
SIPPING WG S. Baset
Internet-Draft H. Schulzrinne
Expires: April 19, 2007 Columbia University
 E. Shim
 Panasonic
 October 16, 2006

 A Protocol for Implementing Various DHT Algorithms
 draft-baset-sipping-p2pcommon-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 19, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document defines DHT-independent and DHT-dependent features of
 DHT algorithms and presents a comparison of Chord, Pastry and
 Kademlia. It then describes key DHT operations and their information
 requirements.

Baset, et al. Expires April 19, 2007 [Page 1]

Internet-Draft Common Protocol for DHT Algorithms October 2006

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Description of DHT Specific Metrics 5
 3.1. Distance Function . 5
 3.2. Routing Table Rigidity 5
 3.3. Learning from Lookup Queries 6
 3.4. Sequential vs. Parallel Lookups 6
 3.5. Iterative vs. Recursive Lookups 7
 4. Chord, Pastry and Kademlia 8
 4.1. Chord . 8
 4.2. Pastry . 9
 4.3. Kademlia . 10
 5. DHT Commonalities . 12
 6. DHT Protocol Operations and their Semantics 13
 6.1. Related Work . 13
 6.2. Join . 13
 6.3. Leave . 14
 6.4. Insert (put) . 15
 6.5. Lookup (get) . 15
 6.6. Remove . 16
 6.7. Keep-alive . 16
 6.8. Replicate . 16
 7. Security Considerations 18
 8. References . 18
 Authors' Addresses . 20
 Intellectual Property and Copyright Statements 21

Baset, et al. Expires April 19, 2007 [Page 2]

Internet-Draft Common Protocol for DHT Algorithms October 2006

1. Introduction

 Over the last few years a number of distributed hash table (DHT)
 algorithms [7][8][9][10] have been proposed. These DHTs are based on
 the idea of consistent hashing [10] and they share a fundamental
 principle: route a message to a node responsible for an identifier
 (key) in O(log_{b}N) steps using a certain routing metric where N is
 the number of nodes in the system and b is the base of the logarithm
 with values 2, 4, 16 and so on. Identifiers are logically considered
 to be arranged in a circle in Chord [7], Kademlia [9] and Pastry [10]
 and a routing metric may determine if the message can traverse only
 in one direction ([anti-]clockwise) or both directions on the
 identifier circle. However, independent of the routing metric and
 despite the fact that the author of these DHT algorithms have given
 different names to the routing messages and tables, the basic routing
 concept of O(log_{2}N) operations is the same across DHTs.

 In this paper, we want to understand if it is possible to exploit the
 commonalities in the DHT algorithms such as Chord [7], Pastry [9],
 and Kademlia [10] to define a protocol by which any of these
 algorithms can be implemented. We have chosen Chord, Pastry and
 Kademlia because either they are being actively researched (Chord and
 Pastry) or they have been used in a well-deployed application
 (Kademlia in eDonkey [15]). We envision that the protocol should not
 contain any algorithm-specific details and possibly have an extension
 mechanism to incorporate an algorithm-specific feature. The goal is
 to minimize the possibility of extensions that may unnecessarily
 complicate the protocol.

 We first define the terminology used in our comparison of DHTs and
 then give a brief description of Chord, Pastry and Kademlia. The
 authors of these algorithms have proposed a number of heuristics to
 improve the lookup speed and performance such as proximity neighbor
 selection (PNS) which should not be considered part of the core
 algorithm. We carefully separate DHT-independent heuristics from
 DHT-specific details and try to expose the commonality in these
 algorithms. Using this commonality, we then define algorithm-
 independent functions such as join, leave, keep-alive, insert and
 lookup and discuss protocol semantics and information requirements
 for these functions.

Baset, et al. Expires April 19, 2007 [Page 3]

Internet-Draft Common Protocol for DHT Algorithms October 2006

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 Some of the terminology has been borrowed from the P2P terminology
 draft [16].

 P2PSIP Overlay Peer (or Peer). As defined by Willis et al. [16], a
 P2PSIP peer is a node participating in a P2PSIP overlay that provides
 storage and routing services to other nodes in P2P overlay and is
 capable of performing several different operations such as joining
 and leaving the overlay and routing requests within the overlay. We
 use the term node and peer interchangeably.

 P2PSIP Client (or Client). As defined by Willis et al. [16], a
 P2PSIP client is a node participating in a P2PSIP overlay that
 provides neither routing nor route storage and retrieval functions to
 that P2PSIP Overlay.

 P2PSIP Peer-ID (or Peer Key). As defined by Willis et al. [16], a
 Peer-ID is a information that uniquely identifies a peer within a
 given P2PSIP overlay. In the DHT approach, this is a numeric value
 in the hash space. We use the term identifier and key
 interchangeably.

 Routing table. A routing table is used by a node to map a key to a
 peer responsible for it. It contains a list of overlay peer keys and
 their IP addresses stored against identifiers that are exponentially
 away from the peer key. Simplistically, a routing table contains
 logN number of entries where N is the number of nodes in the system.

 Routing table row. A row in a routing table stores the peer-ID and
 IP address of peer(s) against a routing table key. The routing table
 key is computed from the peer key according to a particular routing
 metric e.g., a Chord peer computes its ith routing table key by
 performing the following modulo arithmetic:

 (PeerKey + 2^{i-1}) mod 2^{M}

 where M is the key length and i is between 1 and M. A peer can only
 store in its ith row a reference to a peer whose key lies between (i)
 and (i+1) rows of the routing table.

 Routing table row interval or range. The interval for row 'i' is
 defined as the keys that lie between (i) and (i+1) rows according to
 a particular routing metric.

Baset, et al. Expires April 19, 2007 [Page 4]

Internet-Draft Common Protocol for DHT Algorithms October 2006

3. Description of DHT Specific Metrics

 Below, we give an explanation of metrics which we believe are
 significant in our comparison of DHTs.

3.1. Distance Function

 Any peer which receives a query for a key k must forward it to a peer
 whose key is `closer' to k than its own key. This rule guarantees
 that the query eventually arrives at the peer responsible for the
 key. The closeness does not represent the way a routing table is
 filled but rather how a node in the routing table is selected to
 route the query towards its destination. Closeness is defined as
 follows in Chord, Pastry and Kademlia [12] :

 Chord. Numeric difference between two keys. Specifically: (b - a)
 mod 2 ^M. where M is the length of the key produced by a hash
 function.

 Pastry. Inverse of the number of common prefix-bits between two
 keys.

 Kademlia. Bit-wise exclusive-or (XOR) of the two keys.
 Specifically: a XOR b

 Pastry uses numerical difference when prefix-matching does not match
 any additional bits and the peers which are closer by prefix-matching
 metric may not be closer by the numerical difference metric.

3.2. Routing Table Rigidity

 There are two ways in which a peer can select a node to fill its ith
 routing table row. It can be a node whose peer-ID either immediately

 succeeds or precedes the routing table row interval or it can be any
 node whose ID lies within the interval. For its ith row, Chord
 selects a node with an ID which immediately succeeds the interval
 while Pastry and Kademlia pickup any node with an ID that lies within
 the interval. The effect of this is that Pastry and Kademlia have
 more flexibility in selecting peers for their routing table while
 Chord has a rather strict criteria. It is possible to loosen the
 selection criteria in Chord by selecting any node in the interval
 without violating the log_{2}N bound.

 Moreover, in Chord, a lookup query will never overshoot the key i.e.,
 it will never be sent to a node whose ID is greater than the key
 being queried. Since Pastry and Kademlia can pickup any node in the
 interval, a lookup query can possibly overshoot the key. Figure 1
 shows how a peer having the same key selects routing table entries in

Baset, et al. Expires April 19, 2007 [Page 5]

Internet-Draft Common Protocol for DHT Algorithms October 2006

 Chord, Kademlia and Pastry.

8
01000

11
01011

19
10011

30
11110

21
10101

9
01001

10
01010

12
01100

16
10000

31
11111

14
01100

8
01000

11
01011

19
10011

30
11110

21
10101

9
01001

10
01010

12
01100

16
10000

31
11111

14
01100

10
01010

1
00001

3
00011

1
00001

3
00011

0 – 15
00000 -
01111

Chord

Pastry and
Kademlia

24
11000

Candidate for routing table row

Node

Routing table interval

3.3. Learning from Lookup Queries

 The mechanism for selecting a node for a routing table row directly
 impacts whether a peer can update its routing table from a lookup
 query it receives. If, for its ith routing table row, a peer always
 selects a node with an ID that immediately precedes or succeeds the
 interval, then the number of such peers is only one. However,
 choosing any peer whose ID lies within the interval provides more
 flexibility as the number of candidate nodes increases from one to
 the number of peers in the interval. A node which intends to update
 its routing table from the lookup queries it receives has a better
 chance of doing so.

3.4. Sequential vs. Parallel Lookups

 If a querying node's routing table row contains references to two or
 more DHT nodes, then it may send a lookup query to both of them. The
 reason any node will send parallel lookup queries is because the
 routing table peers may not have been refreshed for sometime and thus
 may not be online. If all nodes in a DHT frequently refresh their

Baset, et al. Expires April 19, 2007 [Page 6]

Internet-Draft Common Protocol for DHT Algorithms October 2006

 routing table, then there may not be a need to send parallel queries
 even in a reasonably high churn environment. Clearly, there is a
 tradeoff between sending keep-alives to routing table peers, and
 sending parallel lookup queries.

3.5. Iterative vs. Recursive Lookups

 In an iterative lookup, the querying peer sends a query to a node in
 its routing table which replies with the IP address of the next hop
 if it is not responsible for the key. The querying peer then sends
 the query to this hop. In a recursive lookup, the querying peer
 sends a query to a node in its routing table which after receiving
 the lookup query applies the appropriate DHT metric and forwards it
 to a peer without replying to the querying peer. This process
 repeats till the key is found or the query cannot be forwarded which
 implies that the key does not exist. Rhea [13] explains the
 differences between iterative vs recursive lookups. The recursive
 lookup can possibly cause a mis-configured or misbehaving node to
 start a flood of queries in a DHT. On the other hand, recursive
 lookup provides lower latencies than iterative lookup.

Baset, et al. Expires April 19, 2007 [Page 7]

Internet-Draft Common Protocol for DHT Algorithms October 2006

4. Chord, Pastry and Kademlia

 In this section, we try to expose commonalities in Chord, Pastry and
 Kademlia. These algorithms are based on the idea of consistent
 hashing [11] i.e., keys are mapped onto nodes by a hash function that
 can be resolved by any node in the system via queries to other nodes
 and the arrival or departure of a node does not require all keys to
 be rehashed. We start by comparing DHT-independent details of these
 algorithms as defined by their authors in Table 1 and then algorithm
 specific details in Table 2 and then give a brief description of
 Chord, Pastry and Kademlia.

 Key Recursive/ Sequential/ Routing Neighbor
 length Iterative Parallel table nodes
 name

 Chord 160 Both Sequential Finger Successor
 table list
 Pastry 128 Recursive Sequential Routing Leaf-set
 table
 Kademlia 160 Iterative Parallel Routing None
 table

 Table 1. Paper specific details of Chord, Pastry and Kademlia.

 Routing Routing Symmetric Learning Overshooting
 data table row
 structure selection

 Chord Skip-list Immediately No No No
 succeed the
 interval
 Pastry Tree-like Any node in Yes Yes Yes
 the interval
 Kademlia Tree-like Any node in Yes Yes Maybe
 the interval

 Table 2. Algorithm specific details of Chord, Pastry and Kademlia.

4.1. Chord

 The identifiers or keys in Chord can be logically considered to be
 arranged on a circle. Each node in Chord maintains two data
 structures, a 'successor list' which is the list of peers immediately
 succeeding the node key and a 'finger table'. A finger table is a

Baset, et al. Expires April 19, 2007 [Page 8]

Internet-Draft Common Protocol for DHT Algorithms October 2006

 routing table which contains the IP address of peers halfway around
 the ID space from the node, a quarter-of-the-way, an eighth-of-the-
 way and so forth in a data structure that resembles a skiplist [6].
 A node forwards a query for a key k to a node in its finger (routing)
 table with the highest ID not exceeding k. The skiplist structure
 ensures that a key can be found in O(log_{2}N) steps where N is the
 number of nodes in the system.

 To join a Chord ring, a node contacts any peer in the Chord network
 and requests it to lookup its ID. It then inserts itself at the
 appropriate position in the Chord network. The predecessors of the
 newly joined node must update their successor lists. The newly
 joined node should also update its finger table. Successor list is
 the only requirement for correctness while finger table is used to
 speedup the lookups.

 To guard against node failures, Chord sends keep-alives to its
 successors and finger table entries and continuously repairs them.
 The routing table size is log_{2}N.

 Chord suggests two ways for key/data replication. In the first
 method, an application replicates data by storing it under two
 different Chord keys derived from the data's key. Alternatively, a
 Chord node can replicate key/value pair on each of its r successors.

4.2. Pastry

 Like Chord, the identifiers or keys in Pastry can be logically
 considered to be arranged on a circle; however, the routing is done
 in a tree-based (prefix-matching) fashion. Each node in Pastry
 contains two data structures, a 'leaf-set' and a 'routing table'.
 The leaf-set L contains |L|/2 closest nodes with numerically smaller
 identifiers than the node n and |L|/2 closest nodes with numerically
 larger identifiers than n and is conceptually similar to Chord
 successor list [12]. The routing table contains the IP address of
 nodes with no prefix match, b bits prefix match, 2b prefix match and
 so on where b is typically 2, 4, 6, 8 etc. The maximum size of
 routing table is log_{2^b}N x 2^b. At each step, a node n tries to
 route the message to a node that has a longest sharing prefix than
 the node n with the sought key. If there is no such node, the node n
 routes the message to a node whose shared prefix is at least as long
 as n and whose ID is numerically closer to the key. The expected
 number of hops is at most log_{2^b}N.

 To join the Pastry network, a node contacts any node in the Pastry
 network and builds routing tables and leaf sets by obtaining
 information from the nodes along the path from bootstrapping node and
 the node closest in ID space to itself. When a node gracefully

Baset, et al. Expires April 19, 2007 [Page 9]

Internet-Draft Common Protocol for DHT Algorithms October 2006

 leaves the network, the leaf-sets of its neighbors are immediately
 updated. The routing table information is corrected only on demand.

 The routing table of a Pastry node is initialized such that each
 entry i with a common prefix p_{i} is closer to the node (in the
 network sense) among all other live nodes having a prefix p_{i}.
 This technique is commonly known as proximity neighbor selection
 (PNS). Pastry performs recursive lookups. However, PNS and
 recursive lookups are orthogonal to the Pastry operation.

 Pastry replicates data by storing the key/value pair on k nodes with
 the numerically closest nodeIds to a key [9]. This method is

 conceptually similar to Chord's replication of key/value pairs on its
 successor list.

4.3. Kademlia

 Like Chord and Pastry, the identifiers in Kademlia can be logically
 thought of being arranged on a circle; however the routing is done in
 a tree-based (prefix-matching) fashion. Each node in Kademlia
 contains a \emph{routing table}. Kademlia contains only one data
 structure i.e. the routing table. Unlike Chord and Pastry, there are
 no successor lists or leaf sets. Rather, the first entry in the
 routing table serves as the immediate neighbor.

 Kademlia uses XOR metric to compute the distance between two
 identifiers. i.e. d(x,y)=x XOR y. XOR metric is non-Euclidean and it
 offers the triangle property: d(x,y)+d(y,z) >= d(x,z). Essentially,
 XOR metric is a prefix matching algorithm which tries to route a
 message to a node with the longest matching prefix and the smallest
 XOR value for non-prefix bits.

 Kademlia maintains up to k entries for a routing table row and allows
 parallel lookups to all nodes in a row. However, this is not really
 a Kademlia specific feature and other DHT algorithms can implement it
 by maintaining multiple entries for the same routing table row. The
 latest incarnation of Chord contains more than one finger entry.

 The routing table size is log_{2}N. The lookup speed can be increased
 by considering IDs b bits at a time instead of one bit at a time
 which implies increasing the routing table size. By increasing the
 routing table size to 2^b x log_{2^b}N x k entries, the number of
 lookup hops can be reduced to log_{2^b}N.

 Kademlia replicates data by finding k closest nodes to a key and
 storing the key/value pair on them. The Kademlia paper suggests a
 value of 20 for k.

Baset, et al. Expires April 19, 2007 [Page 10]

Internet-Draft Common Protocol for DHT Algorithms October 2006

 Keep-alive Lookup Store Join Updating Updating
 routing neighbor
 table nodes

 Chord fix_ find_ N/A join() fix_ stab()
 fingers() successor() fingers()
 Pastry N/A route(msg, N/A Side On demand N/A
 ,key) effect
 of
 lookups
 Kademlia PING FIND_NODE, STORE N/A N/A N/A
 FIND_VALUE,
 lookup

 Table 3. DHT specific RPC's

Baset, et al. Expires April 19, 2007 [Page 11]

Internet-Draft Common Protocol for DHT Algorithms October 2006

5. DHT Commonalities

 Table 1 and table 2 list the DHT-independent and DHT-specific aspects
 of Chord, Pastry and Kademlia. From the above discussion, we can
 think of following commonalities between Chord, Pastry and Kademlia.

 The time to detect whether a routing entry node has failed is
 independent of the DHT algorithm being used.

 The flexibility in selecting a node for a routing table row impacts
 whether a routing table may be updated with information from passing
 lookup queries.

 Lookup can be performed either iteratively or recursively. Lookup
 messages can be forwarded either sequentially or parallel.

 It is possible to define replication strategies independent of the
 underling DHT algorithms.

 The choice of hash function and the length of the key are independent
 of the routing algorithm.

 Each peer has knowledge about some neighbor nodes.

Baset, et al. Expires April 19, 2007 [Page 12]

Internet-Draft Common Protocol for DHT Algorithms October 2006

6. DHT Protocol Operations and their Semantics

 In this section, we define and describe DHT operations and
 information requirements for each operation. But first, we give a
 brief description of related work.

6.1. Related Work

 Dabek et al. [14] defined a key based API (KBR) which can be used to
 implement a DHT-level API. They define a RPC void route(key->K,
 msg->M, nodehandle->hint) which forwards a message, M, towards the
 root of the key K. The optional hint specifies a node that should be
 used as a first hop in routing the message. The put() and get() DHT
 operations may be implemented as follows:

 route(key,[PUT,value,S],NULL). The 'put' operation routes a PUT
 message containing 'value' and the local node's handle, S, to the
 root of the key.

 route(key,[GET,S],NULL). The 'get' operation routes a 'GET' message
 to the root of the key which returns the value and its own handle in
 a single hop using 'route(NULL,[value,R],S).

 To replicate a newly received key (k) r times, the peer issues a
 local RPC replicaSet(S,r) and sends a copy of the key to each
 returned node. The operation implicitly makes the root of the key
 and not the publisher responsible for replication.

 Singh et al. [17] defined a XML-RPC based API for DHTs. Their
 approach is based on OpenDHT [5] and they define a data interface
 with and without authentication, which allows inserting, retrieving
 and removing data on a DHT (put, get), and a service interface, which
 allows a node to join a DHT for a service and another node to lookup
 for a service node (join, lookup, leave).

 We define six DHT operations (API) namely join, leave, insert (put),
 lookup (get), remove, keep-alive and replicate which a node (peer)
 participating in a DHT may initiate. A node (client) which does not
 participate in a DHT network requests a peer in the DHT network to
 perform these operations on its behalf and thus client-to-peer API is
 independent of the DHT algorithm being used. The peer-to-peer API
 can also be independent of the DHT algorithm being used because
 determination of the next hop is done locally by a peer after
 applying a particular routing metric.

6.2. Join

 A node initiates a join operation to a peer already in the DHT to

Baset, et al. Expires April 19, 2007 [Page 13]

Internet-Draft Common Protocol for DHT Algorithms October 2006

 insert itself in the DHT network. The mechanism to discover a peer
 already in the DHT is independent of any particular DHT being used.
 The joining node and its neighbors must update their neighbors
 accordingly.

 A joining node may want to build its routing table by getting a full
 or partial copy of its neighbors or any appropriate node's routing
 table. It will also need to obtain key/value pairs it will be
 responsible for.

 A join operation initiated by a P2PSIP client does not change the
 geometry of the DHT network. The operation is conceptually similar
 to insert(put).

 Following is the list of information that will be exchanged between
 the newly joining node and existing peers.

 [s] An overlay ID.

 [s] Peer-ID of the joining node.

 [s] Contact information or IP address of the joining node.

 [s] Indication whether this peer should be inserted in the p2p
 network thereby changing the geometry or merely stored on an
 existing peer. This field accommodates overlay peers and clients
 as defined in [16].

 [r] Full or partial routing table of an existing node(s).

 [r] List of immediate neighbors.

 where [s] is the information sent by the querying peer, [r] is the
 information received by a peer and [a] is the information appended by
 a peer to a request before forwarding it to the next hop.

6.3. Leave

 A node initiates a leave operation to gracefully inform its neighbors
 about its departure. The neighbors must update their neighbor
 pointers and take over the keys the leaving node is responsible for.

 [s] The departing node's key.

 [s] List of key/value pairs to be transferred.

Baset, et al. Expires April 19, 2007 [Page 14]

Internet-Draft Common Protocol for DHT Algorithms October 2006

6.4. Insert (put)

 A node (overlay client or peer) initiates an insert operation to a
 peer already in the DHT to insert a key/value pair. The insertion
 involves locating the node responsible for key using the lookup
 operation and then inserting either a reference to the key/value pair
 publisher or the key/value pair itself. The insert operation is
 different from the join operation in the sense that it does not
 change the DHT geometry. The insert operation can also be used to
 update the value for an already inserted key.

 [s] Key for the object(value) to be inserted.

 [s] Value. A sender may not send the value along with key. It
 may only send the value only after the peer responsible for the
 key has been discovered.

 [s] Publisher of the key. Multiple publishers can publish data
 under the same key and a node storing a key/value pair uses this
 field to differentiate among the publishers.

 [s] Key/value lifetime. The time until an online peer must keep
 the key/value pair. The publisher of the key/value pair must
 refresh it before the expiration of this time.

 [s] A flag indicating whether the lookup should be performed
 recursively or iteratively.

6.5. Lookup (get)

 A node initiates a lookup operation to retrieve a key/value pair from
 the DHT network. It locally applies DHT routing metric (Chord,
 Pastry or Kademlia) on its routing table to determine the peer to
 which it should route the message. The peer responsible for the key/
 value pair (root of the key) sends it directly back to the querying
 node. The value can be an IP address, a file or a complex record.

 The lookup message can be routed in a sequential or parallel way.
 The lookup message can also be routed iteratively or recursively. A
 node routing a recursive query may add its own key and IP address
 information in the lookup message before forwarding it to the next
 hop.

 Following is the list of information exchanged between the querier,
 forwarding peers and the peer holding the key/value pair.

Baset, et al. Expires April 19, 2007 [Page 15]

Internet-Draft Common Protocol for DHT Algorithms October 2006

 [s] Key to lookup

 [s] A flag indicating whether the lookup should be performed
 recursively or iteratively.

 [s] Publisher of the key. A non-empty value means that a node is
 interested in the value inserted by a certain publisher.

 [a] Forwarding peer's key and IP address. A node in the path of a
 lookup query may add its own ID and IP address to the lookup query
 before recursively forwarding it.

 [r] Value of the key or an indication that key cannot be found.

6.6. Remove

 Even though each stored key/value pair has an associated lifetime and
 thus will expire unless refreshed by the publishing node in time,
 sometimes the publishing node may want to remove the key/value pair
 from the DHT before lifetime expiration. In this case, the
 publishing node initiates the remove operation.

 [s] Publishing node's key.

 [s] Key for the key/value pair to be removed.

6.7. Keep-alive

 A peer initiates a keep-alive operation to send keep-alive message to
 its neighbors and routing table entries. The two immediate neighbors
 do not need to send a periodic keep-alive message to each other. The
 peers can use various heuristics for keep-alive timer such as
 randomly sending a keep-alive within an interval.

 If a neighbor fails, a peer has to immediately find a new neighbor to
 ensure lookup correctness. If a routing entry fails, a node may
 choose to repair it immediately or defer till a lookup request
 arrives.

 [s] Sending node's key.

 [s] Keep-alive timer expiration.

6.8. Replicate

 In order to ensure that a key is not lost when the node goes offline,
 a node must replicate the keys it is responsible for. Heuristics
 such as replicate to the next k nodes can be applied for this

Baset, et al. Expires April 19, 2007 [Page 16]

Internet-Draft Common Protocol for DHT Algorithms October 2006

 purpose.

 A node may also need to replicate its keys when its neighbors are
 updated.

 [s] List of key/value pairs

Baset, et al. Expires April 19, 2007 [Page 17]

Internet-Draft Common Protocol for DHT Algorithms October 2006

7. Security Considerations

 TBD.

8. References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Petersen, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Bryan, D. and C. Jennings, "A P2P Approach to SIP Registration
 and Resource Location", draft-bryan-sipping-p2p-01 (work in
 progress), July 2005.

 [5] Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy,
 S., Shenker, S., Stoica, I., and H. Yu, "OpenDHT: a public DHT
 service and its uses", SIGCOMM '05: Proceedings of the 2005
 conference on Applications, technologies, architectures, and
 protocols for computer communications Philadelphia,
 Pennsylvania, pp. 73-84, 2005.

 [6] Pugh, W., "Skip Lists: A Probabilistic Alternative to Balanced
 Trees", Workshop on Algorithms and Data Structures pp. 437-449,
 1989.

 [7] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek,
 M., Dabek, F., and H. Balakrishnan, "Chord: A Scalable Peer-to-
 peer Lookup Service for Internet Applications", IEEE/ACM
 Transactions on Networking (To Appear).

 [8] Ratmasamy, S., Francis, P., Handley, M., Karp, R., and S.
 Shenker, "A Scalable Content-Addressable Network", Proc. ACM
 SIGCOMM (San Diego, CA), pp. 161-172, August 2001.

 [9] Rowstron, A. and P. Druschel, "Pastry: Scalable, distributed
 object location and routing for large-scale peer-to-peer
 systems", Proceedings of the 18th IFIP/ACM International
 Conference on Distributed Systems Platforms (Middleware 2001),
 March 2002.

 [10] Maymounkov, P. and D. Mazieres, "Kademlia: A Peer-to-Peer
 Information System Based on the XOR Metric", IPTPS'01: Revised
 Papers from the First International Workshop on Peer-to-Peer
 Systems London, UK: Springer-Verlag, pp. 53-65, March 2002.

Baset, et al. Expires April 19, 2007 [Page 18]

Internet-Draft Common Protocol for DHT Algorithms October 2006

 [11] Karger, D., Lehman, E., Leighton, T., Panigraphy, R., Levine,
 M., and D. Lewin, "Consistent hashing and random trees:
 distributed caching protocols for relieving hot spots on the
 World Wide Web", STOC '97: Proceedings of the twenty-ninth
 annual ACM symposium on Theory of computing , 1997.

 [12] Balakrishnan, H., Kaashoek, F., Karger, D., Morris, R., and I.
 Stoica, "Looking up data in P2P systems", Communications of the
 ACM vol. 46, no. 2, pp. 43-48, 2003.

 [13] Rhea, S., Geels, D., Roscoe, T., and J. Kubiatowicz, "Handling
 Churn in a DHT", Proceedings of the 2004 USENIX Annual
 Technical Conference (USENIX '04) Boston, Massachusetts,
 June 2004.

 [14] Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., and I.
 Stoica, "Towards a Common API for Structured Peer-to-Peer
 Overlays", Proceedings of the 2nd International Workshop on
 Peer-to-Peer Systems (IPTPS03) Berkeley, California,
 February 2003.

 [15] "eDonkey", <http://www.eDonkey.com>.

 [16] Willis, D., Bryan, D., Matthews, P., and E. Shim, "Concepts and
 Terminology for Peer-to-Peer SIP",
 draft-willis-p2psip-concepts-02 (work in progress),
 October 2006.

 [17] Singh, K. and H. Schulzrinne, "Data format and interface to an
 external peer-to-peer network for SIP location service",
 draft-singh-p2p-sip-00 (work in progress), May 2006.

Baset, et al. Expires April 19, 2007 [Page 19]

Internet-Draft Common Protocol for DHT Algorithms October 2006

Authors' Addresses

 Salman A. Baset
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue
 New York, NY 10027
 USA

 Email: salman@cs.columbia.edu

 Henning Schulzrinne
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue
 New York, NY 10027
 USA

 Email: hgs@cs.columbia.edu

 Eunsoo Shim
 Panasonic Princeton Laboratory
 Two Research Way, 3rd Floor
 Princeton, NJ 08540
 USA

 Email: eunsoo@research.panasonic.com

Baset, et al. Expires April 19, 2007 [Page 20]

Internet-Draft Common Protocol for DHT Algorithms October 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Baset, et al. Expires April 19, 2007 [Page 21]

