | | +--+---+ +---+--+ Figure 3: Example The link type of the two component links are OTU2 and OTU3 respectively. The former has the capability of carrying ODU0, ODU1 and ODUflex client signals, while the latter, ODU1, ODU3 and ODUflex. The TS type is 1.25Gbps and the supported priorities are:0, 3 and 7. In this example the two component links are bundled as a TE link but it could also be possible to consider each of them as a separate TE link. If the two component links are bundled together, N1 and N2 should assign a link local ID to the TE link and then N1 can get the link remote ID automatically or manually. N1 can generate an LSA to describe the above attributes of the TE link. If we suppose the link IDs are unnumbered, the LSA should carry a link TLV with the following nested minimal sub-TLVs: < G.709 Digital Link > ::= < Link Type > < Link ID > < Link Local/Remote Identifiers > < OTN ISCD > o Link Type sub-TLV: Defined in [RFC 3630], G.709 digital links are always type 1 - Point-to-point link. o Link ID sub-TLV: Defined in [RFC 3630], for point-to-point link, indicates the remote router ID. o Link Local/Remote Identifiers sub-TLV: Defined in [RFC 4203], indicates the local link ID and the remote link ID. o OTN ISCD sub-TLV: Defined in this document, carries the characteristic of this G.709 digital TE link. Just after the creation of the TE Link comprising the two component links, the OTN ISCD sub-TLV would be advertised as follows: Ceccarelli, et al. Expires January 10, 2011 [Page 10] Internet-Draft OSPF-TE extensions for OTN support July 2010 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SC = TDM | Enc = G709 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|0|0|0|1|0|0|1|T1.25| | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU0(0) |0| 8 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU0(0) |0| 8 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU0(0) |0| 8 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU1(1) |0| 8+32 = 40 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU1(1) |0| 8+32 = 40 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU1(1) |0| 8+32 = 40 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU3(22)|0| 32 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU3(22)|0| 32 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU3(22)|0| 32 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU2(21)|0| 8 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU2(21)|0| 8 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU2(21)|0| 8 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex |0| 8+32 = 40 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex |0| 8+32 = 40 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex |0| 8+32 = 40 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex|1| 32 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex|1| 32 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex|1| 32 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 4: Example - OTN-ISCD sub-TLV(to) Suppose that at time t1 an ODUflex LSP is created allocating 35 Gbps Ceccarelli, et al. Expires January 10, 2011 [Page 11] Internet-Draft OSPF-TE extensions for OTN support July 2010 at priority 3. The OTN ISCD sub-TLV will be modified as follows: Ceccarelli, et al. Expires January 10, 2011 [Page 12] Internet-Draft OSPF-TE extensions for OTN support July 2010 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SC = TDM | Enc = G709 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|0|0|0|1|0|0|1|T1.25| | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU0(0) |0| 8 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU0(0) |0| 8 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU0(0) |0| 8 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU1(1) |0| 8+32 = 40 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU1(1) |0| 8+4 = 12 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU1(1) |0| 8+4 = 12 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU3(22)|0| 32 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU3(22)|0| 0 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU3(22)|0| 0 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU2(21)|0| 8 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU2(21)|0| 8 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU2(21)|0| 8 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex |0| 8+32 = 40 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex |0| 8+4 = 12 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex |0| 8+4 = 12 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex |1| 32 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex |1| 8 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex |1| 8 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 5: Example - OTN-ISCD sub-TLV(t1) The last example shows how the prehemption is managed. In Ceccarelli, et al. Expires January 10, 2011 [Page 13] Internet-Draft OSPF-TE extensions for OTN support July 2010 particular, if at time t2 a new 15 GBps ODUflex LSP with priority 0 is created, the LSP with priority 3 is pre-empted and its resources (or part of them) are allocated to the LSP with higher priority. The OTN ISCD sub-TLV is updated accordingly to Figure 6: Ceccarelli, et al. Expires January 10, 2011 [Page 14] Internet-Draft OSPF-TE extensions for OTN support July 2010 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SC = TDM | Enc = G709 | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|0|0|0|1|0|0|1|T1.25| | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU0 |0| 8 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU0 |0| 8 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU0 |0| 8 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU1 |0| 8+20 = 28 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU1 |0| 8+20 = 28 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODU1 |0| 8+20 = 28 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=OTU3 |0| 0 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=OTU3 |0| 0 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=OTU3 |0| 0 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=OTU2 |0| 8 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=OTU2 |0| 8 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=OTU2 |0| 8 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex|0| 8+20 = 28 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex|0| 8+20 = 28 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex|0| 8+20 = 28 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex|1| 20 TS @ P0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex|1| 20 TS @ P3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SType=ODUflex|1| 20 TS @ P7 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 6: Example - OTN-ISCD (t2) Ceccarelli, et al. Expires January 10, 2011 [Page 15] Internet-Draft OSPF-TE extensions for OTN support July 2010 3. Compatibility Considerations The legacy nodes that do not implement the extensions defined in this document are able, per [RFC3630] section 4, to ignore the LSA containing an OTN ISCD sub-TLV. They will continue to flood the LSA to other neighbors, but will not use the information carried in this LSA. 4. Security Considerations This document specifies the contents of Opaque LSAs in OSPFv2. As Opaque LSAs are not used for SPF computation or normal routing, the extensions specified here have no direct effect on IP routing. Tampering with GMPLS TE LSAs may have an effect on the underlying transport (optical and/or SONET-SDH) network. [RFC3630] suggests mechanisms such as [RFC2154] to protect the transmission of this information, and those or other mechanisms should be used to secure and/or authenticate the information carried in the Opaque LSAs. 5. IANA Considerations TBD 6. Contributors Xiaobing Zi Huawei Technologies F3-5-B R&D Center, Huawei Base Bantian, Longgang District Shenzhen 518129 P.R.China Email: zixiaobing@huawei.com Francesco Fondelli Ericsson Via Negrone 1/A Ceccarelli, et al. Expires January 10, 2011 [Page 16] Internet-Draft OSPF-TE extensions for OTN support July 2010 Genova - 16145 Email: francesco.fondelli@ericsson.com Marco Corsi Altran Italia Via Negrone 1/A Genova - 16145 EMail: marco.corsi@altran.it 7. Acknowledgements The authors would like to thank Eric Gray for his precious comments and advices. 8. References 8.1. Normative References [MLN-EXT] D.Papadimitriou, M.Vigoureux, K.Shiomoto, D.Brungard, J.Le Roux, "Generalized Multi-Protocol Extensions for Multi- Layer and Multi-Region Network (MLN/MRN)", February 2010. [OTN-FWK] F.Zhang, D.Li, H.LI, S.Belotti, "Framework for GMPLS and PCE Control of G.709 Optical Transport networks, work in progress draft-ietf-ccamp-gmpls-g709-framework-02", July 2010. [OTN-INFO] S.Belotti, P.Grandi, D.Ceccarelli, D.Caviglia, F.Zhang, D.Li, "Information model for G.709 Optical Transport Networks (OTN), work in progress draft-bddg-ccamp-otn-g709-info-model-01", July 2010. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2154] Murphy, S., Badger, M., and B. Wellington, "OSPF with Digital Signatures", RFC 2154, June 1997. Ceccarelli, et al. Expires January 10, 2011 [Page 17] Internet-Draft OSPF-TE extensions for OTN support July 2010 [RFC2370] Coltun, R., "The OSPF Opaque LSA Option", RFC 2370, July 1998. [RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2", RFC 3630, September 2003. [RFC4201] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling in MPLS Traffic Engineering (TE)", RFC 4201, October 2005. [RFC4202] Kompella, K. and Y. Rekhter, "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, October 2005. [RFC4203] Kompella, K. and Y. Rekhter, "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, October 2005. [RFC5250] Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The OSPF Opaque LSA Option", RFC 5250, July 2008. [RFC5339] Le Roux, JL. and D. Papadimitriou, "Evaluation of Existing GMPLS Protocols against Multi-Layer and Multi-Region Networks (MLN/MRN)", RFC 5339, September 2008. 8.2. Informative References [G.709] ITU-T, "Interface for the Optical Transport Network (OTN)", G.709 Recommendation (and Amendment 1), February 2001. [G.709-v3] ITU-T, "Draft revised G.709, version 3", consented by ITU-T on Oct 2009. [Gsup43] ITU-T, "Proposed revision of G.sup43 (for agreement)", December 2008. Ceccarelli, et al. Expires January 10, 2011 [Page 18] Internet-Draft OSPF-TE extensions for OTN support July 2010 Authors' Addresses Daniele Ceccarelli Ericsson Via A. Negrone 1/A Genova - Sestri Ponente Italy Email: daniele.ceccarelli@ericsson.com Diego Caviglia Ericsson Via A. Negrone 1/A Genova - Sestri Ponente Italy Email: diego.caviglia@ericsson.com Fatai Zhang Huawei Technologies F3-5-B R&D Center, Huawei Base Shenzhen 518129 P.R.China Bantian, Longgang District Phone: +86-755-28972912 Email: zhangfatai@huawei.com Dan Li Huawei Technologies F3-5-B R&D Center, Huawei Base Shenzhen 518129 P.R.China Bantian, Longgang District Phone: +86-755-28973237 Email: danli@huawei.com Yunbin Xu CATR 11 Yue Tan Nan Jie Beijing P.R.China Email: xuyunbin@mail.ritt.com.cn Ceccarelli, et al. Expires January 10, 2011 [Page 19] Internet-Draft OSPF-TE extensions for OTN support July 2010 Sergio Belotti Alcatel-Lucent Via Trento, 30 Vimercate Italy Email: sergio.belotti@alcatel-lucent.com Pietro Vittorio Grandi Alcatel-Lucent Via Trento, 30 Vimercate Italy Email: pietro_vittorio.grandi@alcatel-lucent.com Ceccarelli, et al. Expires January 10, 2011 [Page 20]