
Delay-Tolerant Networking E. Birrane
Internet-Draft Johns Hopkins Applied Physics Laboratory
Intended status: Standards Track April 15, 2020
Expires: October 17, 2020

 Asynchronous Management Protocol
 draft-birrane-dtn-amp-08

Abstract

 This document describes a binary encoding of the Asynchronous
 Management Model (AMM) and a protocol for the exchange of these
 encoded items over a network. This Asynchronous Management Protocol
 (AMP) does not require transport-layer sessions, operates over
 unidirectional links, and seeks to reduce the energy and compute
 power necessary for performing network management on resource
 constrained devices.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 17, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Birrane Expires October 17, 2020 [Page 1]

Internet-Draft AMP April 2020

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 3
 3. Scope . 3
 3.1. Protocol Scope . 3
 3.2. Specification Scope 4
 4. Terminology . 4
 5. Constraints and Assumptions 4
 6. Technical Notes . 5
 7. AMP-Specific Concepts . 6
 7.1. Nicknames (NN) . 6
 7.1.1. Motivation for Compression 6
 7.1.2. ADM Enumeration 7
 7.1.3. ADM Template Collection Enumeration 8
 7.1.4. Nickname Definition 9
 7.1.5. ADM Enumeration Considerations 9
 8. Encodings . 10
 8.1. CBOR Considerations 10
 8.2. AMM Type Encodings 10
 8.2.1. Primitive Types 10
 8.2.2. Derived Types . 11
 8.2.3. Collections . 14
 8.3. AMM Resource Identifier (ARI) 19
 8.3.1. Encoding ARIs of Type LITERAL 19
 8.3.2. Encoding Non-Literal ARIs 20
 8.4. ADM Object Encodings 23
 8.4.1. Externally Defined Data (EDD) 23
 8.4.2. Constants (CONST) 24
 8.4.3. Controls (CTRL) 24
 8.4.4. Macros (MAC) . 25
 8.4.5. Operators (OPER) 26
 8.4.6. Report Templates (RPTT) 26
 8.4.7. Report (RPT) . 27
 8.4.8. State-Based Rules (SBR) 28
 8.4.9. Table Templates (TBLT) 30
 8.4.10. Tables (TBL) . 30
 8.4.11. Time-Based Rules (TBR) 31
 8.4.12. Variables (VAR) 33
 9. Functional Specification 33
 9.1. AMP Message Summary 33
 9.2. Message Group Format 34
 9.3. Message Format . 35
 9.4. Register Agent . 37
 9.5. Report Set . 37

Birrane Expires October 17, 2020 [Page 2]

Internet-Draft AMP April 2020

 9.6. Perform Control . 38
 9.7. Table Set . 38
 10. IANA Considerations . 39
 11. Security Considerations 39
 12. Implementation Notes . 39
 13. References . 40
 13.1. Informative References 40
 13.2. Normative References 40
 Appendix A. Acknowledgements 40
 Author’s Address . 40

1. Introduction

 Network management in challenged and resource constrained networks
 must be accomplished differently than the network management methods
 in high-rate, high-availability networks. The Asynchronous
 Management Architecture (AMA) [I-D.birrane-dtn-ama] provides an
 overview and justification of an alternative to "synchronous"
 management services such as those provided by NETCONF. In
 particular, the AMA defines the need for a flexible, robust, and
 efficient autonomy engine to handle decisions when operators cannot
 be active in the network. The logical description of that autonomous
 model and its major components is given in the AMA Data Model (ADM)
 [I-D.birrane-dtn-adm].

 The ADM presents an efficient and expressive autonomy model for the
 asynchronous management of a network node, but does not specify any
 particular encoding. This document, the Asynchronous Management
 Protocol (AMP), provides a binary encoding of AMM objects and
 specifies a protocol for the exchange of these encoded objects.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Scope

3.1. Protocol Scope

 The AMP provides data monitoring, administration, and configuration
 for applications operating above the data link layer of the OSI
 networking model. While the AMP may be configured to support the
 management of network layer protocols, it also uses these protocol
 stacks to encapsulate and communicate its own messages.

Birrane Expires October 17, 2020 [Page 3]

Internet-Draft AMP April 2020

 It is assumed that the protocols used to carry AMP messages provide
 addressing, confidentiality, integrity, security, fragmentation/
 reassembly, and other network functions. Therefore, these items are
 outside of the scope of this document.

3.2. Specification Scope

 This document describes the format of messages used to exchange data
 models between managing and managed devices in a network. The
 rationale for this type of exchange is outside of the scope of this
 document and is covered in [I-D.birrane-dtn-ama]. The description
 and explanation of the data models exchanged is also outside of the
 scope of this document and is covered in [I-D.birrane-dtn-adm].

 This document does not address specific configurations of AMP-enabled
 devices, nor does it discuss the interface between AMP and other
 management protocols.

4. Terminology

 Note: The terms "Actor", "Agent", "Application Data Model",
 "Externally Defined Data", "Variable", "Control", "Literal", "Macro",
 "Manager", "Report Template", "Report", "Table", "Constant",
 "Operator", "Time-Based Rule" and "State-Based Rule" are used without
 modification from the definitions provided in [I-D.birrane-dtn-ama].

5. Constraints and Assumptions

 The desirable properties of an asynchronous management protocol, as
 specified in the AMA, are summarized here to represent design
 constraints on the AMP specification.

 o Intelligent Push of Information - Nodes in a challenged network
 cannot guarantee concurrent, bi-directional communications. Some
 links between nodes may be strictly unidirectional. AMP Agents
 "push" data to Managers rather than Managers "pulling" data from
 Agents.

 o Small Message Sizes - Smaller messages require smaller periods of
 viable transmission for communication, incur less retransmission
 cost, and consume fewer resources when persistently stored en
 route in the network. AMP minimizes message size wherever
 practical, to include binary data representations and predefined
 data definitions and templates.

 o Absolute and Custom Data Identification - All data in the system
 must be uniquely addressable, to include operator-specified
 information. AMP provides a compact encoding for identifiers.

Birrane Expires October 17, 2020 [Page 4]

Internet-Draft AMP April 2020

 o Autonomous, Stateless Operation - There is no reliable concept of
 session establishment or round-trip data exchange in asynchronous
 networks. AMP is designed to be stateless. Where helpful, AMP
 provides mechanisms for transactional ordering of commands within
 a single AMP protocol data unit, but otherwise degrades gracefully
 when nodes in the network diver in their configuration.

6. Technical Notes

 o Unless otherwise specified, multi-byte values in this
 specification are expected to be transmitted in network byte order
 (Big Endian).

 o Character encodings for all text-based data types will use UTF-8
 encodings.

 o All AMP encodings are self-terminating. This means that, given an
 indefinite-length octet stream, each encoding can be unambiguously
 decoded from the stream without requiring additional information
 such as a length field separate from the data type definition.

 o This specification uses the term OCTETS to refer to a sequence of
 one or more related BYTE values. There is no implied structure
 associated with OCTETS, meaning they do not encode a length value
 or utilize a terminator character. While OCTETS may contain CBOR-
 encoded values, the OCTETS sequence itself is not encoded as a
 CBOR structure.

 o If an OCTETS sequence is included as an element of a CBOR array
 then the sequence MUST be considered as a single array element
 when determining the size of the array.

 o Bit-fields in this document are specified with bit position 0
 holding the least-significant bit (LSB). When illustrated in this
 document, the LSB appears on the right.

 o In order to describe the encoding of data models specified in
 [I-D.birrane-dtn-adm], this specification must refer to both the
 data object being encoded and to the encoding of that data object.
 When discussing the encoded version of a data object, this
 specification uses the notation "E(data_object)" where E() refers
 to a conceptual encoding function. This notation is only provided
 as a means of clarifying the text and imposes no changes to the
 actual wire coding. For example, this specification will refer to
 the "macro" data object as "Macro" and to the encoding of a Macro
 as "E(Macro)".

Birrane Expires October 17, 2020 [Page 5]

Internet-Draft AMP April 2020

 o Illustrations of fields in this specification consist of the name
 of the field, the type of the field between []’s, and if the field
 is optional, the text "(opt)".
 Field order is deterministic and, therefore, fields MUST be
 transmitted in the order in which they are specified. In cases
 where an optional field is not present, then the next field will
 be considered for transmission.
 An example is shown in Figure 1 below. In this illustration two
 fields (Field 1 and Field 2) are shown, with Field 1 of Type 1 and
 Field 2 of Type 2. Field 2 is also listed as being optional.
 Byte fields are shown in order of receipt, from left-to-right.
 Therefore, when transmitted on the wire, Field 1 will be received
 first, followed by Field 2 (if present).

 +----------+----------+
 | Field 1 | Field 2 |
 | [TYPE 1] | [TYPE 2] |
 | | (opt) |
 +----------+----------+

 Figure 1: Byte Field Formatting Example

 When types are documented in this way, the type always refers to
 the encoding of that type. The E() notation is not used as it is
 to be inferred from the context of the illustration.

7. AMP-Specific Concepts

 The AMP specification provides an encoding of objects comprising the
 AMM. As such, AMP defines very few structures of its own. This
 section identifies those data structures that are unique to the AMP
 and required for it to perform appropriate and efficient encodings of
 AMM objects.

7.1. Nicknames (NN)

 In the AMP, a "Nickname" (NN) is used to reduce the overall size of
 the encoding of ARIs that are defined in the context of an ADM. A NN
 is calculated as a function of an ADM Moderated Namespace and the
 type of object being identified.

7.1.1. Motivation for Compression

 As identifiers, ARIs are used heavily in AMM object definitions,
 particularly in those that define collections of objects. This makes
 encoding ARIs an important consideration when trying to optimize the
 size of AMP message.

Birrane Expires October 17, 2020 [Page 6]

Internet-Draft AMP April 2020

 Additionally, the majority of ARIs are defined in the context of an
 ADM. Certain AMM objects types (EDDs, OPs, CTRLs, TBLTs) can only be
 defined in the context of an ADM. Other object types (VARs, CONSTs,
 RPTTs) may have common, useful objects defined in an ADM as well.
 The structure of an ADM, to include its use of a Moderated Namespace
 and collections by object type, provide a regular structure that can
 be exploited for creating a compact representation.

 In particular, as specified in [I-D.birrane-dtn-adm], ARIs can be
 grouped by (1) their namespace and (2) the type of AMM object being
 identified. For example, consider the following ARIs of type EDD
 defined in ADM1 with a Moderated Namespace of "/DTN/ADM1/".

 ari:/DTN/ADM1/Edd.item_1 ari:/DTN/ADM1/Edd.item_2 ... ari:/DTN/ADM1/
 Edd.item_1974

 In this case, the namespace (/DTN/ADM1/) and the object type (Edd)
 are good candidates for enumeration because their string encoding is
 very verbose and their information follows a regular structure shared
 across multiple ARIs. Separately, the string representation of
 object names (item_1, item_2, etc...) may be very verbose and they
 are also candidates for enumeration as they occupy a particular ADM
 object type in a particular order as published in the ADM.

7.1.2. ADM Enumeration

 Any ARI defined in an ADM exists in the context of a Moderated
 Namespace. These namespaces provide a unique string name for the
 ADM. However, ADMs can also be assigned a unique enumeration by the
 same moderating entities that ensure namespace uniqueness.

 An ADM enumeration is an unsigned integer in the range of 0 to
 (2^64)/20. This range provides effective support for thousands of
 trillions of ADMs.

 The formal set of ADMs, similar to SNMP MIBs and NETCONF YANG models,
 will be moderated and published. Additionally, a set of informal
 ADMs may be developed on a network-by-network or on an organization-
 by-organization bases.

 Since informal ADMs exist within a predefined context (a network, an
 organization, or some other entity) they do not have individual ADM
 enumerations and are assigned the special enumeration "0". ARIs that
 are not defined in formal ADMs rely on other context information to
 help with their encoding (see Section 8.3).

Birrane Expires October 17, 2020 [Page 7]

Internet-Draft AMP April 2020

7.1.3. ADM Template Collection Enumeration

 The ADM template presented in [I-D.birrane-dtn-adm] defines a series
 of object collections for the specification of various AMM objects.
 Enumerating these collections in a standard way allows for their
 compressed representation in the context of nicknames for objects
 stored in these collections.

 The enumeration of ADM Template collections is provided in Table 1
 below.

 +-----------------+-------------+
 | AMM Object Type | Enumeration |
 +-----------------+-------------+
 | CONST | 0 |
 | | |
 | CTRL | 1 |
 | | |
 | EDD | 2 |
 | | |
 | MAC | 3 |
 | | |
 | OPER | 4 |
 | | |
 | RPTT | 5 |
 | | |
 | SBR | 6 |
 | | |
 | TBLT | 7 |
 | | |
 | TBR | 8 |
 | | |
 | VAR | 9 |
 | | |
 | metadata | 10 |
 | | |
 | reserved | 11-19 |
 +-----------------+-------------+

 Table 1: ADM Type Enumerations

 NOTE: Collection enumerations are different from AMM object types.
 For example, the enumeration for the VAR collection (9) in an ADM is
 different from the VAR object type (12).

Birrane Expires October 17, 2020 [Page 8]

Internet-Draft AMP April 2020

7.1.4. Nickname Definition

 As an enumeration, a Nickname is captured as a 64-bit unsigned
 integer (UVAST) calculated as a function of the ADM enumeration and
 the ADM type enumeration, as follows.

 NN = ((ADM Enumeration) * 20) + (ADM Object Type Enumeration)

 Considering the example set of ARIs from Section 7.1.1, assuming that
 ADM1 has ADM enumeration 9 and given that objects in the example were
 of type EDD, the NN for each of the 1974 items would be: (9 * 20) + 2
 = 182. In this particular example, the ARI "/DTN/ADM1/Edd.item_1974"
 can be encoded in 5 bytes: two bytes to CBOR encode the nickname
 (182) and 3 bytes to CBOR encode the item’s offset in the Edd
 collection (1974).

7.1.5. ADM Enumeration Considerations

 The assignment of formal ADM enumerations SHOULD take into
 consideration the nature of the applications and protocols to which
 the ADM applies. Those ADMs that are likely to be used in challenged
 networks SHOULD be allocated low enumeration numbers (e.g. those that
 will fit into 1-2 bytes) while ADMs that are likely to only be used
 in well resourced networks SHOULD be allocated higher enumeration
 numbers. It SHOULD NOT be the case that ADM enumerations are
 allocated on a first-come, first-served basis. It is recommended
 that ADM enumerations should be labeled based on the number of bytes
 of the Nickname as a function of the size of the ADM enumeration.
 These labels are shown in Table 2.

 +-------------+--------+--------------+-----------------------------+
 | ADM Enum | NN | Label | Comment |
 | | Size | | |
 +-------------+--------+--------------+-----------------------------+
0x1 - 0xCCC	1-2	Challenged	Constraints imposed by
	Bytes	Networks	physical layer and power.
0xCCD -	3-4	Congested	Constraints imposed by
0xCCCCCCC	Bytes	Networks	network traffic.
>=0xCCCCCCD	5-8	Resourced	Generally unconstrained
	Bytes	Networks	networks.
 +-------------+--------+--------------+-----------------------------+

 Table 2: ADM Enumerations Labels

Birrane Expires October 17, 2020 [Page 9]

Internet-Draft AMP April 2020

8. Encodings

 This section describes the binary encoding of logical data constructs
 using the Concise Binary Object Representation (CBOR) defined in
 [RFC7049].

8.1. CBOR Considerations

 The following considerations act as guidance for CBOR encoders and
 decoders implementing the AMP.

 o All AMP encodings are of definite length and, therefore,
 indefinite encodings MUST NOT be used.

 o AMP encodings MUST NOT use CBOR tags. Identification mechanisms
 in the AMP capture structure and other information such that tags
 are not necessary.

 o Canonical CBOR MUST be used for all encoding. All AMP CBOR
 decoders MUST run in strict mode.

 o Because AMA objects are self-delineating they can be serialized
 into, or deserialized from, OCTETS. CBOR containers such as
 BYTESTR and TXTSTR that encode length fields are only useful for
 data that is not self-delineating, such as name fields. Encoding
 self-delineating objects into CBOR containers reduced efficiency
 as length fields would then be added to data that does not reqire
 a length field for processing.

 o Encodings MUST result in smallest data representations. There are
 several cases where the AMM defines types with less granularity
 than CBOR. For example, AMM defines the UINT type to represent
 unsigned integers up to 32 bits in length. CBOR supports separate
 definitions of unsigned integers of 8, 16, or 32 bits in length.
 In cases where an AMM type MAY be encoded in multiple ways in
 CBOR, the smallest data representation MUST be used. For example,
 UINT values of 0-255 MUST be encoded as a uint8_t, and so on.

8.2. AMM Type Encodings

8.2.1. Primitive Types

 The AMP encodes AMM primitive types as outlined in Table 3.

Birrane Expires October 17, 2020 [Page 10]

Internet-Draft AMP April 2020

 +--------+-------------+--+
 | AMM | CBOR Major | Comments |
 | Type | Type | |
 +--------+-------------+--+
BYTE	unsigned	BYTEs are individually encoded as unsigned
	int or byte	integers unless the are defined as part of
	string	a byte string, in which case they are
		encoded as a single byte in the byte
		string.
INT	unsigned	INTs are encoded as positive or negative
	integer or	integers from (u)int8_t up to (u)int32_t.
	negative	
	integer	
UINT	unsigned	UINTs are unsigned integers from uint8_t
	integer	up to uint32_t.
VAST	unsigned	VASTs are encoding as positive or negative
	integer or	integers up to (u)int64_t.
	negative	
	integer	
UVAST	unsigned	VASTs are unsigned integers up to
	integer	uint64_t.
REAL32	floating	Up to an IEEE-754 Single Precision Float.
	point	
REAL64	floating	Up to an IEEE-754 Double Precision Float.
	point	
STRING	text string	Uses CBOR encoding unmodified.
BOOL	Simple	0 is considered FALSE. Any other value is
	Value	considered TRUE.
 +--------+-------------+--+

 Table 3: Standard Numeric Types

8.2.2. Derived Types

 This section provides the CBOR encodings for AMM derived types.

Birrane Expires October 17, 2020 [Page 11]

Internet-Draft AMP April 2020

8.2.2.1. Byte String Encoding

 The AMM derived type Byte String (BYTESTR) is encoded as a CBOR byte
 string.

8.2.2.2. Time Values (TV) and Timestamps (TS)

 An TV is encoded as a UVAST. Similarly, a TS is also encoded as a
 UVAST since a TS is simply an absolute TV.

 Rather than define two separate encodings for TVs (one for absolute
 TVs and one for relative TVs) a single, unambiguous encoding can be
 generated by defining a Relative Time Epoch (RTE) and interpreting
 the type of TV in relation to that epoch. Time values less than the
 RTE MUST be interpreted as relative times. Time values greater than
 or equal to the RTE MUST be interpreted as absolute time values.

 A relative TV is encoded as the number of seconds after an initiating
 event. An absolute TV (and TS) is encoded as the number of seconds
 that have elapsed since 1 Jan 2000 00:00:00 (Unix Time 946684800).

 The RTE is defined as the timestamp value for September 9th, 2017
 (Unix time 1504915200). Since TS values are the number of seconds
 since 1 Jan 2000 00:00:00, the RTE as a TS value is 1504915200 -
 946684800 = 558230400.

 The potential values of TV, and how they should be interpreted as
 relative or absolute is illustrated below.

 Potential Time values
 ________________________/________________________
 / \
 Relative Times Absolute Times
 <------------------------><------------------------>
 0 - 558,230,400 558,230,401 - 2^64

 |------------------------|-------------------------|
 | |
 00:00:00 1 Jan 2000 00:00:00 9 Sep 2017
 Unix Time 946684800 Unix Time 1504915200

 For example, a time value of "10" is a relative time representing 10
 seconds after an initiating event. A time value of "600,000,000"
 refers to Saturday, 5 Jan, 2019 10:40:00.

 NOTE: Absolute and relative times are interchangeable. An absolute
 time can be converted into a relative time by subtracting the current
 time from the absolute time. A relative time can be converted into

Birrane Expires October 17, 2020 [Page 12]

Internet-Draft AMP April 2020

 an absolute time by adding to the relative time the timestamp of its
 relative event. A pseudo-code example of converting a relative time
 to an absolute time is as follows, assuming that current-time is
 expressed in Unix Epoch time.

 IF (time_value <= 558230400) THEN
 absolute_time = (event_time - 946684800) + time_value
 ELSE
 absolute_time = time_value

8.2.2.3. Type-Name-Value (TNV)

 TNV values are encoded as a CBOR array that comprises four distinct
 pieces of information: a set of flags, a type, an optional name, and
 an optional value. In the E(TNV) the flag and type information are
 compressed into a single value. The CBOR array MUST have length 1,
 2, or 3 depending on the number of optional fields appearing in the
 encoding. The E(TNV) format is illustrated in Figure 2.

 +---------+
 | TNV |
 | [ARRAY] |
 +----++---+
 ||
 ||
 _______________/ ________________
 / \
 +------------+-----------+----------+
 | Flags/Type | Name | Value |
 | [BYTE] | [TXT STR] | [Varies] |
 | | (opt) | (opt) |
 +------------+-----------+----------+

 Figure 2: E(TNV) Format

 The E(TNV) fields are defined as follows.

 Flags/Type
 The first byte of the E(TNV) describes the type associated
 with the TNV and which optional components are present. The
 layout of this byte is illustrated in Figure 3.

Birrane Expires October 17, 2020 [Page 13]

Internet-Draft AMP April 2020

 E(TNV) Flag/Type Byte Format

 +------+---------------+
 | Name | Struct |
 | Flag | Type |
 +------+---------------+
 | 7 | 6 5 4 3 2 1 0 |
 +------+---------------+
 MSB LSB

 Figure 3

 Name Flag
 This flag indicates that the TNV contains a name
 field. When set to 1 the Name field MUST be present
 in the E(TNV). When set to 0 the Name field MUST NOT
 be present in the E(TNV).

 Struct Type
 This field lists the type associated with this TNV
 and MUST contain one of the types defined in
 [I-D.birrane-dtn-adm] with the exception that the
 type of a TNV MUST NOT be a TNV.

 Name
 This optional field captures the human-readable name for the
 TNV encoded as a CBOR text string. If there are 3 elements
 in the TNV array OR there are 2 elements in the array and the
 Name Flag is set, then this field MUST be present.
 Otherwise, this field MUST NOT be present.

 Value
 This optional field captures the encoded value associated
 with this TNV. The value is encoded in accordance with AMP
 rules for encoding of items of the type of this TNV. If
 there are 3 elements in the TNV array OR there are 2 elements
 in the array and the Name Flag is not set, then this field
 MUST be present. Otherwise, this field MUST NOT be present.

8.2.3. Collections

8.2.3.1. Type-Name-Value Collection (TNVC)

 A TNV Collection (TNVC) is an ordered set of TNVs with special
 semantics for more efficiently encoding sets of TNVs with identical
 attributes.

Birrane Expires October 17, 2020 [Page 14]

Internet-Draft AMP April 2020

 A TNV, defined in Section 8.2.2.3, consists of three distinct
 components: a type, a name, and a value. When all of the TNVs in the
 TNVC have the same format (such as they all include type information)
 then the encoding of the TNVC can use this information to save
 encoding space and make processing more efficient. In cases when all
 TNVs have the same format, the types (if present), names (if
 present), and values (if present) are separated into their own arrays
 for individual processing with type information (if present) always
 appearing first.

 Extracting type information to the "front" of the collection
 optimizes the performance of type validators. A validator can
 inspect the first array to ensure that element values match type
 expectations. If type information were distributed throughout the
 collection, as in the case with the TNVC, a type validator would need
 to scan through the entire set of data to validate each type in the
 collection.

 A TNVC is encoded as a sequence of at least 1 octet, where the single
 required octet includes the flag BYTE representing the optional
 portions of the collection that are present. If the flag BYTE
 indicates an empty collection there will be no following octets.The
 format of a TNVC is illustrated in Figure 4.

 +----------+
 | TNVC |
 | [OCTETS] |
 +----++----+
 ||
 ||
 ____________________________/ _____________________________
 / \
 +--------+---------+----------+----------+----------+----------+
 | Flags | # Items | Types | Names | Values | Mixed |
 | [BYTE] | [UINT] | [OCTETS] | [OCTETS] | [OCTETS] | [OCTETS] |
 | | (Opt) | (Opt) | (Opt) | (Opt) | (Opt) |
 +--------+---------+----------+----------+----------+----------+

 Figure 4: E(TNVC) Format

 The E(TNVC) fields are defined as follows.

 Flags
 The first byte of the E(TNVC) describes which optional
 portions of a TNV will be present for each TNV in the
 collection.

Birrane Expires October 17, 2020 [Page 15]

Internet-Draft AMP April 2020

 If all non-reserved flags have the value 0 then the TNVC
 represents an empty collection, in which case no other
 information is provided for the E(TNVC).
 The layout of this byte is illustrated in Figure 5.

 E(TNV) Flag Byte Format

 +----------+------+------+------+------+
 | Reserved | Mix | Type | Name | Val |
 | Flags | Flag | Flag | Flag | Flag |
 +----------+------+------+------+------+
 | 7-4 | 3 | 2 | 1 | 0 |
 +----------+------+------+------+------+
 MSB LSB

 Figure 5

 Mixed Flag
 This flag indicates that the set of TNVs in the
 collection do not all share the same properties and,
 therefore, the collection is a mix of different types
 of TNV. When set to 1 the E(TNVC) MUST contain the
 Mixed Values field and all other flags in this byte
 MUST be set to 0. When set to 0 the E(TNVC) MUST NOT
 contain the Mixed Values field.

 Type Flag
 This flag indicates whether each TNV in the
 collection has type information associated with it.
 When set to 1 the E(TNVC) MUST contain type
 information for each TNV. When set to 0, type
 information MUST NOT be present.

 Name Flag
 This flag indicates whether each TNV in the
 collection has name information associated with it.
 When set to 1 the E(TNVC) MUST contain name
 information for each TNV. When set to 0, name
 information MUST NOT be present.

 Value Flag
 This flag indicates whether each TNV in the
 collection has value information associated with it.
 When set to 1 the E(TNVC) MUST contain value
 information for each TNV. When set to 0, value
 information MUST NOT be present.

 # Items

Birrane Expires October 17, 2020 [Page 16]

Internet-Draft AMP April 2020

 The number of items field lists the number of items that are
 contained in the TNVC. Each of the types, names, and values
 sequences (if present) MUST have exactly this number of
 entries in them. This field MUST be present in the E(TNVC)
 when any one of the non-reserved bits of the Flag Byte are
 set to 1.

 Types
 The types field is encoded as an OCTETS sequence where the
 Nth byte in the sequence represents the type for the Nth TNV
 in the collection. This field MUST be present in the E(TNVC)
 when the Type Flag is set to 1 and MUST NOT be present
 otherwise. If present, this field MUST contain exactly the
 same number of types as number of items in the TNVC.

 Names
 The names field is encoded as an OCTETS sequence containing
 the names of the TNVs in the collection. Each name is
 encoded as a CBOR string, with the Nth CBOR string
 representing the name of the Nth TNV in the collection. This
 field MUST be present in the E(TNVC) when the Names Flag is
 set to 1 and MUST NOT be present otherwise. If present, this
 field MUST contain exactly the same number of CBOR strings as
 number of items in the TNVC.

 Values
 The values field is encoded as an OCTETS sequence containing
 the values of TNVs in the collection.
 If the Type Flag is set to 1 then each entry will be encoded
 in accordance with the corresponding index in the type field.
 For example, the 1st value will be encoded using the encoding
 rules for the first byte in the type OCTETS sequence.
 If the Type Flag is set to 0 then the values will be encoded
 as native CBOR types. CBOR types do not have a one-to-one
 mapping with AMP types and it is the responsibility of the
 transmitting AMP actor and the receiving AMP actor to
 determine how to map these to AMP types. This field MUST be
 present in the E(TNVC) when the Value Flag is set to 1 and
 MUST NOT be present otherwise. If present, this field MUST
 contain exactly the same number of values as number of items
 in the TNVC.

 Mixed
 The mixed field is encoded as an OCTETS sequence containing a
 series of E(TNV) objects. This field MUST be present when
 the Mixed Flag is set to 1 and MUST NOT be present otherwise.
 If present, this field MUST contain exactly the same number
 of E(TNV) objects as numnber of items in the TNVC.

Birrane Expires October 17, 2020 [Page 17]

Internet-Draft AMP April 2020

8.2.3.2. ARI Collections (AC)

 An ARI collection is an ordered collection of ARI values. It is
 encoded as a CBOR array with each element being an encoded ARI, as
 illustrated in Figure 6.

 E(AC) Format

 +---------+
 | AC |
 | [ARRAY] |
 +----++---+
 ||
 ||
 ________/ _________
 / \
 +-------+ +-------+
 | ARI 1 | ... | ARI N |
 | [ARI] | | [ARI] |
 +-------+ +-------+

 Figure 6

8.2.3.3. Expressions (EXPR)

 The Expression object encapsulates a typed postfix expression in
 which each operator MUST be of type OPER and each operand MUST be the
 typed result of an operator or one of EDD, VAR, LIT, or CONST.

 The Expression object is encoded as an OCTETS sequence whose format
 is illustrated in Figure 7.

 E(EXPR) Format

 +----------+
 | EXPR |
 | [OCTETS] |
 +-----++---+
 ||
 ||
 _________/ _________
 / \
 +---------+------------+
 | Type | Expression |
 | [BYTE] | [AC] |
 +---------+------------+

 Figure 7

Birrane Expires October 17, 2020 [Page 18]

Internet-Draft AMP April 2020

 Type
 The enumeration representing the type of the result of the
 evaluated expression. This type MUST be defined in
 [I-D.birrane-dtn-adm] as a "Primitive Type".

 Expression
 An expression is represented in the AMP as an ARI collection,
 where each ARI in the ordered collection represents either an
 operand or operator in postfix form.

8.3. AMM Resource Identifier (ARI)

 The ARI, as defined in [I-D.birrane-dtn-adm], identifies an AMM
 object. There are two kinds of objects that can be identified in
 this scheme: literal objects (of type LIT) and all other objects.

8.3.1. Encoding ARIs of Type LITERAL

 A literal identifier is one that is literally defined by its value,
 such as numbers (0, 3.14) and strings ("example"). ARIs of type
 LITERAL do not have issuers or nicknames or parameters. They are
 simply typed basic values.

 The E(ARI) of a LIT object is encoded as an OCTETS sequence and
 consists of a mandatory flag BYTE and the value of the LIT.

 The E(ARI) structure for LIT types is illustrated in Figure 8.

 E(ARI) Literal Format

 +--------+----------+
 | Flags | Value |
 | [BYTE] | [VARIES] |
 +--------+----------+

 Figure 8

 These fields are defined as follows.

 Flags
 The Flags byte identifies the object as being of type LIT and
 also captures the primitive type of the following value. The
 layout of this byte is illustrated in Figure 9.

Birrane Expires October 17, 2020 [Page 19]

Internet-Draft AMP April 2020

 E(ARI) Literal Flag Byte Format

 +-------------------+-------------+
 | VALUE TYPE OFFSET | STRUCT TYPE |
 +-------------------+-------------|
 | 7 6 5 4 | 3 2 1 0 |
 +-------------------+-------------+
 MSB LSB

 Figure 9

 Value Type Offset
 The high nibble of the flag byte contains the offset
 into the Primitive Types enumeration defined in
 [I-D.birrane-dtn-adm]. An offset of 0 represents the
 first defined Primitive Type. An offset of 1
 represents the second defined Primitive Type, and so
 on. An offset into the data types field is used to
 ensure that the type value fits into a nibble.

 Structure Type
 The lower nibble of the flag byte identifies the type
 of AMM Object being identified by the ARI. In this
 instance, this value MUST be LIT, as defined in
 [I-D.birrane-dtn-adm].

 Value
 This field captures the CBOR encoding of the value. Values
 are encoded according to their Value Type as specified in the
 flag byte in accordance with the encoding rules provided in
 Section 8.2.1.

8.3.2. Encoding Non-Literal ARIs

 All other ARIs are defined in the context of AMM objects and may
 contain parameters and other meta-data. The AMP, as a machine-to-
 machine binary encoding of this information removes human-readable
 information such as Name and Description from the E(ARI).
 Additionally, this encoding adds other information to improve the
 efficiency of the encoding, such as the concept of Nicknames, defined
 in Section 7.1.

 The E(ARI) is encoded as an OCTETS sequence and consists of a
 mandatory flag byte, an encoded object name, and optional annotations
 to assist with filtering, access control, and parameterization. The
 E(ARI) structure is illustrated in Figure 10.

Birrane Expires October 17, 2020 [Page 20]

Internet-Draft AMP April 2020

 E(ARI) General Format

 +--------+---------+-----------+---------+-----------+-----------+
 | Flags | NN | Name | Parms | Issuer | Tag |
 | [BYTE] | [UVAST] | [BYTESTR] | [TNVC] | [BYTESTR] | [BYTESTR] |
 | | (opt) | | (opt) | (opt) | opt) |
 +--------+---------+-----------+---------+-----------+-----------+

 Figure 10

 These fields are defined as follows.

 Flags
 Flags describe the type of structure and which optional
 fields are present in the encoding. The layout of the flag
 byte is illustrated in Figure 11.

 E(ARI) General Flag Byte Format

 +----+------+-----+-----+-------------+
 | NN | PARM | ISS | TAG | STRUCT TYPE |
 +----+------+-----+-----+-------------+
 | 7 | 6 | 5 | 4 | 3 2 1 0 |
 +----+------+-----+-----+-------------+
 MSB LSB

 Figure 11

 Nickname (NN)
 This flag indicates that ADM compression is used for
 this E(ARI). When set to 1 the Nickname field MUST
 be present in the E(ARI). When set to 0 the Nickname
 field MUST NOT be present in the E(ARI). When an ARI
 is user-defined, there are no semantics for Nicknames
 and, therefore, this field MUST be 0 when the Issuer
 flag is set to 1. Implementations SHOULD use
 Nicknames whenever possible to reduce the size of the
 E(ARI).

 Parameters Present (PARM)
 This flag indicates that this ARI can be
 parameterized and that parameter information is
 included in the E(ARI). When set to 1 the Parms
 field MUST be present in the E(ARI). When set to 0
 the Parms field MUST NOT be present in the E(ARI).

 Issuer Present (ISS)

Birrane Expires October 17, 2020 [Page 21]

Internet-Draft AMP April 2020

 This flag indicates that this ARI is defined in the
 context of a specific issuing entity. When set to 1
 the Issuer field MUST be present in the E(ARI). When
 set to 0 the Issuer field MUST NOT be present in the
 E(ARI).

 Tag Present (TAG)
 This flag indicates that the ARI is defined in the
 context of a specific issuing entity and that issuing
 entity adds additional information in the form of a
 tag. When set to 1 the Tag field MUST be present in
 the E(ARI). When set to 0 the Tag field MUST NOT be
 present in the E(ARI). This flag MUST be set to 0 if
 the Issuer Present flag is set to 0.

 Structure Type (STRUCT TYPE)
 The lower nibble of the E(ARI) flag byte identifies
 the kind of structure being identified. This field
 MUST contain one of the AMM object types defined in
 [I-D.birrane-dtn-adm].

 Nickname (NN)
 This optional field contains the Nickname as calculated
 according to Section 7.1.

 Object Name
 This mandatory field contains an encoding of the ADM object.
 For elements defined in an ADM Template (e.g., where the
 Issuer Flag is set to 0) this is the 0-based index into the
 ADM collection holding this element. For all user-defined
 ADM objects, (e.g., where the Issuer Flag is set to 1) this
 value is as defined by the Issuing organization.

 Parameters
 The parameters field is represented as a Type Name Value
 Collection (TNVC) as defined in Section 8.2.3.1. The overall
 number of items in the collection represents the number of
 parameters. The types of the TNVC represent the types of
 each parameter, with the first listed type associated with
 the first parameter, and so on. The values, if present,
 represent the values of the parameters, with the first listed
 value being the value of the first parameter, and so on.

 Issuer
 This is a binary identifier representing a predetermined
 issuer name. The AMP protocol does not parse or validate
 this identifier, using it only as a distinguishing bit
 pattern to ensure uniqueness. This value, for example, may

Birrane Expires October 17, 2020 [Page 22]

Internet-Draft AMP April 2020

 come from a global registry of organizations, an issuing node
 address, or some other network-unique marking. The issuer
 field MUST NOT be present for any ARI defined in an ADM.

 Tag
 A value used to disambiguate multiple ARIs with the same
 Issuer. The definition of the tag is left to the discretion
 of the Issuer. The Tag field MUST be present if the Tag Flag
 is set in the flag byte and MUST NOT be present otherwise.

8.4. ADM Object Encodings

 The autonomy model codified in [I-D.birrane-dtn-adm] comprises
 multiple individual objects. This section describes the CBOR
 encoding of these objects.

 Note: The encoding of an object refers to the way in which the
 complete object can be encoded such that the object as it exists on a
 Manager may be re-created on an Agent, and vice-versa. In cases
 where both a Manager and an Agent already have the definition of an
 object, then only the encoded ARI of the object needs to be
 communicated. This is the case for all objects defined in a
 published ADM and any user-defined object that has been synchronized
 between an Agent and Manager.

8.4.1. Externally Defined Data (EDD)

 Externally defined data (EDD) are solely defined in the ADMs for
 various applications and protocols. EDDs represent values that are
 calculated external to an AMA Agent, such as values measured by
 firmware.

 The representation of these data is simply their identifying ARIs.
 The representation of an EDD is illustrated in Figure 12.

 E(EDD) Format

 +-------+
 | ID |
 | [ARI] |
 +-------+

 Figure 12

 ID
 This is the ARI identifying the EDD. Since EDDs are always
 defined solely in the context of an ADM, this ARI MUST NOT

Birrane Expires October 17, 2020 [Page 23]

Internet-Draft AMP April 2020

 have an ISSUER field and MUST NOT have a TAG field. This ARI
 may be defined with parameters.

8.4.2. Constants (CONST)

 Unlike Literals, a Constant is an immutable, typed, named value.
 Examples of constants include PI to some number of digits or the UNIX
 Epoch.

 Since ADM definitions are preconfigured on Agents and Managers in an
 AMA, the type information for a given Constant is known by all actors
 in the system and the encoding of the Constant needs to only be the
 name of the constant as the Manager and Agent can derive the type and
 value from the unique Constant name.

 The format of a Constant is illustrated in Figure 13.

 E(CONST) Format

 +-------+
 | ID |
 | [ARI] |
 +-------+

 Figure 13

 ID
 This is the ARI identifying the Constant. Since Constant
 definitions are always provided in an ADM, this ARI MUST NOT
 have an ISSUER field and MUST NOT have a TAG field. The ARI
 MUST NOT have parameters.

8.4.3. Controls (CTRL)

 A Control represents a pre-defined and optionally parameterized
 opcode that can be run on an Agent. Controls in the AMP are always
 defined in the context of an AMA; there is no concept of an operator-
 defined Control. Since Controls are pre-configured in Agents and
 Managers as part of ADM support, their representation is the ARI that
 identifies them, similar to EDDs.

 The format of a Control is illustrated in Figure 14.

Birrane Expires October 17, 2020 [Page 24]

Internet-Draft AMP April 2020

 E(CTRL) Format

 +-------+
 | ID |
 | [ARI] |
 +-------+

 Figure 14

 ID
 This is the ARI identifying the Control. This ARI MUST NOT
 have an ISSUER field and MUST NOT have a TAG field. This ARI
 may have parameters.

8.4.4. Macros (MAC)

 Macros in the AMP are ordered collections of ARIs (an AC) that
 contain Controls or other Macros. When run by an Agent, each ARI in
 the AC MUST be run in order.

 Any AMP implementation MUST allow at least 4 levels of Macro nesting.
 Implementations MUST prevent recursive nesting of Macros.

 The ARI associated with a Macro MAY contain parameters. Each
 parameter present in a Macro ARI MUST contain type, name, and value
 information. Any Control or Macro encapsulated within a
 parameterized Macro MAY also contain parameters. If an encapsulated
 object parameter contains only name information, then the parameter
 value MUST be taken from the named parameter provided by the
 encapsulating Macro. Otherwise, the value provided to the object
 MUST be used instead.

 The format of a Macro is illustrated in Figure 15.

 E(MAC) Format

 +-------+------------+
 | ID | Definition |
 | [ARI] | [AC] |
 +-------+------------+

 Figure 15

 ID
 This is the ARI identifying the Macro. When a Macro is
 defined in an ADM this ARI MUST NOT have an ISSUER field and
 MUST NOT have a TAG field. When the Macro is defined outside

Birrane Expires October 17, 2020 [Page 25]

Internet-Draft AMP April 2020

 of an ADM, the ARI MUST have an ISSUER field and MAY have a
 TAG field.

 Definition
 This is the ordered collection of ARIs that identify the
 Controls and other Macros that should be run as part of
 running this Macro.

8.4.5. Operators (OPER)

 Operators are always defined in the context of an ADM. There is no
 concept of a user-defined operator, as operators represent
 mathematical functions implemented by the firmware on an Agent.
 Since Operators are preconfigured in Agents and Managers as part of
 ADM support, their representation is simply the ARI that identifies
 them.

 The ADM definition of an Operator MUST specify how many parameters
 are expected and the expected type of each parameter. For example,
 the unary NOT Operator ("!") would accept one parameter. The binary
 PLUS Operator ("+") would accept two parameters. A custom function
 to calculate the average of the last 10 samples of a data item should
 accept 10 parameters.

 Operators are always evaluated in the context of an Expression. The
 encoding of an Operator is illustrated in Figure 16.

 E(OP) Format

 +-------+
 | ID |
 | [ARI] |
 +-------+

 Figure 16

 ID
 This is the ARI identifying the Operator. Since Operators
 are always defined solely in the context of an ADM, this ARI
 MUST NOT have an ISSUER field and MUST NOT have a TAG field.

8.4.6. Report Templates (RPTT)

 A Report Template is an ordered collection of identifiers that
 describe the order and format of data in any Report built in
 compliance with the template. A template is a schema for a class of
 reports. It contains no actual values and may be defined in a formal
 ADM or configured by users in the context of a network deployment.

Birrane Expires October 17, 2020 [Page 26]

Internet-Draft AMP April 2020

 The encoding of a RPTT is illustrated in Figure 17.

 E(RPTT) Format

 +-------+----------+
 | ID | Contents |
 | [ARI] | [AC] |
 +-------+----------+

 Figure 17

 ID
 This is the ARI identifying the report template.

 Contents
 This is the ordered collection of ARIs that define the
 template.

8.4.7. Report (RPT)

 A Report is a set of data values populated using a given Report
 Template. While Reports do not contain name information, they MAY
 contain type information in cases where recipients wish to perform
 type validation prior to interpreting the Report contents in the
 context of a Report Template. Reports are "anonymous" in the sense
 that any individual Report does not contain a unique identifier.
 Reports can be differentiated by examining the combination of (1) the
 Report Template being populated, (2) the time at which the Report was
 populated, and (3) the Agent producing the report.

 A Report object is comprised of the identifier of the template used
 to populate the report, an optional timestamp, and the contents of
 the report. A Report is encoded as a CBOR array with either 2 or 3
 elements. If the array has 2 elements then the optional Timestamp
 MUST NOT be in the Report encoding. If the array has 3 elements then
 the optional timestamp MUST be included in the Report encoding. The
 Report encoding is illustrated in Figure 18.

Birrane Expires October 17, 2020 [Page 27]

Internet-Draft AMP April 2020

 E(RPT) Format

 +---------+
 | RPT |
 | [ARRAY] |
 +---++----+
 ||
 ||
 _____________/ ______________
 / \
 +----------+-----------+----------+
 | Template | Timestamp | Entries |
 | [OCTETS: | [TS] | [OCTETS: |
 | ARI] | (opt) | TNVC] |
 +----------+-----------+----------+

 Figure 18

 Template
 This is the ARI identifying the template used to interpret
 the data in this report.

 This ARI may be parameterized and, if so, the parameters MUST
 include a name field and have been passed-by-name to the
 template contents when constructing the report.

 Timestamp
 The timestamp marks the time at which the report was created.
 This timestamp may be omitted in cases where the time of the
 report generation can be inferred from other information.
 For example, if a report is included in a message group such
 that the timestamp of the message group is equivalent to the
 timestamp of the report, the report timestamp may be omitted
 and the timestamp of the included message group used instead.

 Entries
 This is the collection of data values that comprise the
 report contents in accordance with the associated Report
 Template.

8.4.8. State-Based Rules (SBR)

 A State-Based Rule (SBR) specifies that a particular action should be
 taken by an Agent based on some evaluation of the internal state of
 the Agent. A SBR specifies that starting at a particular START time
 an ACTION should be run by the Agent if some CONDITION evaluates to
 true, until the ACTION has been run COUNT times. When the SBR is no
 longer valid it may be discarded by the agent.

Birrane Expires October 17, 2020 [Page 28]

Internet-Draft AMP April 2020

 Examples of SBRs include:

 Starting 2 hours from receipt, whenever V1 > 10, produce a Report
 for Report Template R1 no more than 20 times.

 Starting at some future absolute time, whenever V2 != V4, run
 Macro M1 no more than 36 times.

 An SBR object is encoded as an OCTETS sequence as illustrated in
 Figure 19.

 E(SBR) Format

 +----------+
 | SBR |
 | [OCTETS] |
 +----++----+
 ||
 ||
 _______________________/ _______________________
 / \
 +-------+-------+--------+--------+--------+--------+
 | ID | START | COND | EVALS | FIRES | ACTION |
 | [ARI] | [TV] | [EXPR] | [UINT] | [UINT] | [AC] |
 +-------+-------+--------+--------+--------+--------+

 Figure 19

 ID
 This is the ARI identifying the SBR. If this ARI contains
 parameters they MUST include a name in support of pass-by-
 name to each element of the Action AC.

 START
 The time at which the SBR condition should start to be
 evaluated. This will mark the first evaluation of the
 condition associated with the SBR.

 CONDITION
 The Expression which, if true, results in the SBR running the
 associated action. An EXPR is considered true if it
 evaluates to a non-zero value.

 EVALS
 The number of times the SBR condition can be evaluated. The
 special value of 0 indicates there is no limit on how many
 times the condition can be evaluated.

Birrane Expires October 17, 2020 [Page 29]

Internet-Draft AMP April 2020

 FIRES
 The number of times the SBR action can be run. The special
 value of 0 indicates there is no limit on how many times the
 action can be run.

 ACTION
 The collection of Controls and/or Macros to run as part of
 the action. This is encoded as an AC in accordance with
 Section 8.2.3.2 with the stipulation that every ARI in this
 collection MUST be of type CTRL or MAC.

8.4.9. Table Templates (TBLT)

 A Table Template (TBLT) describes the types, and optionally names, of
 the columns that define a Table.

 Because TBLTs are only defined in the context of an ADM, their
 definition cannot change operationally. Therefore, a TBLT is encoded
 simply as the ARI for the template. The format of the TBLT Object
 Array is illustrated in Figure 20.

 E(TBLT) Format

 +-------+
 | ID |
 | [ARI] |
 +-------+

 Figure 20

 The elements of the TBLT array are defined as follows.

 ID
 This is the ARI of the table template encoded in accordance
 with Section 8.3.

8.4.10. Tables (TBL)

 A Table object describes the series of values associated with a
 Table Template.

 A Table object is encoded as a CBOR array, with the first element of
 the array identifying the Table Template and each subsequent element
 identifying a row in the table. The format of the TBL Object Array
 is illustrated in Figure 21.

Birrane Expires October 17, 2020 [Page 30]

Internet-Draft AMP April 2020

 E(TBL) Format

 +---------+
 | TBL |
 | [ARRAY] |
 +---++----+
 ||
 ||
 ______________/ _______________
 / \
 +---------+--------+ +--------+
 | TBLT ID | Row 1 | | Row N |
 | [ARI] | [TNVC] | ... | [TNVC] |
 +---------+--------+ +--------+

 Figure 21

 The TBL fields are defined as follows.

 Template ID (TBLT ID)
 This is the ARI of the table template describing the format
 of the table and is encoded in accordance with Section 8.3.

 Row
 Each row of the table is represented as a series of values
 with optional type information to aid in type checking table
 contents to column types. Each row is encoded as a TNVC and
 MAY include type information. AMP implementations should
 consider the impact of including type information for every
 row on the overall size of the encoded table.
 Each TNVC representing a row MUST contain the same number of
 elements as there are columns in the referenced
 Table Template.

8.4.11. Time-Based Rules (TBR)

 A Time-Based Rule (TBR) specifies that a particular action should be
 taken by an Agent based on some time interval. A TBR specifies that
 starting at a particular START time, and for every PERIOD seconds
 thereafter, an ACTION should be run by the Agent until the ACTION has
 been run for COUNT times. When the TBR is no longer valid it MAY BE
 discarded by the Agent.

 Examples of TBRs include:

 Starting 2 hours from receipt, produce a Report for Report
 Template R1 every 10 hours ending after 20 times.

Birrane Expires October 17, 2020 [Page 31]

Internet-Draft AMP April 2020

 Starting at the given absolute time, run Macro M1 every 24 hours
 ending after 365 times.

 The TBR object is encoded as an OCTETS sequence as illustrated in
 Figure 22.

 E(TBR) Format

 +----------+
 | TBR |
 | [OCTETS] |
 +----++----+
 ||
 ||
 ___________________/ ___________________
 / \
 +-------+-------+--------+--------+--------+
 | ID | START | PERIOD | COUNT | ACTION |
 | [ARI] | [TV] | [UINT] | [UINT] | [AC] |
 +-------+-------+--------+--------+--------+

 Figure 22

 ID
 This is the ARI identifying the TBR and is encoded in
 accordance with Section 8.3. If this ARI contains parameters
 they MUST include a name in support of pass-by-name to each
 element of the Action AC.

 START
 The time at which the TBR condition should start to be
 evaluated.

 PERIOD
 The number of seconds to wait between running the action
 associated with the TBR.

 COUNT
 The number of times the TBR action can be run. The special
 value of 0 indicates there is no limit on how many times the
 action can be run.

 ACTION
 The collection of Controls and/or Macros to run as part of
 the action. This is encoded as an ARI Collection in
 accordance with Section 8.2.3.2 with the stipulation that
 every ARI in this collection MUST represent either a Control
 or a Macro.

Birrane Expires October 17, 2020 [Page 32]

Internet-Draft AMP April 2020

8.4.12. Variables (VAR)

 Variable objects are transmitted in the AMP without the human-
 readable description.

 Variable objects are encoded as an OCTETS sequence whose format is
 illustrated in Figure 23.

 E(VAR) Format

 +-----------+
 | Variable |
 | [OCTETS] |
 +-----++----+
 ||
 ||
 ______/ _____
 / \
 +-------+-------+
 | ID | Value |
 | [ARI] | [TNV] |
 +-------+-------+

 Figure 23

 ID
 This is the ARI identifying the VAR and is encoded in
 accordance with Section 8.3. This ARI MUST NOT include
 parameters.

 Value
 This field captures the value (and optionally the type and
 name) of the variable, encoded as a TNV.

9. Functional Specification

 This section describes the format of the messages that comprise the
 AMP protocol.

9.1. AMP Message Summary

 The AMP message specification is limited to three basic
 communications:

Birrane Expires October 17, 2020 [Page 33]

Internet-Draft AMP April 2020

 +------------+-------------+--+
 | Message | Enumeration | Description |
 +------------+-------------+--+
Register	0	Add Agents to the list of managed
Agent		devices known to a Manager.
Report Set	1	Receiving a Report of one or more
		Report Entries from an Agent.
Perform	2	Sending a Macro of one or more
Control		Controls to an Agent.
Table Set	3	Receiving one or more tables from an
		Agent.
 +------------+-------------+--+

 Table 4: ADM Message Type Enumerations

 The entire management of a network can be performed using these three
 messages and the configurations from associated ADMs.

9.2. Message Group Format

 Individual messages within the AMP are combined into a single group
 for communication with another AMP Actor. Messages within a group
 MUST be received and applied as an atomic unit. The format of a
 message group is illustrated in Figure 24. These message groups are
 assumed communicated amongst Agents and Managers as the payloads of
 encapsulating protocols which should provide additional security and
 data integrity features as needed.

 A message group is encoded as a CBOR array with at least 2 elements,
 the first being the time the group was created followed by 1 or more
 messages that comprise the group. The format of the message group is
 illustrated in Figure 24.

Birrane Expires October 17, 2020 [Page 34]

Internet-Draft AMP April 2020

 AMP Message Group Format

 +---------------+
 | Message Group |
 | [ARRAY] |
 +------++-------+
 ||
 ____________________||___________________
 / \
 +-----------+-----------+ +-----------+
 | Timestamp | Message 1 | ... | Message N |
 | [TS] | [BYTESTR] | | [BYTESTR] |
 +-----------+-----------+ +-----------+

 Figure 24

 Timestamp
 The creation time for this messaging group. Individual
 messages may have their own creation timestamps based on
 their type, but the group timestamp also serves as the
 default creation timestamp for every message in the group.
 This is encoded in accordance with Table 3.

 Message N
 The Nth message in the group.

9.3. Message Format

 Each message identified in the AMP specification adheres to a common
 message format, illustrated in Figure 25, consisting of a message
 header, a message body, and an optional trailer.

 Each message in the AMP is encode as an OCTETS sequence formatted in
 accordance with Figure 25.

 AMP Message Format

 +--------+----------+----------+
 | Header | Body | Trailer |
 | [BYTE] | [VARIES] | [VARIES] |
 | | | (opt.) |
 +--------+----------+----------+

 Figure 25

 Header
 The message header BYTE is shown in Figure 26. The header
 identifies a message context and opcode as well as flags that

Birrane Expires October 17, 2020 [Page 35]

Internet-Draft AMP April 2020

 control whether a Report should be generated on message
 success (Ack) and whether a Report should be generated on
 message failure (Nack).

 AMP Common Message Header

 +----------+-----+------+-----+----------+
 | Reserved | ACL | Nack | Ack | Opcode |
 +----------+-----+------+-----+----------+
 | 7 6 | 5 | 4 | 3 | 2 1 0 |
 +----------+-----+------+-----+----------+
 MSB LSB

 Figure 26

 Opcode
 The opcode field identifies which AMP message is
 being represented.

 ACK Flag
 The ACK flag describes whether successful application
 of the message must generate an acknowledgment back
 to the message sender. If this flag is set (1) then
 the receiving actor MUST generate a Report
 communicating this status. Otherwise, the actor MAY
 generate such a Report based on other criteria.

 NACK Flag
 The NACK flag describes whether a failure applying
 the message must generate an error notice back to the
 message sender. If this flag is set (1) then the
 receiving Actor MUST generate a Report communicating
 this status. Otherwise, the Actor MAY generate such
 a Report based on other criteria.

 ACL Used Flag
 The ACL used flag indicates whether the message has a
 trailer associated with it that specifies the list of
 AMP actors that may participate in the Actions or
 definitions associated with the message. This area
 is still under development.

 Body
 The message body contains the information associated with the
 given message.

 Trailer

Birrane Expires October 17, 2020 [Page 36]

Internet-Draft AMP April 2020

 An OPTIONAL access control list (ACL) may be appended as a
 trailer to a message. When present, the ACL for a message
 identifiers the agents and managers that can be affected by
 the definitions and actions contained within the message.
 The explicit impact of an ACL is described in the context of
 each message below. When an ACL trailer is not present, the
 message results may be visible to any AMP Actor in the
 network, pursuant to other security protocol implementations.

9.4. Register Agent

 The Register Agent message is used to inform an AMP Manager of the
 presence of another Agent in the network.

 The body of this message is the name of the new agent, encoded as
 illustrated in Figure 27.

 Register Agent Message Body

 +-----------+
 | Agent ID |
 | [BYTESTR] |
 +-----------+

 Figure 27

 Agent ID
 The Agent ID MUST represent the unique address of the Agent
 in whatever protocol is used to communicate with the Agent.

9.5. Report Set

 The Report Set message contains a set of 1 or more Reports produced
 by an AMP Agent and sent to an AMP Manager.

 The body of this message contains information on the recipient of the
 reports followed by one or more Reports. The body is encoded as
 illustrated in Figure 28.

 Report Set Message Body

 +----------+----------+
 | RX Names | Reports |
 | [ARRAY] | [ARRAY] |
 +----------+----------+

 Figure 28

Birrane Expires October 17, 2020 [Page 37]

Internet-Draft AMP April 2020

 RX Names
 This field captures the set of Managers that have been sent
 this report set. This is encoded as a CBOR array that MUST
 have at least one entry. Each entry in this array is encoded
 as a CBOR text string.

 Reports
 This field captures the set of reports being sent. This is
 encoded as a CBOR array that MUST have at least one entry.
 Each entry in this array is encoded as a RPT in accordance
 with Section 8.4.7.

9.6. Perform Control

 The perform control message causes the receiving AMP Actor to run one
 or more preconfigured Controls provided in the message.

 The body of this message is the start time for the controls followed
 by the controls themselves, as illustrated in Figure 29.

 Perform Control Message Body

 +-------+-----------+
 | Start | Controls |
 | [TV] | [AC] |
 +-------+-----------+

 Figure 29

 Start
 The time at which the Controls/Macros should be run.

 Controls
 The collection of ARIs that represent the Controls and/or
 Macros to be run by the AMP Actor. Every ARI in this
 collection MUST be either a Control or a Macro.

9.7. Table Set

 The Table Set message contains a set of 1 or more TBLs produced by an
 AMP Agent and sent to an AMP Manager.

 The body of this message contains information on the recipient of the
 tables followed by one or more TBLs. The body is encoded as
 illustrated in Figure 30.

Birrane Expires October 17, 2020 [Page 38]

Internet-Draft AMP April 2020

 Table Set Message Body

 +----------+----------+
 | RX Names | Tables |
 | [ARRAY] | [ARRAY] |
 +----------+----------+

 Figure 30

 RX Names
 This field captures the set of Managers that have been sent
 this table set. This is encoded as a CBOR array that MUST
 have at least one entry. Each entry in this array is encoded
 as a CBOR text string.

 Tables
 This field captures the set of tables being sent. This is
 encoded as a CBOR array that MUST have at least one entry.
 Each entry in this array is encoded as a TBL in accordance
 with Section 8.4.10.

10. IANA Considerations

 A Nickname registry needs to be established.

11. Security Considerations

 Security within the AMP exists in two layers: transport layer
 security and access control.

 Transport-layer security addresses the questions of authentication,
 integrity, and confidentiality associated with the transport of
 messages between and amongst Managers and Agents. This security is
 applied before any particular Actor in the system receives data and,
 therefore, is outside of the scope of this document.

 Finer grain application security is done via ACLs provided in the AMP
 message headers.

12. Implementation Notes

 A reference implementation of this version of the AMP specification
 is available in the 3.6.2 release of the ION open source code base
 available from sourceforge at https://sourceforge.net/projects/ion-
 dtn/.

Birrane Expires October 17, 2020 [Page 39]

Internet-Draft AMP April 2020

13. References

13.1. Informative References

 [I-D.birrane-dtn-ama]
 Birrane, E., "Asynchronous Management Architecture",
 draft-birrane-dtn-ama-07 (work in progress), June 2018.

13.2. Normative References

 [I-D.birrane-dtn-adm]
 Birrane, E., DiPietro, E., and D. Linko, "AMA Application
 Data Model", draft-birrane-dtn-adm-02 (work in progress),
 June 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Appendix A. Acknowledgements

 The following participants contributed technical material, use cases,
 and useful thoughts on the overall approach to this protocol
 specification: Jeremy Pierce-Mayer of INSYEN AG contributed the
 concept of the typed data collection and early type checking in the
 protocol. David Linko and Evana DiPietro of the Johns Hopkins
 University Applied Physics Laboratory contributed appreciated review
 and type checking of various elements of this specification.

Author’s Address

 Edward J. Birrane
 Johns Hopkins Applied Physics Laboratory

 Email: Edward.Birrane@jhuapl.edu

Birrane Expires October 17, 2020 [Page 40]

