
Network Working Group S. Barre
Internet-Draft C. Paasch
Expires: September 8, 2011 O. Bonaventure
 UCLouvain, Belgium
 March 7, 2011

 MultiPath TCP - Guidelines for implementers
 draft-barre-mptcp-impl-00

Abstract

 Multipath TCP is a major extension to TCP that allows improving the
 resource usage in the current Internet by transmitting data over
 several TCP subflows, while still showing one single regular TCP
 socket to the application. This document describes our experience in
 writing a MultiPath TCP implementation in the Linux kernel and
 discusses implementation guidelines that could be useful for other
 developers who are planning to add MultiPath TCP to their networking
 stack.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Barre, et al. Expires September 8, 2011 [Page 1]

Internet-Draft MPTCP Impl. guidelines March 2011

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. An architecture for Multipath transport 5
 2.1. MPTCP architecture . 5
 2.2. Structure of the Multipath Transport 9
 2.3. Structure of the Path Manager 9
 3. MPTCP challenges for the OS 12
 3.1. Charging the application for its CPU cycles 12
 3.2. At connection/subflow establishment 13
 3.3. Subflow management . 14
 3.4. At the data sink . 14
 3.4.1. Receive buffer tuning 15
 3.4.2. Receive queue management 15
 3.4.3. Scheduling data ACKs 16
 3.5. At the data source . 16
 3.5.1. Send buffer tuning 17
 3.5.2. Send queue management 17
 3.5.3. Scheduling data 20
 3.5.3.1. The congestion controller 21
 3.5.3.2. The Packet Scheduler 22
 3.6. At connection/subflow termination 23
 4. Configuring the OS for MPTCP 25
 4.1. Source address based routing 25
 4.2. Buffer configuration 27
 5. Future work . 28
 6. Acknowledgements . 29
 7. References . 30
 Appendix A. Design alternatives 32
 A.1. Another way to consider Path Management 32
 A.2. Implementing alternate Path Managers 33
 A.3. When to instantiate a new meta-socket ? 34
 A.4. Forcing more processing in user context 34
 A.5. Buffering data on a per-subflow basis 35
 Appendix B. Ongoing discussions on implementation improvements . 39
 B.1. Heuristics for subflow management 39
 Authors’ Addresses . 41

Barre, et al. Expires September 8, 2011 [Page 2]

Internet-Draft MPTCP Impl. guidelines March 2011

1. Introduction

 The MultiPath TCP protocol [1] is a major TCP extension that allows
 for simultaneous use of multiple paths, while being transparent to
 the applications, fair to regular TCP flows [2] and deployable in the
 current Internet. The MPTCP design goals and the protocol
 architecture that allow reaching them are described in [3]. Besides
 the protocol architecture, a number of non-trivial design choices
 need to be made in order to extend an existing TCP implementation to
 support MultiPath TCP. This document gathers a set of guidelines
 that should help implementers writing an efficient and modular MPTCP
 stack. The guidelines are expected to be applicable regardless of
 the Operating System (although the MPTCP implementation described
 here is done in Linux [4]). Another goal is to achieve the greatest
 level of modularity without impacting efficiency, hence allowing
 other multipath protocols to nicely co-exist in the same stack. In
 order for the reader to clearly disambiguate "useful hints" from
 "important requirements", we write the latter in their own
 paragraphs, starting with the keyword "IMPORTANT". By important
 requirements, we mean design options that, if not followed, would
 lead to an under-performing MPTCP stack, maybe even slower than
 regular TCP.

 This draft presents implementation guidelines that are based on the
 code which has been implemented in our MultiPath TCP aware Linux
 kernel (the version covered here is 0.6) which is available from
 http://inl.info.ucl.ac.be/mptcp. We also list configuration
 guidelines that have proven to be useful in practice. In some cases,
 we discuss some mechanisms that have not yet been implemented. These
 mechanisms are clearly listed. During our work in implementing
 MultiPath TCP, we evaluated other designs. Some of them are not used
 anymore in our implementation. However, we explain in the appendix
 the reason why these particular designs have not been considered
 further.

 This document is structured as follows. First we propose an
 architecture that allows supporting MPTCP in a protocol stack
 residing in an operating system. Then we consider a range of
 problems that must be solved by an MPTCP stack (compared to a regular
 TCP stack). In Section 4, we propose recommendations on how a system
 administrator could correctly configure an MPTCP-enabled host.
 Finally, we discuss future work, in particular in the area of MPTCP
 optimization.

1.1. Terminology

 In this document we use the same terminology as in [3] and [1]. In
 addition, we will use the following implementation-specific terms:

Barre, et al. Expires September 8, 2011 [Page 3]

Internet-Draft MPTCP Impl. guidelines March 2011

 o Meta-socket: A socket structure used to reorder incoming data at
 the connection level and schedule outgoing data to subflows.

 o Master subsocket: The socket structure that is visible from the
 application. If regular TCP is in use, this is the only active
 socket structure. If MPTCP is used, this is the socket
 corresponding to the first subflow.

 o Slave subsocket: Any socket created by the kernel to provide an
 additional subflow. Those sockets are not visible to the
 application (unless a specific API [5] is used). The meta-socket,
 master and slave subsocket are explained in more details in
 Section 2.2.

 o Endpoint id: Endpoint identifier. It is the tuple (saddr, sport,
 daddr, dport) that identifies a particular subflow, hence a
 particular subsocket.

 o Fendpoint id: First Endpoint identifier. It is the endpoint
 identifier of the Master subsocket.

 o Connection id or token: It is a locally unique number, defined in
 Section 2 of [1], that allows finding a connection during the
 establishment of new subflows.

Barre, et al. Expires September 8, 2011 [Page 4]

Internet-Draft MPTCP Impl. guidelines March 2011

2. An architecture for Multipath transport

 Section 4 of the MPTCP architecture document [3] describes the
 functional decomposition of MPTCP. It lists four entities, namely
 Path Management, Packet Scheduling, Subflow Interface and Congestion
 Control. These entities can be further grouped based on the layer at
 which they operate:

 o Transport layer: This includes Packet Scheduling, Subflow
 Interface and Congestion Control, and is grouped under the term
 "Multipath Transport (MT)". From an implementation point of view,
 they all will involve modifications to TCP.

 o Any layer: Path Management. Path management can be done in the
 transport layer, as is the case of the built-in path manager (PM)
 described in [1]. That PM discovers paths through the exchange of
 TCP options of type ADD_ADDR or the reception of a SYN on a new
 address pair, and defines a path as an endpoint_id (saddr, sport,
 daddr, dport). But, more generally, a PM could be any module able
 to expose multiple paths to MPTCP, located either in kernel or
 user space, and acting on any OSI layer (e.g. a bonding driver
 that would expose its multiple links to the Multipath Transport).

 Because of the fundamental independence of Path Management compared
 to the three other entities, we draw a clear line between both, and
 define a simple interface that allows MPTCP to benefit easily from
 any appropriately interfaced multipath technology. In this document,
 we stick to describing how the functional elements of MPTCP are
 defined, using the built-in Path Manager described in [1], and we
 leave for future separate documents the description of other path
 managers. We describe in the first subsection the precise roles of
 the Multipath Transport and the Path Manager. Then we detail how
 they are interfaced with each other.

2.1. MPTCP architecture

 Although, when using the built-in PM, MPTCP is fully contained in the
 transport layer, it can still be organized as a Path Manager and a
 Multipath Transport Layer as shown in Figure 1. The Path Manager
 announces to the MultiPath Transport what paths can be used through
 path indices for an MPTCP connection, identified by the fendpoint_id
 (first endpoint id). The fendpoint_id is the tuple (saddr, sport,
 daddr, dport) seen by the application and uniquely identifies the
 MPTCP connection (an alternate way to identify the MPTCP connection
 being the conn_id, which is a token as described in Section 2 of
 [1]). The Path Manager maintains the mapping between the path_index
 and an endpoint_id. The endpoint_id is the tuple (saddr, sport,
 daddr, dport) that is to be used for the corresponding path index.

Barre, et al. Expires September 8, 2011 [Page 5]

Internet-Draft MPTCP Impl. guidelines March 2011

 Note that the fendpoint_id itself represents a path and is thus a
 particular endpoint_id. By convention, the fendpoint_id is always
 represented as path index 1. As explained in [3], Section 5.6, it is
 not yet clear how an implementation should behave in the event of a
 failure in the first subflow. We expect, however, that the Master
 subsocket should be kept in use as an interface with the application,
 even if no data is transmitted anymore over it. It also allows the
 fendpoint_id to remain meaningful throughout the life of the
 connection. This behavior has yet to be tested and refined with
 Linux MPTCP.

 Figure 1 shows an example sequence of MT-PM interactions happening at
 the beginning of an exchange. When the MT starts a new connection
 (through an application connect() or accept()), it can request the PM
 to be updated about possible alternate paths for this new connection.
 The PM can also spontaneously update the MT at any time (normally
 when the path set changes). This is step 1 in Figure 1. In the
 example, 4 paths can be used, hence 3 new ones. Based on the update,
 the MT can decide whether to establish new subflows, and how many of
 them. Here, the MT decides to establish one subflow only, and sends
 a request for endpoint_id to the PM. This is step 2. In step 3, the
 answer is given: <A2,B2,0,pB2>. The source port is unspecified to
 allow the MT ensure the unicity of the new endpoint_id, thanks to the
 new_port() primitive (present in regular TCP as well). Note that
 messages 1,2,3 need not be real messages and can be function calls
 instead (as is the case in Linux MPTCP).

Barre, et al. Expires September 8, 2011 [Page 6]

Internet-Draft MPTCP Impl. guidelines March 2011

 Control plane
 +---+
 | Multipath Transport (MT) |
 +--|----------+
 ^ | ^ v
 | | | [Build new subsocket,
 | 1.For fendpt_id |2.endpt_id | with endpt_ids
 |<A1,B1,pA1,pB1> | for path | 3.<A2,B2, <A2,B2,new_port(),pB2]
 |Paths 1->4 can be | index 2 ? | 0,pB2>
 |used. | |
 | | |
 | | |
 | v |
 +---+
 | Path Manager (PM) |
 +---+
 / \
 /---------------------------------------\
 | mapping table: |
 | Subflow <--> endpoint_id |
 | path index |
 | |
 | [see table below] |
 | |
 +---------------------------------------+

 Figure 1: Functional separation of MPTCP in the transport layer

 The following options, described in [1] , are managed by the
 Multipath Transport:

 o MULTIPATH CAPABLE (MP_CAPABLE): Tells the peer that we support
 MPTCP and announces our local token.

 o MP_JOIN/MP_AUTH: Initiates a new subflow (Note that MP_AUTH is not
 yet part of our Linux implementation at the moment)

 o DATA SEQUENCE NUMBER (DSN_MAP): Identifies the position of a set
 of bytes in the meta-flow.

 o DATA_ACK: Acknowledge data at the connection level (subflow level
 acknowledgments are contained in the normal TCP header).

 o DATA FIN (DFIN): Terminates a connection.

 o MP_PRIO: Asks the peer to revise the backup status of the subflow
 on which the option is sent. Although the option is sent by the

Barre, et al. Expires September 8, 2011 [Page 7]

Internet-Draft MPTCP Impl. guidelines March 2011

 Multipath Transport (because this allows using the TCP option
 space), it may be triggered by the Path Manager. This option is
 not yet supported by our MPTCP implementation.

 o MP_FAIL: Checksum failed at connection-level. Currently the Linux
 implementation does not implement the checksum in option DSN_MAP,
 and hence does not implement either the MP_FAIL option.

 The Path manager applies a particular technology to give the MT the
 possibility to use several paths. The built-in MPTCP Path Manager
 uses multiple IPv4/v6 addresses as its mean to influence the
 forwarding of packets through the Internet. When the MT starts a new
 connection, it chooses a token that will be used to identify the
 connection. This is necessary to allow future subflow-establishment
 SYNs (that is, containing the MP_JOIN option) to be attached to the
 correct connection. An example mapping table is given hereafter:

 +---------+------------+---------------+
 | token | path index | Endpoint id |
 +---------+------------+---------------+
 | token_1 | 1 | <A1,B1,0,pB1> |
 | | | |
 | token_1 | 2 | <A2,B2,0,pB1> |
 | | | |
 | token_1 | 3 | <A1,B2,0,pB1> |
 | | | |
 | token_1 | 4 | <A2,B1,0,pB1> |
 | | | |
 | | | |
 | token_2 | 1 | <A1,B1,0,pB2> |
 | | | |
 | token_2 | 2 | <A2,B1,0,pB2> |
 +---------+------------+---------------+

 Table 1: Example mapping table for built-in PM

 Table 1 shows an example where two MPTCP connections are active. One
 is identified by token_1, the other one with token_2. As per [1],
 the tokens must be unique locally. Since the endpoint identifier may
 change from one subflow to another, the attachment of incoming new
 subflows (identified by a SYN + MP_JOIN option) to the right
 connection is achieved thanks to the locally unique token. The
 built-in path manager currently implements the following options The
 following options (defined in [1]) are intended to be part of the
 built-in path manager:

 o Add Address (ADD_ADDR): Announces a new address we own

Barre, et al. Expires September 8, 2011 [Page 8]

Internet-Draft MPTCP Impl. guidelines March 2011

 o Remove Address (REMOVE_ADDR): Withdraws a previously announced
 address

 Those options form the built-in MPTCP Path Manager, based on
 declaring IP addresses, and carries control information in TCP
 options. An implementation of Multipath TCP can use any Path
 Manager, but it must be able to fallback to the default PM in case
 the other end does not support the custom PM. Alternative Path
 Managers may be specified in separate documents in the future.

2.2. Structure of the Multipath Transport

 The Multipath Transport handles three kinds of sockets. We define
 them here and use this notation throughout the entire document:

 o Master subsocket: This is the first socket in use when a
 connection (TCP or MPTCP) starts. It is also the only one in use
 if we need to fall back to regular TCP. This socket is initiated
 by the application through the socket() system call. Immediately
 after a new master subsocket is created, MPTCP capability is
 enabled by the creation of the meta-socket.

 o Meta-socket: It holds the multipath control block, and acts as the
 connection level socket. As data source, it holds the main send
 buffer. As data sink, it holds the connection-level receive queue
 and out-of-order queue (used for reordering). We represent it as
 a normal (extended) socket structure in Linux MPTCP because this
 allows reusing much of the existing TCP code with few
 modifications. In particular, the regular socket structure
 already holds pointers to SND.UNA, SND.NXT, SND.WND, RCV.NXT,
 RCV.WND (as defined in [6]). It also holds all the necessary
 queues for sending/receiving data.

 o Slave subsocket: Any subflow created by MPTCP, in addition to the
 first one (the master subsocket is always considered as a subflow
 even though it may be in failed state at some point in the
 communication). The slave subsockets are created by the kernel
 (not visible from the application) The master subsocket and the
 slave subsockets together form the pool of available subflows that
 the MPTCP Packet Scheduler (called from the meta-socket) can use
 to send packets.

2.3. Structure of the Path Manager

 In contrast to the multipath transport, which is more complex and
 divided in sub-entities (namely Packet Scheduler, Subflow Interface
 and Congestion Control, see Section 2), the Path Manager just
 maintains the mapping table and updates the Multipath Transport when

Barre, et al. Expires September 8, 2011 [Page 9]

Internet-Draft MPTCP Impl. guidelines March 2011

 the mapping table changes. The mapping table has been described
 above (Table 1). We detail in Table 2 the set of (event,action)
 pairs that are implemented in the Linux MPTCP built-in path manager.
 For reference, an earlier architecture for the Path Management is
 discussed in Appendix A.1. Also, Appendix A.2 proposes a small
 extension to this current architecture to allow supporting other path
 managers.

Barre, et al. Expires September 8, 2011 [Page 10]

Internet-Draft MPTCP Impl. guidelines March 2011

 +-------------------------+---+
 | event | action |
 +-------------------------+---+
master_sk bound: This	Discovers the set of local addresses
event is triggered upon	and stores them in local_addr_table
either a bind(),	
connect(), or when a	
new server-side socket	
becomes established.	
ADD_ADDR option	Updates remote_addr_table
received or SYN+MP_JOIN	correspondingly
received on new address	
local/remote_addr_table	Updates mapping_table by adding any new
updated	address combinations, or removing the
	ones that have disappeared. Each
	address pair is given a path index.
	Once allocated to an address pair, a
	path index cannot be reallocated to
	another one, to ensure consistency of
	the mapping table.
Mapping_table updated	Sends notification to the Multipath
	Transport. The notification contains
	the new set of path indices that the MT
	is allowed to use. This is shown in
	Figure 1, msg 1.
Endpoint_id(path_index)	Retrieves the endpoint_ids for the
request received from	corresponding path index from the
MT (Figure 1, msg 2)	mapping table and returns them to the
	MT. One such request/response is
	illustrated in Figure 1, msg 3. Note
	that in that msg 3, the local port is
	set to zero. This is to let the
	operating system choose a unique local
	port for the new socket.
 +-------------------------+---+

 Table 2: (event,action) pairs implemented in the built-in PM

Barre, et al. Expires September 8, 2011 [Page 11]

Internet-Draft MPTCP Impl. guidelines March 2011

3. MPTCP challenges for the OS

 MPTCP is a major modification to the MPTCP stack. We have described
 above an architecture that separates Multipath Transport from Path
 Management. Path Management can be implemented rather simply. But
 Multipath Transport involves a set of new challenges, that do not
 exist in regular TCP. We first describe how an MPTCP client or
 server can start a new connection, or a new subflow within a
 connection. Then we propose techniques (a concrete implementation of
 which is done in Linux MPTCP) to efficiently implement data reception
 (at the data sink) and data sending (at the data source).

3.1. Charging the application for its CPU cycles

 As this document is about implementation, it is important not only to
 ensure that MPTCP is fast, but also that it is fair to other
 applications that share the same CPU. Otherwise one could have an
 extremely fast file transfer, while the rest of the system is just
 hanging. CPU fairness is ensured by the scheduler of the Operating
 System when things are implemented in user space. But in the kernel,
 we can choose to run code in "user context", that is, in a mode where
 each CPU cycle is charged to a particular application. Or we can
 (and must in some cases) run code in "interrupt context", that is,
 interrupting everything else until the task has finished. In Linux
 (probably a similar thing is true in other systems), the arrival of a
 new packet on a NIC triggers a hardware interrupt, which in turn
 schedules a software interrupt that will pull the packet from the NIC
 and perform the initial processing. The challenge is to stop the
 processing of the incoming packet in software interrupt as soon as it
 can be attached to a socket, and wake up the application. With TCP,
 an additional constraint is that incoming data should be acknowledged
 as soon as possible, which requires reordering. Van Jacobson has
 proposed a solution for this [7]: If an application is waiting on a
 recv() system call, incoming packets can be put into a special queue
 (called prequeue in Linux) and the application is woken up.
 Reordering and acknowledgement are then performed in user context.
 The execution path for outgoing packets is less critical from that
 point of view, because the vast majority of processing can be done
 very easily in user context.

 In this document, when discussing CPU fairness, we will use the
 following terms:

 o User context: Execution environment that is under control of the
 OS scheduler. CPU cycles are charged to the associated
 application, which allows to ensure fairness with other
 applications.

Barre, et al. Expires September 8, 2011 [Page 12]

Internet-Draft MPTCP Impl. guidelines March 2011

 o Interrupt context: Execution environment that runs with higher
 priority than any process. Although it is impossible to
 completely avoid running code in interrupt context, it is
 important to minimize the amount of code running in such a
 context.

 o VJ prequeues: This refers to Van Jacobson prequeues, as explained
 above[7].

3.2. At connection/subflow establishment

 As described in [1], the establishment of an MPTCP connection is
 quite simple, being just a regular three-way exchange with additional
 options. As shown in Section 2.2 this is done in the master
 subsocket. Currently Linux MPTCP attaches a meta-socket to a socket
 as soon as it is created, that is, upon a socket() system call
 (client side), or when a server side socket enters the ESTABLISHED
 state. An alternate solution is described in Appendix A.3.

 An implementation can choose the best moment, maybe depending on the
 OS, to instantiate the meta-socket. However, if this meta-socket is
 needed to accept new subflows (like it is in Linux MPTCP), it should
 be attached at the latest when the MP_CAPABLE option is received.
 Otherwise incoming new subflow requests (SYN + MP_JOIN) may be lost,
 requiring retransmissions by the peer and delaying the subflow
 establishment.

 The establishment of subflows, on the other hand, is more tricky.
 The problem is that new SYNs (with the MP_JOIN option) must be
 accepted by a socket (the meta-socket in the proposed design) as if
 it was in LISTEN state, while its state is actually ESTABLISHED.
 There is the following in common with a LISTEN socket:

 o Temporary structure: Between the reception of the SYN and the
 final ACK, a mini-socket is used as a temporary structure.

 o Queue of connection requests: The meta-socket, like a LISTEN
 socket, maintains a list of pending connection requests. There
 are two such lists. One contains mini-sockets, because the final
 ACK has not yet been received. The second list contains sockets
 in the ESTABLISHED state that have not yet been accepted.
 "Accepted" means, for regular TCP, returned to the application as
 a result of an accept() system call. For MPTCP it means that the
 new subflow has been integrated in the set of active subflows.

 We can list the following differences with a normal LISTEN socket.

Barre, et al. Expires September 8, 2011 [Page 13]

Internet-Draft MPTCP Impl. guidelines March 2011

 o Socket lookup for a SYN: When a SYN is received, the corresponding
 LISTEN socket is found by using the endpoint_id. This is not
 possible with MPTCP, since we can receive a SYN on any
 endpoint_id. Instead, the token must be used to retrieve the
 meta-socket to which the SYN must be attached. A new hashtable
 must be defined, with tokens as keys.

 o Lookup for connection request: In regular TCP, this lookup is
 quite similar to the previous one (in Linux at least). The
 5-tuple is used, first to find the LISTEN socket, next to retrieve
 the corresponding mini-socket, stored in a private hashtable
 inside the LISTEN socket. With MPTCP, we cannot do that, because
 there is no way to retrieve the meta-socket from the final ACK.
 The 5-tuple can be anything, and the token is only present in the
 SYN. There is no token in the final ACK. Our Linux MPTCP
 implementation uses a global hashtable for pending connection
 requests, where the key is the 5-tuple of the connection request.

 An implementation must carefully check the presence of the MP_JOIN
 option in incoming SYNs before performing the usual socket lookup.
 If it is present, only the token-based lookup must be done. If this
 lookup does not return a meta-socket, the SYN must be discarded.
 Failing to do that could lead to mistakenly attach the incoming SYN
 to a LISTEN socket instead of attaching it to a meta-socket.

3.3. Subflow management

 Further research is needed to define the appropriate heuristics to
 solve these problems. Initial thoughts are provided in Appendix B.1.

 Currently, in a Linux MPTCP client, the Multipath Transport tries to
 open all subflows advertised by the Path Manager. On the other hand,
 the server only accepts new subflows, but does not try to establish
 new ones. The rationale for this is that the client is the
 connection initiator. New subflows are only established if the
 initiator requests them. This is subject to change in future
 releases of our MPTCP implementation.

3.4. At the data sink

 There is a symmetry between the behavior of the data source and the
 data sink. Yet, the specific requirements are different. The data
 sink is described in this section while the data source is described
 in the next section.

Barre, et al. Expires September 8, 2011 [Page 14]

Internet-Draft MPTCP Impl. guidelines March 2011

3.4.1. Receive buffer tuning

 The MPTCP required receive buffer is larger than the sum of the
 buffers required by the individual subflows. The reason for this and
 proper values for the buffer are explained in [3] Section 5.3. Not
 following this could result in the MPTCP speed being capped at the
 bandwidth of the slowest subflow.

 An interesting way to dynamically tune the receive buffer according
 the bandwidth/delay product (BDP) of a path, for regular TCP, is
 described in [8] and implemented in recent Linux kernels. It uses
 the COPIED_SEQ sequence variable (sequence number of the next byte to
 copy to the app buffer) to count, every RTT, the number of bytes
 received during that RTT. This number of bytes is precisely the BDP.
 The accuracy of this technique is directly dependent on the accuracy
 of the RTT estimation. Unfortunately, the data sink does not have a
 reliable estimate of the SRTT. To solve this, [8] proposes two
 techniques:

 1. Using the timestamp option (quite accurate).

 2. Computing the time needed to receive one RCV.WND [6] worth of
 data. It is less precise and is used only to compute an upper
 bound on the required receive buffer.

 As described in [1], section 3.3.3, the MPTCP advertised receive
 window is shared by all subflows. Hence, no per-subflow information
 can be deduced from it, and the second technique from [8] cannot be
 used. [3] mentions that the allocated connection-level receive buffer
 should be 2*sum(BW_i)*RTT_max, where BW_i is the bandwidth seen by
 subflow i and RTT_max is the maximum RTT estimated among all the
 subflows. This is achieved in Linux MPTCP by slightly modifying the
 first tuning algorithm from [8], and disabling the second one. The
 modification consists in counting on each subflow, every RTT_max the
 number of bytes received during that time on this subflow. Per
 subflow, this provides its contribution to the total receive buffer
 of the connection. This computes the contribution of each subflow to
 the total receive buffer of the connection.

3.4.2. Receive queue management

 As advised in [1], Section 3.3.1, "subflow-level processing should be
 undertaken separately from that at connection-level". This also has
 the side-effect of allowing much code reuse from the regular TCP
 stack. A regular TCP stack (in Linux at least) maintains a receive
 queue (for storing incoming segments until the application asks for
 them) and an out-of-order queue (to allow reordering). In Linux
 MPTCP, the subflow-level receive-queue is not used. Incoming

Barre, et al. Expires September 8, 2011 [Page 15]

Internet-Draft MPTCP Impl. guidelines March 2011

 segments are reordered at the subflow-level, just as if they were
 plain TCP data. But once the data is in-order at the subflow level,
 it can be immediately handed to MPTCP (See Figure 7 of [3]) for
 connection-level reordering. The role of the subflow-level receive
 queue is now taken by the MPTCP-level receive queue. In order to
 maximize the CPU cycles spent in user context (see Section 3.1), VJ
 prequeues can be used just as in regular TCP (they are not yet
 supported in Linux MPTCP, though).

 An alternate design, where the subflow-level receive queue is kept
 active and the MPTCP receive queue is not used, is discussed in
 Appendix A.4.

3.4.3. Scheduling data ACKs

 As specified in [1], Section 3.3.2, data ACKs not only help the
 sender in having a consistent view of what data has been correctly
 received at the connection level. They are also used as the left
 edge of the advertised receive window.

 In regular TCP, if a receive buffer becomes full, the receiver
 announces a receive window. When finally some bytes are given to the
 application, freeing space in the receive buffer, a duplicate ACK is
 sent to act as a window upate, so that the sender knows it can
 transmit again. Likewise, when the MPTCP shared receive buffer
 becomes full, a zero window is advertised. When some bytes are
 delivered to the application, a duplicate DATA_ACK must be sent to
 act as a window update. Such an important DATA_ACK should be sent on
 all subflows, to maximize the probability that at least one of them
 reaches the peer. If, however, all DATA_ACKs are lost, there is no
 other option than relying on the window probes periodically sent by
 the data source, as in regular TCP.

 In theory a DATA_ACK can be sent on any subflow, or even on all
 subflows, simultaneously. As of version 0.5, Linux MPTCP simply adds
 the DATA_ACK option to any outgoing segment (regardless of whether it
 is data or a pure ACK). There is thus no particular DATA_ACK
 scheduling policy. The only exception is for a window update that
 follows a zero-window. In this case, the behavior is as described in
 the previous paragraph.

3.5. At the data source

 In this section we mirror the topics of the previous section, in the
 case of a data sender. The sender does not have the same view of the
 communication, because one has information that the other can only
 estimate. Also, the data source sends data and receives
 acknowledgements, while the data sink does the reverse. This results

Barre, et al. Expires September 8, 2011 [Page 16]

Internet-Draft MPTCP Impl. guidelines March 2011

 in a different set of problems to be dealt with by the data source.

3.5.1. Send buffer tuning

 As explained in [3], end of Section 5.3, the send buffer should have
 the same size as the receive buffer. At the sender, we don’t have
 the RTT estimation problem described in Section 3.4.1, because we can
 reuse the built-in TCP SRTT (smoothed RTT). Moreover, the sender has
 the congestion window, which is itself an estimate of the BDP, and is
 used in Linux to tune the send buffer of regular TCP. Unfortunately,
 we cannot use the congestion window with MPTCP, because the buffer
 equation does not involve the product BW_i*delay_i for the subflows
 (which is what the congestion window estimates), but it involves
 BW_i*delay_max, where delay_max is the maximum observed delay across
 all subflows. An obvious way to compute the contribution of each
 subflow to the receive buffer would be: 2*(cwnd_i/SRTT_i)*SRTT_max.
 However, some care is needed because of the variability of the SRTT
 (measurements show that, even smoothed, the SRTT is not quite
 stable). Currently Linux MPTCP estimates the bandwidth periodically
 by checking the sequence number progress. This however introduces
 new mechanisms in the kernel, that could probably be avoided. Future
 experience will tell what is appropriate.

3.5.2. Send queue management

 As MultiPath TCP involves the use of several TCP subflows, a
 scheduler must be added to decide where to send each byte of data.
 Two possible places for the scheduler have been evaluated for Linux
 MPTCP. One option is to schedule data as soon as it arrives from the
 application buffer. This option, consisting in _pushing_ data to
 subflows as soon as it is available, was implemented in older
 versions of Linux MPTCP and is now abandoned. We keep a description
 of it (and why it has been abandoned) in Appendix A.5. Another
 option is to store all data centrally in the Multipath Transport,
 inside a shared send buffer (see Figure 2). Scheduling is then done
 at transmission time, whenever any subflow becomes ready to send more
 data (usually due to acknowledgements having opened space in the
 congestion window). In that scenario, the subflows _pull_ segments
 from the shared send queue whenever they are ready. Note that
 several subflows can become ready simultaneously, if an
 acknowledgement advertises a new receive window, that opens more
 space in the shared send window. For that reason, when a subflow
 pulls data, the Packet Scheduler is run and other subflows may be fed
 by the Packet Scheduler in the same time.

Barre, et al. Expires September 8, 2011 [Page 17]

Internet-Draft MPTCP Impl. guidelines March 2011

 Application
 |
 v
 | * |
 Next segment to send (A) -> | * |
 |---| <- Shared send queue
 Sent, but not DATA-acked(B)-> |_*_|
 |
 v
 Packet Scheduler
 / \
 / \
 | |
 v v
 Sent, but not acked(B) -> |_| |_| <- Subflow level congestion
 | | window
 v v
 NIC NIC

 Figure 2: Send queue configuration

 This approach, similar to the one proposed in [9], presents several
 advantages:

 o Each subflow can easily fill its pipe. (As long as there is data
 to pull from the shared send buffer, and the scheduler is not
 applying a policy that restricts the subflow).

 o If a subflow fails, it will no longer receive acknowledgements,
 and hence will naturally stop pulling from the shared send buffer.
 This removes the need for an explicit "failed state", to ensure
 that a failed subflow does not receive data (As opposed to e.g.
 SCTP-CMT, that needs an explicit marking of failed subflows by
 design, because it uses a single sequence number space [10]).

 o Similarly, when a failed subflow becomes active again, the pending
 segments of its congestion window are finally acknowledged,
 allowing it to pull again from the shared send buffer. Note that
 in such a case, the acknowledged data is normally just dropped by
 the receiver, because the corresponding segments have been
 retransmitted on another subflow during the failure time.

 Despite the adoption of that approach in Linux MPTCP, there are still
 two drawbacks:

 o There is one single queue, in the Multipath Transport, from which
 all subflows pull segments. In Linux, queue processing is
 optimized for handling segments, not bytes. This implies that the

Barre, et al. Expires September 8, 2011 [Page 18]

Internet-Draft MPTCP Impl. guidelines March 2011

 shared send queue must contain pre-built segments, hence requiring
 the _same_ MSS to be used for all subflows. We note however that
 today, the most commonly negotiated MSS is around 1380 bytes [4],
 so this approach sounds reasonable. Should this requirement
 become too constraining in the future, a more flexible approach
 could be devised (e.g., supporting a few Maximum Segment Sizes).

 o Because the subflows pull data whenever they get new free space in
 their congestion window, the Packet Scheduler must run at that
 time. But that time most often corresponds to the reception of an
 acknowledgement, which happens in interrupt context (see
 Section 3.1). This is both unfair to other system processes, and
 slightly inefficient for high speed communications. The problem
 is that the packet scheduler performs more operations that the
 usual "copy packet to NIC". One way to solve this problem would
 be to have a small subflow-specific send queue, which would
 actually lead to a hybrid architecture between the pull approach
 (described here) and the push approach (described in
 Appendix A.5). Doing that would require solving non-trivial
 problems, though, and requires further study.

 As shown, in Figure 2, a segment first enters the shared send queue,
 then, when reaching the bottom of that queue, it is pulled by some
 subflow. But to support failures, we need to be able to move
 segments from one subflow to another, so that the failure is
 invisible from the application. In Linux MPTCP, the segment data is
 kept in the Shared send queue (B portion of the queue). When a
 subflow pulls a segment, it actually only copies the control
 structure (struct sk_buff) (which Linux calls packet cloning) and
 increments its reference count. The following event/action table
 summarizes these operations:

 +-----------------+---+
 | event | action |
 +-----------------+---+
Segment	Remove references to the segment from the
acknowledged at	subflow-level queue
subflow level	
Segment	Remove references to the segment from the
acknowledged at	connection-level queue
connection	
level	

Barre, et al. Expires September 8, 2011 [Page 19]

Internet-Draft MPTCP Impl. guidelines March 2011

Timeout	Push the segment to the best running subflow
(subflow-level)	(according to the Packet Scheduler). If no
	subflow is available, push it to a temporary
	retransmit queue (not represented in Figure 2)
	for future pulling by an available subflow. The
	retransmit queue is parallel to the connection
	level queue and is read with higher priority.
Ready to put	If the retransmit queue is not empty, first
new data on the	pull from there. Otherwise, then take new
wire (normally	segment(s) from the connection level send queue
triggered by an	(A portion). The pulling operation is a bit
incoming ack)	special in that it can result in sending a
	segment over a different subflow than the one
	which initiated the pull. This is because the
	Packet Scheduler is run as part of the pull,
	which can result in selecting any subflow. In
	most cases, though, the subflow which
	originated the pull will get fresh data, given
	it has space for that in the congestion window.
	Note that the subflows have no A portion in
	Figure 2, because they immediately send the
	data they pull.
 +-----------------+---+

 Table 3: (event,action) pairs implemented in the Multipath Transport
 queue management

 IMPORTANT: A subflow can be stopped from transmitting by the
 congestion window, but also by the send window (that is, the receive
 window announced by the peer). Given that the receive window has a
 connection level meaning, a DATA_ACK arriving on one subflow could
 unblock another subflow. Implementations should be aware of this to
 avoid stalling part of the subflows in such situations. In the case
 of Linux MPTCP, that follows the above architecture, this is ensured
 by running the Packet Scheduler at each pull operation. This is not
 completely optimal, though, and may be revised when more experience
 is gained.

3.5.3. Scheduling data

 As several subflows may be used to transmit data, MPTCP must select a
 subflow to send each data. First, we need to know which subflows are
 available for sending data. The mechanism that controls this is the
 congestion controller, which maintains a per-subflow congestion
 window. The aim of a Multipath congestion controller is to move data
 away from congested links, and ensure fairness when there is a shared
 bottleneck. The handling of the congestion window is explained in

Barre, et al. Expires September 8, 2011 [Page 20]

Internet-Draft MPTCP Impl. guidelines March 2011

 Section 3.5.3.1. Given a set of available subflows (according to the
 congestion window), one of these has to be selected by the Packet
 Scheduler. The role of the Packet Scheduler is to implement a
 particular policy, as will be explained in Section 3.5.3.2.

3.5.3.1. The congestion controller

 The Coupled Congestion Control provided in Linux MPTCP implements the
 algorithm defined in [2]. Operating System kernels (Linux at least)
 do not support floating-point numbers for efficiency reasons. [2]
 makes an extensive use of them, which must be worked around. Linux
 MPTCP solves that by performing fixed-point operations using a
 minimum number of fractions and performs scaling when divisions are
 necessary.

 Linux already includes a work-around for floating point operations in
 the Reno congestion avoidance implementation. Upon reception of an
 ack, the congestion window (counted in segments, not in bytes as
 proposed in [2] does) should be updated as cwnd+=1/cwnd. Instead,
 Linux increments the separate variable snd_cwnd_cnt, until
 snd_cwnd_cnt>=cwnd. When this happens, snd_cwnd_cnt is reset, and
 cwnd is incremented. Linux MPTCP reuses this to update the window in
 the CCC (Coupled Congestion Control) congestion avoidance phase:
 snd_cwnd_cnt is incremented as previously explained, and cwnd is
 incremented when snd_cwnd_cnt >= max(tot_cwnd / alpha, cwnd) (see
 [2]). Note that the bytes_acked variable, present in [2], is not
 included here because Linux MPTCP does not currently support ABC
 [11], but instead considers acknowledgements in MSS units. Linux
 uses for ABC, in Reno, the bytes_acked variable instead of
 snd_cwnd_cnt. For Reno, cwnd is incremented by one if
 bytes_acked>=cwnd*MSS. Hence, in the case of a CCC with ABC, one
 would increment cwnd when bytes_acked>=max(tot_cwnd*MSS / alpha,
 cwnd*MSS).

 Unfortunately, the alpha parameter mentioned above involves many
 fractions. The current implementation of MPTCP uses a rewritten
 version of the alpha formula from [2]:

 cwnd_max * scale_num
 alpha = tot_cwnd * ----------------------------------
 / rtt_max * cwnd_i * scale_den \ 2
 | sum -----------------------------|
 \ i rtt_i /

 This computation assumes that the MSS is shared by all subflows,
 which is true under the architecture described in Section 3.5.2 but
 implies that implementations choosing to support several MSS cannot
 use the above simplified equation. The variables cwnd_max and

Barre, et al. Expires September 8, 2011 [Page 21]

Internet-Draft MPTCP Impl. guidelines March 2011

 rtt_max in the above equation are NOT resp. the maximum congestion
 window and RTT across all subflows. Instead, they are the values of
 subflow i such that cwnd_i / rtt_i^2 is maximum. This corresponds to
 the numerator of the equation provided in [2].

 scale_num and scale_den have to be selected in such a way that
 scale_num > scale_den^2. A good choice is to use scale_num=2^32
 (using 64 bits arithmetic) and scale_den=2^10. In that case the
 final alpha value is scaled by 2^12, which gives a reasonable
 precision. Due to the scaling, it is necessary to also scale later
 in the formula that decides whether an increase of the congestion
 window is necessary or not: snd_cwnd_cnt >= max((tot_cwnd<<12) /
 alpha,cwnd).

3.5.3.2. The Packet Scheduler

 Whenever the Congestion Controller (described above) allows new data
 for at least one subflow, the Packet Scheduler is run. When only one
 subflow is available the Packet Scheduler just decides which packet
 to pick from the A section of the shared send buffer (see Figure 2).
 Currently Linux MPTCP picks the bottom most segment. If more than
 one subflow is available, there are three decisions to take:

 o Which of the subflows to feed with fresh data: As the only Packet
 Scheduler currently supported in Linux MPTCP aims at filling all
 pipes, it always feeds data to all subflows as long as there is
 data to send.

 o In what order to feed selected subflows: when several subflows
 become available simultaneously, they are fed by order of time-
 distance to the client. We define the time-distance as the time
 needed for the packet to reach the peer if given to a particular
 subflow. This time depends on the RTT, bandwidth and queue size
 (in bytes), as follows: time_distance_i = queue_size_i/bw_i+RTT_i.
 Given that with the architecture described in Section 3.5.2, the
 subflow-specific queue size cannot exceed a congestion window, the
 time_distance becomes time_distance_i˜=RTT_i. This scheduling
 policy favors fast subflows for application-limited communications
 (where all subflows need not be used). However, for network-
 limited communications, this scheduling policy has little effect
 because all subflows will be used at some point, even the slow
 ones, to try minimizing the connection-level completion time.

 o How much data to allocate to a single subflow: this question
 concerns the granularity of the allocation. Using big allocation
 units allows for better support of TCP Segmentation Offload (TSO).
 TSO allows the system to aggregate several times the MSS into one
 single segment, sparing memory and CPU cycles, by leaving the

Barre, et al. Expires September 8, 2011 [Page 22]

Internet-Draft MPTCP Impl. guidelines March 2011

 fragmentation task to the NIC. However, this is only possible if
 the large single segment is made of contiguous data, at the
 subflow level and the connection level (see also important note
 below).

 IMPORTANT: When scheduling data to subflows, an implementation must
 be careful that if two segments are contiguous at the subflow-level,
 but non-contiguous at the connection level, they cannot be aggregated
 into one. As Linux (and probably other systems) merges segments when
 it is under memory pressure, it could easily decide to merge non-
 contiguous MPTCP segments, simply because they look contiguous from
 the subflow viewpoint. This must be avoided, because the DATA_SEQ
 mapping option would loose its meaning in such a case, leading to all
 possible kinds of misbehaviors.

3.6. At connection/subflow termination

 In Linux MPTCP, subflows are terminated only when the whole
 connection terminates, because the heuristic for terminating subflows
 (without closing the connection) is not yet mature, as explained in
 Section 3.3.

 At connection termination, an implementation must ensure that all
 subflows plus the meta-socket are cleanly removed. The obvious
 choice to propagate the close() system call on all subflows does not
 work. The problem is that a close() on a subflow appends a FIN at
 the end of the send queue. If we transpose this to the meta-socket,
 we would append a DATA_FIN on the shared send queue (see
 Section 3.5.2). That operation results in the shared send queue not
 accepting any more data from the application, which is correct. It
 also results in the subflow-specific queues not accepting any more
 data from the shared send queue. The shared send queue may however
 still be full of segments, which will never be sent because all gates
 are closed.

 IMPORTANT: Upon a close() system call, an implementation must refrain
 from sending a FIN on all subflows, unless the implementation uses an
 architecture with no connection-level send queue (like the one
 described in Appendix A.5). Even in that case, it makes sense to
 keep all subflows open until the last byte is sent, to allow
 retransmission on any path, should any one of them fail.

 Currently, upon a close() system call, Linux MPTCP appends a DATA_FIN
 to the connection-level send queue. Only when that DATA_FIN reaches
 the bottom of the send queue is the regular FIN sent on all subflows.

 DISCUSSION: In the Linux MPTCP behavior described above, a connection
 could still stall near its end if one path fails while transmitting

Barre, et al. Expires September 8, 2011 [Page 23]

Internet-Draft MPTCP Impl. guidelines March 2011

 its last congestion window of data (because the maximum size of the
 subflow-specific send queue is cwnd). This can be avoided by waiting
 just a bit more before to trigger the subflow-FIN: Instead of sending
 the FIN together with the DATA_FIN, send the DATA_FIN alone and wait
 for the corresponding DATA_ACK to trigger a FIN on all subflows.
 This however augments by one RTT the duration of the overall
 connection termination.

Barre, et al. Expires September 8, 2011 [Page 24]

Internet-Draft MPTCP Impl. guidelines March 2011

4. Configuring the OS for MPTCP

 Previous sections concentrated on implementations. In this section,
 we try to gather guidelines that help getting the full potential from
 MPCTP through appropriate system configuration. Currently those
 guidelines apply especially to Linux, but the principles can be
 applied to other systems.

4.1. Source address based routing

 As already pointed out by [12], the default behavior of most
 operating systems is not appropriate for the use of multiple
 interfaces. Most operating systems are typically configured to use
 at most one IP address at a time. It is more and more common to
 maintain several links in up state (e.g. using the wired interface as
 main link, but maintaining a ready-to-use wireless link in the
 background, to facilitate fallback when the wired link fails). But
 MPTCP is not about that. MPTCP is about _simultaneously_ using
 several interfaces (when available). It is expected that one of the
 mostly used MPTCP configurations will be through two or more NICs,
 each being assigned a different address. Another possible
 configuration would be to assign several IP addresses to the same
 interface, in which case the path diverges later in the network,
 based on the particular address that is used in the packet.

 Usually an operating system has a single default route, with a single
 source IP address. If the host has several IP addresses and we want
 to do MultiPath TCP, it is necessary to configure source address
 based routing. This means that based on the source address, selected
 by the MultiPath TCP-module in the operating system, the routing-
 decision is based on a different routing table. Each of these
 routing tables defines a default route to the Internet. This is
 different from defining several default routes in the same routing
 table (which is also supported in Linux), because in that case only
 the first one is used. Any additional default route is considered as
 a fallback route, used only in case the main one fails.

 It is easier to understand the necessary configuration by means of an
 example. Let a host have two interfaces,I1 and I2, both connected to
 the public Internet and being assigned addresses resp. A1 and A2.
 Such a host needs 3 routing tables. One of them is the classical
 default routing table, present in all systems. The default routing
 table is used to find a route based on the destination address only,
 when a segment is issued with the undetermined source address. The
 undetermined source address is typically used by applications that
 initiate a TCP connect() system call, specifying the destination
 address but letting the system choose the source address. In that
 case, after the default routing table has been consulted, an address

Barre, et al. Expires September 8, 2011 [Page 25]

Internet-Draft MPTCP Impl. guidelines March 2011

 is assigned to the socket by the system by applying [13]. The
 additional routing tables are used when the source address is
 specified. If the source address has no impact on the route that
 should be chosen, then the default routing table is sufficient. But
 this is a particular case (e.g., a host connected to one network
 only, but using two addresses to exploit ECMP paths later in the
 network). In most cases, a source address is attached to a specific
 interface, or at least a specific gateway. Both of those cases
 require defining a separate routing table, one per (gateway, outgoing
 interface) pair. To select the proper routing table based on the
 source address, an additional indirection level must be configured.
 It is called "policy routing" in Linux and is illustrated at the
 bottom of Figure 3.

 +--+
 | Default Table |
 +--+
 | Dst: 0.0.0.0/0 Via: Gateway-IP1 Dev: I1 |
 | Dst: 0.0.0.0/0 Via: Gateway-IP2 Dev: I2 |
 | Dst: Gateway1-Subnet Dev: I1 Src: A1 Scope: Link |
 | Dst: Gateway2-Subnet Dev: I2 Src: A2 Scope: Link |
 +--+

 +--+
 | Table 1 |
 +--+
 | Dst: 0.0.0.0/0 Via: Gateway-IP1 Dev: I1 |
 | Dst: Gateway1-Subnet Dev: I1 Src: A1 Scope: Link |
 +--+

 +--+
 | Table 2 |
 +--+
 | Dst: 0.0.0.0/0 Via: Gateway-IP2 Dev: I2 |
 | Dst: Gateway2-Subnet Dev: I2 Src: A2 Scope: Link |
 +--+

 +--+
 | Policy Table |
 +--+
 | If src == A1 , Table 1 |
 | If src == A2 , Table 2 |
 +--+

 Figure 3: Routing table configuration for MultiPath TCP

 If only the default routing table were used, only the first default
 route would be used, regardless of the source address. For example,

Barre, et al. Expires September 8, 2011 [Page 26]

Internet-Draft MPTCP Impl. guidelines March 2011

 a packet with source address A2, would leave the host through
 interface I1, which is incorrect.

4.2. Buffer configuration

 [3], Section 5.3 describes in details the new, higher buffer
 requirements of MPTCP. Section 3.4.1 and Section 3.5.1 describe how
 the MPTCP buffers can be tuned dynamically. However, it is important
 to note that even the best tuning is capped by a maximum configured
 at the system level. When using MultiPath TCP, the maximum receive
 and send buffer should be configured to a higher value than for
 regular TCP. There is no universal guideline on what value is best
 there. Instead the most appropriate action, for an administrator, is
 probably to roughly estimate the maximum bandwidth and delay that can
 be observed on a particular connectivity setup, and apply the
 equation from [3], Section 5.3 to find a reasonable tradeoff. This
 exercise could lead an administrator to decide to disable MPTCP on
 some interfaces, because it allows consuming less memory while still
 achieving reasonable performance.

Barre, et al. Expires September 8, 2011 [Page 27]

Internet-Draft MPTCP Impl. guidelines March 2011

5. Future work

 A lot of work has yet to be done, and there is much space for
 improvements. In this section we try to assemble a list of future
 improvements that would complete this guidelines.

 o Today’s host processors have more and more CPU cores. Given
 Multipath TCP tries to exploit another form of parallelism, there
 is a challenge in finding how those they can work together
 optimally. An important question is how to work with hardware
 that behaves intelligently with TCP (e.g. flow to core affinity).
 This problem is discussed in more details in [14].

 o An evaluation of Linux MPTCP exists [4]. But many optimizations
 are still possible and should be evaluated. Examples of them VJ
 prequeues (Section 3.1), MPTCP fast path (that is, a translation
 of the existing TCP fast path to MPTCP) or DMA support. VJ
 prequeues, described in Section 3.1, are intended to defer segment
 processing until the application is awoken, when possible.

 o Currently, support for TCP Segmentation Offload remains a
 challenge because it plays with the Maximum Segment Size. Linux
 MPTCP currently works with a single MSS across all subflows (see
 Section 3.5.2). Adding TSO support to MPTCP is certainly
 possible, but requires further work (Section 3.5.2). Also,
 support for Large Receive Offload has not been investigated yet.

 o There are ongoing discussions on heuristics that would be used to
 decide when to start new subflows. Those discussions are
 summarized in Appendix B.1, but none of the proposed heuristics
 have been evaluated yet.

Barre, et al. Expires September 8, 2011 [Page 28]

Internet-Draft MPTCP Impl. guidelines March 2011

6. Acknowledgements

 Sebastien Barre, Christoph Paasch and Olivier Bonaventure are
 supported by Trilogy (http://www.trilogy-project.org), a research
 project (ICT-216372) partially funded by the European Community under
 its Seventh Framework Program. The views expressed here are those of
 the author(s) only. The European Commission is not liable for any
 use that may be made of the information in this document.

 The authors gratefully acknowledge Costin Raiciu, who wrote a
 userland implementation of MPTCP and provided insight on
 implementation matters during several fruitful debates. Discussions
 with Janardhan Iyengar also helped understanding the specificities of
 MPTCP compared to SCTP-CMT.

 The authors would also like to thank the following people for useful
 discussions on the mailing list and/or reviews: Alan Ford, Bob
 Briscoe, Mark Handley, Michael Scharf.

Barre, et al. Expires September 8, 2011 [Page 29]

Internet-Draft MPTCP Impl. guidelines March 2011

7. References

 [1] Ford, A., Raiciu, C., and M. Handley, "TCP Extensions for
 Multipath Operation with Multiple Addresses",
 draft-ietf-mptcp-multiaddressed-02 (work in progress),
 October 2010.

 [2] Raiciu, C., Handley, M., and D. Wischik, "Coupled Congestion
 Control for Multipath Transport Protocols",
 draft-ietf-mptcp-congestion-01 (work in progress),
 January 2011.

 [3] Ford, A., Raiciu, C., Handley, M., Barre, S., and J. Iyengar,
 "Architectural Guidelines for Multipath TCP Development",
 draft-ietf-mptcp-architecture-05 (work in progress),
 January 2011.

 [4] Barre, S., Paasch, C., and O. Bonaventure, "Multipath TCP: From
 Theory to Practice", IFIP Networking,Valencia , May 2011,
 <http://inl.info.ucl.ac.be/publications/mptcp-nw>.

 [5] Scharf, M. and A. Ford, "MPTCP Application Interface
 Considerations", draft-ietf-mptcp-api-00 (work in progress),
 November 2010.

 [6] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [7] Jacobson, V., "Re: query about tcp header on tcp-ip", Sep 1993,
 <ftp://ftp.ee.lbl.gov/email/vanj.93sep07.txt>.

 [8] Fisk, M. and W. Feng, "Dynamic right-sizing in TCP", Los Alamos
 Computer Science Institute Symposium , 2001,
 <http://woozle.org/˜mfisk/papers/tcpwindow-lacsi.pdf>.

 [9] Hsieh, H. and R. Sivakumar, "pTCP: An End-to-End Transport
 Layer Protocol for Striped Connections", ICNP , 2002, <http://
 www.ece.gatech.edu/research/GNAN/archive/2002/icnp02h.html>.

 [10] Becke, M., Dreibholz, T., Iyengar, J., Natarajan, P., and M.
 Tuexen, "Load Sharing for the Stream Control Transmission
 Protocol (SCTP)", draft-tuexen-tsvwg-sctp-multipath-01 (work in
 progress), December 2010.

 [11] Allman, M., "TCP Congestion Control with Appropriate Byte
 Counting (ABC)", RFC 3465, February 2003.

 [12] Blanchet, M. and P. Seite, "Multiple Interfaces and

Barre, et al. Expires September 8, 2011 [Page 30]

Internet-Draft MPTCP Impl. guidelines March 2011

 Provisioning Domains Problem Statement",
 draft-ietf-mif-problem-statement-09 (work in progress),
 October 2010.

 [13] Draves, R., "Default Address Selection for Internet Protocol
 version 6 (IPv6)", RFC 3484, February 2003.

 [14] Watson, R., "Protocol stacks and multicore scalability",
 Presentation at Maastricht MPTCP workshop , Jul 2010, <http://
 www.informatics.sussex.ac.uk/research/projects/ngn/slides/
 msn10talks/watson-stack.pdf>.

Barre, et al. Expires September 8, 2011 [Page 31]

Internet-Draft MPTCP Impl. guidelines March 2011

Appendix A. Design alternatives

 In this appendix, we describe alternate designs that have been
 considered previously, and abandoned for various reasons (detailed as
 well). We keep them here for the archive and possible discussion.
 We also describe some potential designs that have not been explored
 yet but could reveal to be better in the future, in which case that
 would be moved to the draft body.

A.1. Another way to consider Path Management

 In a previous implementation of MPTCP, it was proposed that the
 multipath transport had an even more abstract view of the paths in
 use than what is described in Section 2. In that design, the sub-
 sockets all shared the same tuple (saddr,sport,daddr,dport), and was
 disambiguated only by the path index. The advantage is that the
 Multipath Transport needs only to worry about how to efficiently
 spread data among multiple paths, without any knowledge about the
 addresses or ports used by each particular subflow.

 That design was particularly well suited for using Shim6 as a Path
 Manager, because Shim6 is already designed to work in the network
 layer and rewrite addresses. The first version of the Linux MPTCP
 implementation was using Shim6 as path manager. It looks also well
 suited to path managers that don’t use addresses (e.g. path managers
 that write a label in the packet header, later interpreted by the
 network). Finally, it removes the need for the token in the
 multipath transport (connection identification is done naturally with
 the tuple, shared by all subflows). The token hence becomes specific
 to the built-in path manager, and can be just ignored with other path
 managers (the context tag plays a similar role in shim6, nothing is
 needed if the path manager just sets labels to the packets).

 However, this cleaner separation between Multipath Transport and Path
 Management suffers from three drawbacks:

 o It requires a heavy modification to the existing stacks, because
 it modifies the current way to identify sockets in the stack.
 They are currently unambiguously identified with the usual
 5-tuple. This architecture would require extending the 5-tuple
 with the path index, given all subflows would share the same
 5-tuple.

 o Although correctly implemented stacks could handle that new
 endpoint identifier (5-tuple+path index), having several flows
 with same 5-tuple could confuse middleboxes.

Barre, et al. Expires September 8, 2011 [Page 32]

Internet-Draft MPTCP Impl. guidelines March 2011

 o When the path manager involves using several addresses, forcing
 the same 5-tuple for all subflows at the Multipath Transport level
 implies that the Path Manager needs to rewrite the address fields
 of each packet. That rewriting operation is simply avoided if the
 sockets are bound to the addresses actually used to send the
 packets. Hence, this alternate design would involve avoidable
 costs for path managers that belong to the "multi-address"
 category.

A.2. Implementing alternate Path Managers

 In Section 2, the Path Manager is defined as an entity that maintains
 a (path_index<->endpoint_id) mapping. This is enough in the case of
 the built-in path manager, because the segments are associated to a
 path within the socket itself, thanks to its endpoint_id. However,
 it is expected that most other path managers will need to apply a
 particular action, on a per-packet basis, to associate them with a
 path. Example actions could be writing a number in a field of the
 segment or choosing a different gateway than the default one in the
 routing table. In an earlier version of Linux MPTCP, based on a
 Shim6 Path Manager, the action was used and consisted in rewriting
 the addresses of the packets.

 To reflect the need for a per-packet action, the PM mapping table (an
 example of which is given in Table 1) only needs to be extended with
 an action field. As an example of this, we show hereafter an example
 mapping table for a Path Manager based on writing the path index into
 a field of the packets.

 +---------+------------+---------------+--------------------------+
 | token | path index | Endpoint id | Action (Write x in DSCP) |
 +---------+------------+---------------+--------------------------+
 | token_1 | 1 | <A1,B1,0,pB1> | 1 |
 | | | | |
 | token_1 | 2 | <A1,B1,0,pB1> | 2 |
 | | | | |
 | token_1 | 3 | <A1,B1,0,pB1> | 3 |
 | | | | |
 | token_1 | 4 | <A1,B1,0,pB1> | 4 |
 | | | | |
 | | | | |
 | token_2 | 1 | <A1,B1,0,pB2> | 1 |
 | | | | |
 | token_2 | 2 | <A1,B1,0,pB2> | 2 |
 +---------+------------+---------------+--------------------------+

 Table 4: Example mapping table for a label-based PM

Barre, et al. Expires September 8, 2011 [Page 33]

Internet-Draft MPTCP Impl. guidelines March 2011

A.3. When to instantiate a new meta-socket ?

 The meta-socket is responsible only for MPTCP-related operations.
 This includes connection-level reordering for incoming data,
 scheduling for outgoing data, and subflow management. A natural
 choice then would be to instantiate a new meta-socket only when the
 peer has told us that it supports MPTCP. In the server it is
 naturally the case since the master subsocket is created upon the
 reception of a SYN+MP_CAPABLE. The client, however, instantiates its
 master subsocket when the application issues a socket() system call,
 but needs to wait until the SYN+ACK to know whether its peer supports
 MPTCP. Yet, it must already provide its token in the SYN.

 Linux MPTCP currently instantiates its client-side meta-socket when
 the master-socket is created (just like the server-side). The
 drawback of this is that if after socket(), the application
 subsequently issues a listen(), we have built a useless meta-socket.
 The same happens if the peer SYN+ACK does not carry the MP_CAPABLE
 option. To avoid that, one may want to instantiate the meta-socket
 upon reception of an MP_CAPABLE option. But this implies that the
 token (sent in the SYN), must be stored in some temporary place or in
 the master subsocket until the meta-socket is built.

A.4. Forcing more processing in user context

 The implementation architecture proposed in this draft uses the
 following queue configuration:

 o Subflow level: out-of-order queue. Used for subflow-level
 reordering.

 o Connection level: out-of-order queue. Used for connection-level
 reordering.

 o Connection level: receive queue. Used for storing the ordered
 data until the application asks for it through a recvmsg() system
 call or similar.

 In a previous version of Linux MPTCP, another queue configuration has
 been examined:

 o Subflow level: out-of-order queue. Used for subflow-level
 reordering.

 o Subflow level: receive queue. Used for storing the data until the
 application asks for it through a recvmsg() system call or
 similar.

Barre, et al. Expires September 8, 2011 [Page 34]

Internet-Draft MPTCP Impl. guidelines March 2011

 o Connection level: out-of-order queue. Used for connection-level
 reordering.

 In this alternate architecture, the connection-level data is lazily
 reordered as the application asks for it. The main goal for this was
 to ensure that as many CPU cycles as possible were spent in user
 context (See Section 3.1). VJ prequeues allow forcing user context
 processing when the application is waiting on a recv() system call.
 Otherwise the subflow-level reordering must be done in interrupt
 context. This remains true with MPTCP because the subflow-level
 implementation is left unmodified when possible. With MPTCP, the
 question is: "Where do we perform connection-level reordering ?".
 This alternate architecture answer is: "Do it _always_ in user
 context". This was the strength of that architecture. Technically,
 the task of each subflow was to reorder its own segments and put them
 in their own receive queue, until the application asks for data.
 When the application wants to eat more data, MPTCP searches all
 subflow-level receive queue for the next bytes to receive, and
 reorder them as appropriate by using its own reordering queue. As
 soon as the number of requested bytes are handed to the application
 buffer, the MPTCP reordering task finishes.

 Unfortunately, there are two major drawbacks about doing it that way:

 o The socket API supports the SO_RCVLOWAT option, which allows an
 application to ask not being woken up until n bytes have been
 received. Counting those bytes requires reordering at least n
 bytes at the connection level in interrupt context.

 o The DATA_ACK [1] should report the latest byte received in order
 at the connection level. In this architecture, the best we can do
 is report the latest byte that has been copied to the application
 buffers, which would slightly change the DATA_ACK semantic
 described in section 3.3.2 of [1]. This change could confuse
 peers that try to derive information from the received DATA_ACK.

A.5. Buffering data on a per-subflow basis

 In previous versions of Linux MPTCP, the configuration of the send
 queues was as shown in Figure 4.

Barre, et al. Expires September 8, 2011 [Page 35]

Internet-Draft MPTCP Impl. guidelines March 2011

 Application
 |
 v
 Packet Scheduler
 / \
 / \
 | |
 v v
 | * | | |
 Next segment to send (A) -> | * | | * |
 |---| |---| <- Separate send queue
 Sent, but not acked (B) -> |_*_| |_*_|
 | |
 v v
 NIC NIC

 Figure 4: Send queue configuration

 In contrast to the architecture presented in Section 3.5.2, there is
 no shared send queue. The Packet Scheduler is run each time data is
 produced by the application. Compared to Figure 4, the advantages
 and drawbacks are basically reversed. Here are the advantages:

 o This architecture supports subflow-specific Maximum Segment Sizes,
 because the subflow is selected before the segment is built.

 o The segments are stored in their final form in the subflow-
 specific send queues, and there is no need to run the Packet
 Scheduler at transmission time. The result is more fairness with
 other applications (because the Packet Scheduler runs in user
 context only), and faster data transmission when acknowledgements
 open the congestion window (because segments are buffered in their
 final form and no call to the Packet Scheduler is needed.

 The drawback, which motivated the architecture change in Linux MPTCP
 is the complexity of the data allocation (hence the Packet
 Scheduler), and the computing cost involved. Given that there is no
 shared send buffer, the send buffer auto-tuning must be divided into
 its subflow contributions. This buffer size can be easily derived
 from Section 3.5.1. However, when scheduling in advance a full send
 buffer of data, we may be allocating a segment hundreds of
 milliseconds before it actually goes to the wire. The task of the
 Packet Scheduler is then complicated because it must _predict_ the
 path properties. If the prediction is incorrect, two subflows may
 try to put on the wire segments that are very distant in terms of
 DATA_SEQ numbers. This can eventually result in stalling some
 subflows, because the DATA_SEQ gap between two subflows exceeds the
 receive window announced by the receiver. The Packet Scheduler can

Barre, et al. Expires September 8, 2011 [Page 36]

Internet-Draft MPTCP Impl. guidelines March 2011

 relatively easily compute a correct allocation of segments if the
 path properties do not vary (just because it is easy to predict a
 constant value), but the implementation was very sensitive to
 variations in delay or bandwidth. The previous implementation of
 Linux MPTCP solved this allocation problem by verifying, upon each
 failed transmission attempt, if it was blocked by the receive window
 due to a gap in DATA_SEQ with other subflows. If this was the case,
 a full reallocation of segments was conducted. However, the cost of
 such a reallocation is very high, because it involves reconsidering
 the allocation of any single segment, and do this for all the
 subflows. Worse, this costly reallocation sometimes needed to happen
 in interrupt context, which removed one of the advantages of this
 architecture.

 Yet, under the assumption that the subflow-specific queue size is
 small, the above drawback almost disappears. For this reason the
 abandoned design described here could be used to feed a future hybrid
 architecture, as explained in Section 3.5.2. For the sake of
 comparison with Table 3, we provide hereafter the action/table
 implemented by this architecture.

 +-----------------+---+
 | event | action |
 +-----------------+---+
Segment	Remove references to it from the subflow-level
acknowledged at	queue
subflow level	
Segment	No queue-related action.
acknowledged at	
connection	
level	
Timeout	Push the segment to the best subflow (according
(subflow-level)	to the Packet Scheduler). In contrast with the
	solution of Section 3.5.2, there is no need for
	a connection-level retransmit queue, because
	there is no requirement to be available
	immediately for a subflow to accept new data.
Ready to put	Just send the next segment from the A portion
new data on the	of the subflow-specific send queue, if any.
wire (normally	Note that the "IMPORTANT" note from
triggered by an	Section 3.5.2 still applies with this
incoming ack)	architecture.
 +-----------------+---+

 Table 5: (event,action) pairs implemented in a queue management based

Barre, et al. Expires September 8, 2011 [Page 37]

Internet-Draft MPTCP Impl. guidelines March 2011

 on separate send queues

Barre, et al. Expires September 8, 2011 [Page 38]

Internet-Draft MPTCP Impl. guidelines March 2011

Appendix B. Ongoing discussions on implementation improvements

 This appendix collects information on features that have been
 currently implemented nowhere, but can still be useful as hints for
 implementers to test. Feedback from implementers will help
 converging on those topics and propose solid guidelines for future
 versions of this memo.

B.1. Heuristics for subflow management

 Some heuristic should determine when it would be beneficial to add a
 new subflow. Linux MPTCP has no such heuristic at the moment, but
 the topic has been discussed on the MPTCP mailing list, so this
 section summarizes the input from many individuals. MPTCP is not
 useful for very short flows, so three questions appear:

 o How long is a "too short flow"

 o How to predict that a flow will be short ?

 o When to decide to add/remove subflows ?

 To answer the third question, it has been proposed to use hints from
 the application. On the other hand the experience shows that socket
 options are quite often poorly or not used, which motivates the
 parallel use of a good default heuristic. This default heuristic may
 be influenced in particular by the particular set of options that are
 enabled for MPTCP (e.g. an administrator can decide that some
 security mechanisms for subflow initiation are not needed in his
 environment, and disable them, which would change the cost of
 establishing new subflows). The following elements have been
 proposed to feed the heuristic, none of them tested yet:

 o Check the size of the write operations from the applications.
 Initiate a new subflow if the write size exceeds some threshold.
 This information can be taken only as a hint because applications
 could send big chunks of data split in many small writes. A
 particular case of checking the size of write operations is when
 the application uses the sendfile() system call. In that
 situation MPTCP can know very precisely how many bytes will be
 transferred.

 o Check if the flow is network limited or application limited.
 Initiate a new subflow only if it is network limited.

 o It may be useful to establish new subflows even for application-
 limited communications, to provide failure survivability. A way
 to do that would be to initiate a new subflow (if not done before

Barre, et al. Expires September 8, 2011 [Page 39]

Internet-Draft MPTCP Impl. guidelines March 2011

 by another trigger) after some time has elapsed, regardless of
 whether the communication is network or application limited.

 o Wait until slow start is done before to establish a new subflow.
 Measurements with Linux MPTCP suggest that slow start could be a
 reasonable tool for determining when it is worth starting a new
 subflow (without increasing the overall completion time). More
 analysis is needed in that area, however. Also, this should be
 taken as a hint only if the slow start is actually progressing
 (otherwise a stalled subflow could prevent the establishment of
 another one, precisely when a new one would be useful).

 o Use information from the application-layer protocol. Some of them
 (e.g. HTTP) carry flow length information in their headers, which
 can be used to decide how many subflows are useful.

 o Allow the administrator to configure subflow policies on a per-
 port basis. The host stack could learn as well for what ports
 MPTCP turns out to be useful.

 o Check the underlying medium of each potential subflow. For
 example, if the initial subflow is initiated over 3G, and WiFi is
 available, it probably makes sense to immediately negotiate an
 additional subflow over WiFi.

 It is not only useful to determine when to start new subflows, one
 should also sometimes decide to abandon some of its subflows. An
 MPTCP implementation should be able to determine when removing a
 subflow would increase the aggregate bandwidth. This can happen, for
 example, when the subflow has a significantly higher delay compared
 to other subflows, and the maximum buffer size allowed by the
 administrator has been reached (Linux MPTCP currently has no such
 heuristic yet).

Barre, et al. Expires September 8, 2011 [Page 40]

Internet-Draft MPTCP Impl. guidelines March 2011

Authors’ Addresses

 Sebastien Barre
 Universite catholique de Louvain
 Place Ste Barbe, 2
 Louvain-la-Neuve 1348
 BE

 Email: sebastien.barre@uclouvain.be
 URI: http://inl.info.ucl.ac.be/sbarre

 Christoph Paasch
 Universite catholique de Louvain
 Place Ste Barbe, 2
 Louvain-la-Neuve 1348
 BE

 Email: christoph.paasch@uclouvain.be
 URI: http://inl.info.ucl.ac.be/cpaasch

 Olivier Bonaventure
 Universite catholique de Louvain
 Place Ste Barbe, 2
 Louvain-la-Neuve 1348
 BE

 URI: http://inl.info.ucl.ac.be/obo

Barre, et al. Expires September 8, 2011 [Page 41]

