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Abstract

   Multipath TCP is a major extension to TCP that allows improving the
   resource usage in the current Internet by transmitting data over
   several TCP subflows, while still showing one single regular TCP
   socket to the application.  This document describes our experience in
   writing a MultiPath TCP implementation in the Linux kernel and
   discusses implementation guidelines that could be useful for other
   developers who are planning to add MultiPath TCP to their networking
   stack.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 8, 2011.

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The MultiPath TCP protocol [1] is a major TCP extension that allows
   for simultaneous use of multiple paths, while being transparent to
   the applications, fair to regular TCP flows [2] and deployable in the
   current Internet.  The MPTCP design goals and the protocol
   architecture that allow reaching them are described in [3].  Besides
   the protocol architecture, a number of non-trivial design choices
   need to be made in order to extend an existing TCP implementation to
   support MultiPath TCP.  This document gathers a set of guidelines
   that should help implementers writing an efficient and modular MPTCP
   stack.  The guidelines are expected to be applicable regardless of
   the Operating System (although the MPTCP implementation described
   here is done in Linux [4]).  Another goal is to achieve the greatest
   level of modularity without impacting efficiency, hence allowing
   other multipath protocols to nicely co-exist in the same stack.  In
   order for the reader to clearly disambiguate "useful hints" from
   "important requirements", we write the latter in their own
   paragraphs, starting with the keyword "IMPORTANT".  By important
   requirements, we mean design options that, if not followed, would
   lead to an under-performing MPTCP stack, maybe even slower than
   regular TCP.

   This draft presents implementation guidelines that are based on the
   code which has been implemented in our MultiPath TCP aware Linux
   kernel (the version covered here is 0.6) which is available from
   http://inl.info.ucl.ac.be/mptcp.  We also list configuration
   guidelines that have proven to be useful in practice.  In some cases,
   we discuss some mechanisms that have not yet been implemented.  These
   mechanisms are clearly listed.  During our work in implementing
   MultiPath TCP, we evaluated other designs.  Some of them are not used
   anymore in our implementation.  However, we explain in the appendix
   the reason why these particular designs have not been considered
   further.

   This document is structured as follows.  First we propose an
   architecture that allows supporting MPTCP in a protocol stack
   residing in an operating system.  Then we consider a range of
   problems that must be solved by an MPTCP stack (compared to a regular
   TCP stack).  In Section 4, we propose recommendations on how a system
   administrator could correctly configure an MPTCP-enabled host.
   Finally, we discuss future work, in particular in the area of MPTCP
   optimization.

1.1.  Terminology

   In this document we use the same terminology as in [3] and [1].  In
   addition, we will use the following implementation-specific terms:
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   o  Meta-socket: A socket structure used to reorder incoming data at
      the connection level and schedule outgoing data to subflows.

   o  Master subsocket: The socket structure that is visible from the
      application.  If regular TCP is in use, this is the only active
      socket structure.  If MPTCP is used, this is the socket
      corresponding to the first subflow.

   o  Slave subsocket: Any socket created by the kernel to provide an
      additional subflow.  Those sockets are not visible to the
      application (unless a specific API [5] is used).  The meta-socket,
      master and slave subsocket are explained in more details in
      Section 2.2.

   o  Endpoint id: Endpoint identifier.  It is the tuple (saddr, sport,
      daddr, dport) that identifies a particular subflow, hence a
      particular subsocket.

   o  Fendpoint id: First Endpoint identifier.  It is the endpoint
      identifier of the Master subsocket.

   o  Connection id or token: It is a locally unique number, defined in
      Section 2 of [1], that allows finding a connection during the
      establishment of new subflows.
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2.  An architecture for Multipath transport

   Section 4 of the MPTCP architecture document [3] describes the
   functional decomposition of MPTCP.  It lists four entities, namely
   Path Management, Packet Scheduling, Subflow Interface and Congestion
   Control.  These entities can be further grouped based on the layer at
   which they operate:

   o  Transport layer: This includes Packet Scheduling, Subflow
      Interface and Congestion Control, and is grouped under the term
      "Multipath Transport (MT)".  From an implementation point of view,
      they all will involve modifications to TCP.

   o  Any layer: Path Management.  Path management can be done in the
      transport layer, as is the case of the built-in path manager (PM)
      described in [1].  That PM discovers paths through the exchange of
      TCP options of type ADD_ADDR or the reception of a SYN on a new
      address pair, and defines a path as an endpoint_id (saddr, sport,
      daddr, dport).  But, more generally, a PM could be any module able
      to expose multiple paths to MPTCP, located either in kernel or
      user space, and acting on any OSI layer (e.g. a bonding driver
      that would expose its multiple links to the Multipath Transport).

   Because of the fundamental independence of Path Management compared
   to the three other entities, we draw a clear line between both, and
   define a simple interface that allows MPTCP to benefit easily from
   any appropriately interfaced multipath technology.  In this document,
   we stick to describing how the functional elements of MPTCP are
   defined, using the built-in Path Manager described in [1], and we
   leave for future separate documents the description of other path
   managers.  We describe in the first subsection the precise roles of
   the Multipath Transport and the Path Manager.  Then we detail how
   they are interfaced with each other.

2.1.  MPTCP architecture

   Although, when using the built-in PM, MPTCP is fully contained in the
   transport layer, it can still be organized as a Path Manager and a
   Multipath Transport Layer as shown in Figure 1.  The Path Manager
   announces to the MultiPath Transport what paths can be used through
   path indices for an MPTCP connection, identified by the fendpoint_id
   (first endpoint id).  The fendpoint_id is the tuple (saddr, sport,
   daddr, dport) seen by the application and uniquely identifies the
   MPTCP connection (an alternate way to identify the MPTCP connection
   being the conn_id, which is a token as described in Section 2 of
   [1]).  The Path Manager maintains the mapping between the path_index
   and an endpoint_id.  The endpoint_id is the tuple (saddr, sport,
   daddr, dport) that is to be used for the corresponding path index.
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   Note that the fendpoint_id itself represents a path and is thus a
   particular endpoint_id.  By convention, the fendpoint_id is always
   represented as path index 1.  As explained in [3], Section 5.6, it is
   not yet clear how an implementation should behave in the event of a
   failure in the first subflow.  We expect, however, that the Master
   subsocket should be kept in use as an interface with the application,
   even if no data is transmitted anymore over it.  It also allows the
   fendpoint_id to remain meaningful throughout the life of the
   connection.  This behavior has yet to be tested and refined with
   Linux MPTCP.

   Figure 1 shows an example sequence of MT-PM interactions happening at
   the beginning of an exchange.  When the MT starts a new connection
   (through an application connect() or accept()), it can request the PM
   to be updated about possible alternate paths for this new connection.
   The PM can also spontaneously update the MT at any time (normally
   when the path set changes).  This is step 1 in Figure 1.  In the
   example, 4 paths can be used, hence 3 new ones.  Based on the update,
   the MT can decide whether to establish new subflows, and how many of
   them.  Here, the MT decides to establish one subflow only, and sends
   a request for endpoint_id to the PM.  This is step 2.  In step 3, the
   answer is given: <A2,B2,0,pB2>.  The source port is unspecified to
   allow the MT ensure the unicity of the new endpoint_id, thanks to the
   new_port() primitive (present in regular TCP as well).  Note that
   messages 1,2,3 need not be real messages and can be function calls
   instead (as is the case in Linux MPTCP).
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                               Control plane
   +---------------------------------------------------------------+
   |                     Multipath Transport (MT)                  |
   +----------------------------------------------------|----------+
     ^                  |           ^                   v
     |                  |           |          [Build new subsocket,
     | 1.For fendpt_id  |2.endpt_id |                 with endpt_ids
     |<A1,B1,pA1,pB1>   | for path  | 3.<A2,B2,   <A2,B2,new_port(),pB2]
     |Paths 1->4 can be | index 2 ? |   0,pB2>
     |used.             |           |
     |                  |           |
     |                  |           |
     |                  v           |
   +---------------------------------------------------------------+
   |                         Path Manager (PM)                     |
   +---------------------------------------------------------------+
      /                                     \
     /---------------------------------------\
     | mapping table:                        |
     |   Subflow   <--> endpoint_id          |
     |  path index                           |
     |                                       |
     |    [see table below]                  |
     |                                       |
     +---------------------------------------+

      Figure 1: Functional separation of MPTCP in the transport layer

   The following options, described in [1] , are managed by the
   Multipath Transport:

   o  MULTIPATH CAPABLE (MP_CAPABLE): Tells the peer that we support
      MPTCP and announces our local token.

   o  MP_JOIN/MP_AUTH: Initiates a new subflow (Note that MP_AUTH is not
      yet part of our Linux implementation at the moment)

   o  DATA SEQUENCE NUMBER (DSN_MAP): Identifies the position of a set
      of bytes in the meta-flow.

   o  DATA_ACK: Acknowledge data at the connection level (subflow level
      acknowledgments are contained in the normal TCP header).

   o  DATA FIN (DFIN): Terminates a connection.

   o  MP_PRIO: Asks the peer to revise the backup status of the subflow
      on which the option is sent.  Although the option is sent by the
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      Multipath Transport (because this allows using the TCP option
      space), it may be triggered by the Path Manager.  This option is
      not yet supported by our MPTCP implementation.

   o  MP_FAIL: Checksum failed at connection-level.  Currently the Linux
      implementation does not implement the checksum in option DSN_MAP,
      and hence does not implement either the MP_FAIL option.

   The Path manager applies a particular technology to give the MT the
   possibility to use several paths.  The built-in MPTCP Path Manager
   uses multiple IPv4/v6 addresses as its mean to influence the
   forwarding of packets through the Internet.  When the MT starts a new
   connection, it chooses a token that will be used to identify the
   connection.  This is necessary to allow future subflow-establishment
   SYNs (that is, containing the MP_JOIN option) to be attached to the
   correct connection.  An example mapping table is given hereafter:

                 +---------+------------+---------------+
                 |  token  | path index |  Endpoint id  |
                 +---------+------------+---------------+
                 | token_1 |      1     | <A1,B1,0,pB1> |
                 |         |            |               |
                 | token_1 |      2     | <A2,B2,0,pB1> |
                 |         |            |               |
                 | token_1 |      3     | <A1,B2,0,pB1> |
                 |         |            |               |
                 | token_1 |      4     | <A2,B1,0,pB1> |
                 |         |            |               |
                 |         |            |               |
                 | token_2 |      1     | <A1,B1,0,pB2> |
                 |         |            |               |
                 | token_2 |      2     | <A2,B1,0,pB2> |
                 +---------+------------+---------------+

              Table 1: Example mapping table for built-in PM

   Table 1 shows an example where two MPTCP connections are active.  One
   is identified by token_1, the other one with token_2.  As per [1],
   the tokens must be unique locally.  Since the endpoint identifier may
   change from one subflow to another, the attachment of incoming new
   subflows (identified by a SYN + MP_JOIN option) to the right
   connection is achieved thanks to the locally unique token.  The
   built-in path manager currently implements the following options The
   following options (defined in [1]) are intended to be part of the
   built-in path manager:

   o  Add Address (ADD_ADDR): Announces a new address we own
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   o  Remove Address (REMOVE_ADDR): Withdraws a previously announced
      address

   Those options form the built-in MPTCP Path Manager, based on
   declaring IP addresses, and carries control information in TCP
   options.  An implementation of Multipath TCP can use any Path
   Manager, but it must be able to fallback to the default PM in case
   the other end does not support the custom PM.  Alternative Path
   Managers may be specified in separate documents in the future.

2.2.  Structure of the Multipath Transport

   The Multipath Transport handles three kinds of sockets.  We define
   them here and use this notation throughout the entire document:

   o  Master subsocket: This is the first socket in use when a
      connection (TCP or MPTCP) starts.  It is also the only one in use
      if we need to fall back to regular TCP.  This socket is initiated
      by the application through the socket() system call.  Immediately
      after a new master subsocket is created, MPTCP capability is
      enabled by the creation of the meta-socket.

   o  Meta-socket: It holds the multipath control block, and acts as the
      connection level socket.  As data source, it holds the main send
      buffer.  As data sink, it holds the connection-level receive queue
      and out-of-order queue (used for reordering).  We represent it as
      a normal (extended) socket structure in Linux MPTCP because this
      allows reusing much of the existing TCP code with few
      modifications.  In particular, the regular socket structure
      already holds pointers to SND.UNA, SND.NXT, SND.WND, RCV.NXT,
      RCV.WND (as defined in [6]).  It also holds all the necessary
      queues for sending/receiving data.

   o  Slave subsocket: Any subflow created by MPTCP, in addition to the
      first one (the master subsocket is always considered as a subflow
      even though it may be in failed state at some point in the
      communication).  The slave subsockets are created by the kernel
      (not visible from the application) The master subsocket and the
      slave subsockets together form the pool of available subflows that
      the MPTCP Packet Scheduler (called from the meta-socket) can use
      to send packets.

2.3.  Structure of the Path Manager

   In contrast to the multipath transport, which is more complex and
   divided in sub-entities (namely Packet Scheduler, Subflow Interface
   and Congestion Control, see Section 2), the Path Manager just
   maintains the mapping table and updates the Multipath Transport when
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   the mapping table changes.  The mapping table has been described
   above (Table 1).  We detail in Table 2 the set of (event,action)
   pairs that are implemented in the Linux MPTCP built-in path manager.
   For reference, an earlier architecture for the Path Management is
   discussed in Appendix A.1.  Also, Appendix A.2 proposes a small
   extension to this current architecture to allow supporting other path
   managers.
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   +-------------------------+-----------------------------------------+
   | event                   | action                                  |
   +-------------------------+-----------------------------------------+
   | master_sk bound: This   | Discovers the set of local addresses    |
   | event is triggered upon | and stores them in local_addr_table     |
   | either a bind(),        |                                         |
   | connect(), or when a    |                                         |
   | new server-side socket  |                                         |
   | becomes established.    |                                         |
   |                         |                                         |
   | ADD_ADDR option         | Updates remote_addr_table               |
   | received or SYN+MP_JOIN | correspondingly                         |
   | received on new address |                                         |
   |                         |                                         |
   | local/remote_addr_table | Updates mapping_table by adding any new |
   | updated                 | address combinations, or removing the   |
   |                         | ones that have disappeared. Each        |
   |                         | address pair is given a path index.     |
   |                         | Once allocated to an address pair, a    |
   |                         | path index cannot be reallocated to     |
   |                         | another one, to ensure consistency of   |
   |                         | the mapping table.                      |
   |                         |                                         |
   | Mapping_table updated   | Sends notification to the Multipath     |
   |                         | Transport. The notification contains    |
   |                         | the new set of path indices that the MT |
   |                         | is allowed to use. This is shown in     |
   |                         | Figure 1, msg 1.                        |
   |                         |                                         |
   | Endpoint_id(path_index) | Retrieves the endpoint_ids for the      |
   | request received from   | corresponding path index from the       |
   | MT (Figure 1, msg 2)    | mapping table and returns them to the   |
   |                         | MT. One such request/response is        |
   |                         | illustrated in Figure 1, msg 3. Note    |
   |                         | that in that msg 3, the local port is   |
   |                         | set to zero. This is to let the         |
   |                         | operating system choose a unique local  |
   |                         | port for the new socket.                |
   +-------------------------+-----------------------------------------+

       Table 2: (event,action) pairs implemented in the  built-in PM
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3.  MPTCP challenges for the OS

   MPTCP is a major modification to the MPTCP stack.  We have described
   above an architecture that separates Multipath Transport from Path
   Management.  Path Management can be implemented rather simply.  But
   Multipath Transport involves a set of new challenges, that do not
   exist in regular TCP.  We first describe how an MPTCP client or
   server can start a new connection, or a new subflow within a
   connection.  Then we propose techniques (a concrete implementation of
   which is done in Linux MPTCP) to efficiently implement data reception
   (at the data sink) and data sending (at the data source).

3.1.  Charging the application for its CPU cycles

   As this document is about implementation, it is important not only to
   ensure that MPTCP is fast, but also that it is fair to other
   applications that share the same CPU.  Otherwise one could have an
   extremely fast file transfer, while the rest of the system is just
   hanging.  CPU fairness is ensured by the scheduler of the Operating
   System when things are implemented in user space.  But in the kernel,
   we can choose to run code in "user context", that is, in a mode where
   each CPU cycle is charged to a particular application.  Or we can
   (and must in some cases) run code in "interrupt context", that is,
   interrupting everything else until the task has finished.  In Linux
   (probably a similar thing is true in other systems), the arrival of a
   new packet on a NIC triggers a hardware interrupt, which in turn
   schedules a software interrupt that will pull the packet from the NIC
   and perform the initial processing.  The challenge is to stop the
   processing of the incoming packet in software interrupt as soon as it
   can be attached to a socket, and wake up the application.  With TCP,
   an additional constraint is that incoming data should be acknowledged
   as soon as possible, which requires reordering.  Van Jacobson has
   proposed a solution for this [7]: If an application is waiting on a
   recv() system call, incoming packets can be put into a special queue
   (called prequeue in Linux) and the application is woken up.
   Reordering and acknowledgement are then performed in user context.
   The execution path for outgoing packets is less critical from that
   point of view, because the vast majority of processing can be done
   very easily in user context.

   In this document, when discussing CPU fairness, we will use the
   following terms:

   o  User context: Execution environment that is under control of the
      OS scheduler.  CPU cycles are charged to the associated
      application, which allows to ensure fairness with other
      applications.
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   o  Interrupt context: Execution environment that runs with higher
      priority than any process.  Although it is impossible to
      completely avoid running code in interrupt context, it is
      important to minimize the amount of code running in such a
      context.

   o  VJ prequeues: This refers to Van Jacobson prequeues, as explained
      above[7].

3.2.  At connection/subflow establishment

   As described in [1], the establishment of an MPTCP connection is
   quite simple, being just a regular three-way exchange with additional
   options.  As shown in Section 2.2 this is done in the master
   subsocket.  Currently Linux MPTCP attaches a meta-socket to a socket
   as soon as it is created, that is, upon a socket() system call
   (client side), or when a server side socket enters the ESTABLISHED
   state.  An alternate solution is described in Appendix A.3.

   An implementation can choose the best moment, maybe depending on the
   OS, to instantiate the meta-socket.  However, if this meta-socket is
   needed to accept new subflows (like it is in Linux MPTCP), it should
   be attached at the latest when the MP_CAPABLE option is received.
   Otherwise incoming new subflow requests (SYN + MP_JOIN) may be lost,
   requiring retransmissions by the peer and delaying the subflow
   establishment.

   The establishment of subflows, on the other hand, is more tricky.
   The problem is that new SYNs (with the MP_JOIN option) must be
   accepted by a socket (the meta-socket in the proposed design) as if
   it was in LISTEN state, while its state is actually ESTABLISHED.
   There is the following in common with a LISTEN socket:

   o  Temporary structure: Between the reception of the SYN and the
      final ACK, a mini-socket is used as a temporary structure.

   o  Queue of connection requests: The meta-socket, like a LISTEN
      socket, maintains a list of pending connection requests.  There
      are two such lists.  One contains mini-sockets, because the final
      ACK has not yet been received.  The second list contains sockets
      in the ESTABLISHED state that have not yet been accepted.
      "Accepted" means, for regular TCP, returned to the application as
      a result of an accept() system call.  For MPTCP it means that the
      new subflow has been integrated in the set of active subflows.

   We can list the following differences with a normal LISTEN socket.
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   o  Socket lookup for a SYN: When a SYN is received, the corresponding
      LISTEN socket is found by using the endpoint_id.  This is not
      possible with MPTCP, since we can receive a SYN on any
      endpoint_id.  Instead, the token must be used to retrieve the
      meta-socket to which the SYN must be attached.  A new hashtable
      must be defined, with tokens as keys.

   o  Lookup for connection request: In regular TCP, this lookup is
      quite similar to the previous one (in Linux at least).  The
      5-tuple is used, first to find the LISTEN socket, next to retrieve
      the corresponding mini-socket, stored in a private hashtable
      inside the LISTEN socket.  With MPTCP, we cannot do that, because
      there is no way to retrieve the meta-socket from the final ACK.
      The 5-tuple can be anything, and the token is only present in the
      SYN.  There is no token in the final ACK.  Our Linux MPTCP
      implementation uses a global hashtable for pending connection
      requests, where the key is the 5-tuple of the connection request.

   An implementation must carefully check the presence of the MP_JOIN
   option in incoming SYNs before performing the usual socket lookup.
   If it is present, only the token-based lookup must be done.  If this
   lookup does not return a meta-socket, the SYN must be discarded.
   Failing to do that could lead to mistakenly attach the incoming SYN
   to a LISTEN socket instead of attaching it to a meta-socket.

3.3.  Subflow management

   Further research is needed to define the appropriate heuristics to
   solve these problems.  Initial thoughts are provided in Appendix B.1.

   Currently, in a Linux MPTCP client, the Multipath Transport tries to
   open all subflows advertised by the Path Manager.  On the other hand,
   the server only accepts new subflows, but does not try to establish
   new ones.  The rationale for this is that the client is the
   connection initiator.  New subflows are only established if the
   initiator requests them.  This is subject to change in future
   releases of our MPTCP implementation.

3.4.  At the data sink

   There is a symmetry between the behavior of the data source and the
   data sink.  Yet, the specific requirements are different.  The data
   sink is described in this section while the data source is described
   in the next section.
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3.4.1.  Receive buffer tuning

   The MPTCP required receive buffer is larger than the sum of the
   buffers required by the individual subflows.  The reason for this and
   proper values for the buffer are explained in [3] Section 5.3.  Not
   following this could result in the MPTCP speed being capped at the
   bandwidth of the slowest subflow.

   An interesting way to dynamically tune the receive buffer according
   the bandwidth/delay product (BDP) of a path, for regular TCP, is
   described in [8] and implemented in recent Linux kernels.  It uses
   the COPIED_SEQ sequence variable (sequence number of the next byte to
   copy to the app buffer) to count, every RTT, the number of bytes
   received during that RTT.  This number of bytes is precisely the BDP.
   The accuracy of this technique is directly dependent on the accuracy
   of the RTT estimation.  Unfortunately, the data sink does not have a
   reliable estimate of the SRTT.  To solve this, [8] proposes two
   techniques:

   1.  Using the timestamp option (quite accurate).

   2.  Computing the time needed to receive one RCV.WND [6] worth of
       data.  It is less precise and is used only to compute an upper
       bound on the required receive buffer.

   As described in [1], section 3.3.3, the MPTCP advertised receive
   window is shared by all subflows.  Hence, no per-subflow information
   can be deduced from it, and the second technique from [8] cannot be
   used. [3] mentions that the allocated connection-level receive buffer
   should be 2*sum(BW_i)*RTT_max, where BW_i is the bandwidth seen by
   subflow i and RTT_max is the maximum RTT estimated among all the
   subflows.  This is achieved in Linux MPTCP by slightly modifying the
   first tuning algorithm from [8], and disabling the second one.  The
   modification consists in counting on each subflow, every RTT_max the
   number of bytes received during that time on this subflow.  Per
   subflow, this provides its contribution to the total receive buffer
   of the connection.  This computes the contribution of each subflow to
   the total receive buffer of the connection.

3.4.2.  Receive queue management

   As advised in [1], Section 3.3.1, "subflow-level processing should be
   undertaken separately from that at connection-level".  This also has
   the side-effect of allowing much code reuse from the regular TCP
   stack.  A regular TCP stack (in Linux at least) maintains a receive
   queue (for storing incoming segments until the application asks for
   them) and an out-of-order queue (to allow reordering).  In Linux
   MPTCP, the subflow-level receive-queue is not used.  Incoming
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   segments are reordered at the subflow-level, just as if they were
   plain TCP data.  But once the data is in-order at the subflow level,
   it can be immediately handed to MPTCP (See Figure 7 of [3]) for
   connection-level reordering.  The role of the subflow-level receive
   queue is now taken by the MPTCP-level receive queue.  In order to
   maximize the CPU cycles spent in user context (see Section 3.1), VJ
   prequeues can be used just as in regular TCP (they are not yet
   supported in Linux MPTCP, though).

   An alternate design, where the subflow-level receive queue is kept
   active and the MPTCP receive queue is not used, is discussed in
   Appendix A.4.

3.4.3.  Scheduling data ACKs

   As specified in [1], Section 3.3.2, data ACKs not only help the
   sender in having a consistent view of what data has been correctly
   received at the connection level.  They are also used as the left
   edge of the advertised receive window.

   In regular TCP, if a receive buffer becomes full, the receiver
   announces a receive window.  When finally some bytes are given to the
   application, freeing space in the receive buffer, a duplicate ACK is
   sent to act as a window upate, so that the sender knows it can
   transmit again.  Likewise, when the MPTCP shared receive buffer
   becomes full, a zero window is advertised.  When some bytes are
   delivered to the application, a duplicate DATA_ACK must be sent to
   act as a window update.  Such an important DATA_ACK should be sent on
   all subflows, to maximize the probability that at least one of them
   reaches the peer.  If, however, all DATA_ACKs are lost, there is no
   other option than relying on the window probes periodically sent by
   the data source, as in regular TCP.

   In theory a DATA_ACK can be sent on any subflow, or even on all
   subflows, simultaneously.  As of version 0.5, Linux MPTCP simply adds
   the DATA_ACK option to any outgoing segment (regardless of whether it
   is data or a pure ACK).  There is thus no particular DATA_ACK
   scheduling policy.  The only exception is for a window update that
   follows a zero-window.  In this case, the behavior is as described in
   the previous paragraph.

3.5.  At the data source

   In this section we mirror the topics of the previous section, in the
   case of a data sender.  The sender does not have the same view of the
   communication, because one has information that the other can only
   estimate.  Also, the data source sends data and receives
   acknowledgements, while the data sink does the reverse.  This results

Barre, et al.           Expires September 8, 2011              [Page 16]



Internet-Draft           MPTCP Impl. guidelines               March 2011

   in a different set of problems to be dealt with by the data source.

3.5.1.  Send buffer tuning

   As explained in [3], end of Section 5.3, the send buffer should have
   the same size as the receive buffer.  At the sender, we don’t have
   the RTT estimation problem described in Section 3.4.1, because we can
   reuse the built-in TCP SRTT (smoothed RTT).  Moreover, the sender has
   the congestion window, which is itself an estimate of the BDP, and is
   used in Linux to tune the send buffer of regular TCP.  Unfortunately,
   we cannot use the congestion window with MPTCP, because the buffer
   equation does not involve the product BW_i*delay_i for the subflows
   (which is what the congestion window estimates), but it involves
   BW_i*delay_max, where delay_max is the maximum observed delay across
   all subflows.  An obvious way to compute the contribution of each
   subflow to the receive buffer would be: 2*(cwnd_i/SRTT_i)*SRTT_max.
   However, some care is needed because of the variability of the SRTT
   (measurements show that, even smoothed, the SRTT is not quite
   stable).  Currently Linux MPTCP estimates the bandwidth periodically
   by checking the sequence number progress.  This however introduces
   new mechanisms in the kernel, that could probably be avoided.  Future
   experience will tell what is appropriate.

3.5.2.  Send queue management

   As MultiPath TCP involves the use of several TCP subflows, a
   scheduler must be added to decide where to send each byte of data.
   Two possible places for the scheduler have been evaluated for Linux
   MPTCP.  One option is to schedule data as soon as it arrives from the
   application buffer.  This option, consisting in _pushing_ data to
   subflows as soon as it is available, was implemented in older
   versions of Linux MPTCP and is now abandoned.  We keep a description
   of it (and why it has been abandoned) in Appendix A.5.  Another
   option is to store all data centrally in the Multipath Transport,
   inside a shared send buffer (see Figure 2).  Scheduling is then done
   at transmission time, whenever any subflow becomes ready to send more
   data (usually due to acknowledgements having opened space in the
   congestion window).  In that scenario, the subflows _pull_ segments
   from the shared send queue whenever they are ready.  Note that
   several subflows can become ready simultaneously, if an
   acknowledgement advertises a new receive window, that opens more
   space in the shared send window.  For that reason, when a subflow
   pulls data, the Packet Scheduler is run and other subflows may be fed
   by the Packet Scheduler in the same time.
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                               Application
                                   |
                                   v
                                 | * |
    Next segment to send (A)  -> | * |
                                 |---| <- Shared send queue
   Sent, but not DATA-acked(B)-> |_*_|
                                   |
                                   v
                             Packet Scheduler
                                  /  \
                                 /    \
                                |      |
                                v      v
   Sent, but not acked(B)  ->  |_|    |_| <- Subflow level congestion
                                |      |     window
                                v      v
                               NIC    NIC

                    Figure 2: Send queue configuration

   This approach, similar to the one proposed in [9], presents several
   advantages:

   o  Each subflow can easily fill its pipe.  (As long as there is data
      to pull from the shared send buffer, and the scheduler is not
      applying a policy that restricts the subflow).

   o  If a subflow fails, it will no longer receive acknowledgements,
      and hence will naturally stop pulling from the shared send buffer.
      This removes the need for an explicit "failed state", to ensure
      that a failed subflow does not receive data (As opposed to e.g.
      SCTP-CMT, that needs an explicit marking of failed subflows by
      design, because it uses a single sequence number space [10]).

   o  Similarly, when a failed subflow becomes active again, the pending
      segments of its congestion window are finally acknowledged,
      allowing it to pull again from the shared send buffer.  Note that
      in such a case, the acknowledged data is normally just dropped by
      the receiver, because the corresponding segments have been
      retransmitted on another subflow during the failure time.

   Despite the adoption of that approach in Linux MPTCP, there are still
   two drawbacks:

   o  There is one single queue, in the Multipath Transport, from which
      all subflows pull segments.  In Linux, queue processing is
      optimized for handling segments, not bytes.  This implies that the
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      shared send queue must contain pre-built segments, hence requiring
      the _same_ MSS to be used for all subflows.  We note however that
      today, the most commonly negotiated MSS is around 1380 bytes [4],
      so this approach sounds reasonable.  Should this requirement
      become too constraining in the future, a more flexible approach
      could be devised (e.g., supporting a few Maximum Segment Sizes).

   o  Because the subflows pull data whenever they get new free space in
      their congestion window, the Packet Scheduler must run at that
      time.  But that time most often corresponds to the reception of an
      acknowledgement, which happens in interrupt context (see
      Section 3.1).  This is both unfair to other system processes, and
      slightly inefficient for high speed communications.  The problem
      is that the packet scheduler performs more operations that the
      usual "copy packet to NIC".  One way to solve this problem would
      be to have a small subflow-specific send queue, which would
      actually lead to a hybrid architecture between the pull approach
      (described here) and the push approach (described in
      Appendix A.5).  Doing that would require solving non-trivial
      problems, though, and requires further study.

   As shown, in Figure 2, a segment first enters the shared send queue,
   then, when reaching the bottom of that queue, it is pulled by some
   subflow.  But to support failures, we need to be able to move
   segments from one subflow to another, so that the failure is
   invisible from the application.  In Linux MPTCP, the segment data is
   kept in the Shared send queue (B portion of the queue).  When a
   subflow pulls a segment, it actually only copies the control
   structure (struct sk_buff) (which Linux calls packet cloning) and
   increments its reference count.  The following event/action table
   summarizes these operations:

   +-----------------+-------------------------------------------------+
   | event           | action                                          |
   +-----------------+-------------------------------------------------+
   | Segment         | Remove references to the segment from the       |
   | acknowledged at | subflow-level queue                             |
   | subflow level   |                                                 |
   |                 |                                                 |
   | Segment         | Remove references to the segment from the       |
   | acknowledged at | connection-level queue                          |
   | connection      |                                                 |
   | level           |                                                 |
   |                 |                                                 |
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   | Timeout         | Push the segment to the best running subflow    |
   | (subflow-level) | (according to the Packet Scheduler). If no      |
   |                 | subflow is available, push it to a temporary    |
   |                 | retransmit queue (not represented in Figure 2)  |
   |                 | for future pulling by an available subflow. The |
   |                 | retransmit queue is parallel to the connection  |
   |                 | level queue and is read with higher priority.   |
   |                 |                                                 |
   | Ready to put    | If the retransmit queue is not empty, first     |
   | new data on the | pull from there. Otherwise, then take new       |
   | wire (normally  | segment(s) from the connection level send queue |
   | triggered by an | (A portion). The pulling operation is a bit     |
   | incoming ack)   | special in that it can result in sending a      |
   |                 | segment over a different subflow than the one   |
   |                 | which initiated the pull. This is because the   |
   |                 | Packet Scheduler is run as part of the pull,    |
   |                 | which can result in selecting any subflow. In   |
   |                 | most cases, though, the subflow which           |
   |                 | originated the pull will get fresh data, given  |
   |                 | it has space for that in the congestion window. |
   |                 | Note that the subflows have no A portion in     |
   |                 | Figure 2, because they immediately send the     |
   |                 | data they pull.                                 |
   +-----------------+-------------------------------------------------+

   Table 3: (event,action) pairs implemented in the  Multipath Transport
                             queue management

   IMPORTANT: A subflow can be stopped from transmitting by the
   congestion window, but also by the send window (that is, the receive
   window announced by the peer).  Given that the receive window has a
   connection level meaning, a DATA_ACK arriving on one subflow could
   unblock another subflow.  Implementations should be aware of this to
   avoid stalling part of the subflows in such situations.  In the case
   of Linux MPTCP, that follows the above architecture, this is ensured
   by running the Packet Scheduler at each pull operation.  This is not
   completely optimal, though, and may be revised when more experience
   is gained.

3.5.3.  Scheduling data

   As several subflows may be used to transmit data, MPTCP must select a
   subflow to send each data.  First, we need to know which subflows are
   available for sending data.  The mechanism that controls this is the
   congestion controller, which maintains a per-subflow congestion
   window.  The aim of a Multipath congestion controller is to move data
   away from congested links, and ensure fairness when there is a shared
   bottleneck.  The handling of the congestion window is explained in

Barre, et al.           Expires September 8, 2011              [Page 20]



Internet-Draft           MPTCP Impl. guidelines               March 2011

   Section 3.5.3.1.  Given a set of available subflows (according to the
   congestion window), one of these has to be selected by the Packet
   Scheduler.  The role of the Packet Scheduler is to implement a
   particular policy, as will be explained in Section 3.5.3.2.

3.5.3.1.  The congestion controller

   The Coupled Congestion Control provided in Linux MPTCP implements the
   algorithm defined in [2].  Operating System kernels (Linux at least)
   do not support floating-point numbers for efficiency reasons. [2]
   makes an extensive use of them, which must be worked around.  Linux
   MPTCP solves that by performing fixed-point operations using a
   minimum number of fractions and performs scaling when divisions are
   necessary.

   Linux already includes a work-around for floating point operations in
   the Reno congestion avoidance implementation.  Upon reception of an
   ack, the congestion window (counted in segments, not in bytes as
   proposed in [2] does) should be updated as cwnd+=1/cwnd.  Instead,
   Linux increments the separate variable snd_cwnd_cnt, until
   snd_cwnd_cnt>=cwnd.  When this happens, snd_cwnd_cnt is reset, and
   cwnd is incremented.  Linux MPTCP reuses this to update the window in
   the CCC (Coupled Congestion Control) congestion avoidance phase:
   snd_cwnd_cnt is incremented as previously explained, and cwnd is
   incremented when snd_cwnd_cnt >= max(tot_cwnd / alpha, cwnd) (see
   [2]).  Note that the bytes_acked variable, present in [2], is not
   included here because Linux MPTCP does not currently support ABC
   [11], but instead considers acknowledgements in MSS units.  Linux
   uses for ABC, in Reno, the bytes_acked variable instead of
   snd_cwnd_cnt.  For Reno, cwnd is incremented by one if
   bytes_acked>=cwnd*MSS.  Hence, in the case of a CCC with ABC, one
   would increment cwnd when bytes_acked>=max(tot_cwnd*MSS / alpha,
   cwnd*MSS).

   Unfortunately, the alpha parameter mentioned above involves many
   fractions.  The current implementation of MPTCP uses a rewritten
   version of the alpha formula from [2]:

                             cwnd_max * scale_num
   alpha = tot_cwnd * ----------------------------------
                     /     rtt_max * cwnd_i * scale_den \ 2
                     | sum -----------------------------|
                     \  i              rtt_i            /

   This computation assumes that the MSS is shared by all subflows,
   which is true under the architecture described in Section 3.5.2 but
   implies that implementations choosing to support several MSS cannot
   use the above simplified equation.  The variables cwnd_max and
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   rtt_max in the above equation are NOT resp. the maximum congestion
   window and RTT across all subflows.  Instead, they are the values of
   subflow i such that cwnd_i / rtt_i^2 is maximum.  This corresponds to
   the numerator of the equation provided in [2].

   scale_num and scale_den have to be selected in such a way that
   scale_num > scale_den^2.  A good choice is to use scale_num=2^32
   (using 64 bits arithmetic) and scale_den=2^10.  In that case the
   final alpha value is scaled by 2^12, which gives a reasonable
   precision.  Due to the scaling, it is necessary to also scale later
   in the formula that decides whether an increase of the congestion
   window is necessary or not: snd_cwnd_cnt >= max((tot_cwnd<<12) /
   alpha,cwnd).

3.5.3.2.  The Packet Scheduler

   Whenever the Congestion Controller (described above) allows new data
   for at least one subflow, the Packet Scheduler is run.  When only one
   subflow is available the Packet Scheduler just decides which packet
   to pick from the A section of the shared send buffer (see Figure 2).
   Currently Linux MPTCP picks the bottom most segment.  If more than
   one subflow is available, there are three decisions to take:

   o  Which of the subflows to feed with fresh data: As the only Packet
      Scheduler currently supported in Linux MPTCP aims at filling all
      pipes, it always feeds data to all subflows as long as there is
      data to send.

   o  In what order to feed selected subflows: when several subflows
      become available simultaneously, they are fed by order of time-
      distance to the client.  We define the time-distance as the time
      needed for the packet to reach the peer if given to a particular
      subflow.  This time depends on the RTT, bandwidth and queue size
      (in bytes), as follows: time_distance_i = queue_size_i/bw_i+RTT_i.
      Given that with the architecture described in Section 3.5.2, the
      subflow-specific queue size cannot exceed a congestion window, the
      time_distance becomes time_distance_i˜=RTT_i.  This scheduling
      policy favors fast subflows for application-limited communications
      (where all subflows need not be used).  However, for network-
      limited communications, this scheduling policy has little effect
      because all subflows will be used at some point, even the slow
      ones, to try minimizing the connection-level completion time.

   o  How much data to allocate to a single subflow: this question
      concerns the granularity of the allocation.  Using big allocation
      units allows for better support of TCP Segmentation Offload (TSO).
      TSO allows the system to aggregate several times the MSS into one
      single segment, sparing memory and CPU cycles, by leaving the
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      fragmentation task to the NIC.  However, this is only possible if
      the large single segment is made of contiguous data, at the
      subflow level and the connection level (see also important note
      below).

   IMPORTANT: When scheduling data to subflows, an implementation must
   be careful that if two segments are contiguous at the subflow-level,
   but non-contiguous at the connection level, they cannot be aggregated
   into one.  As Linux (and probably other systems) merges segments when
   it is under memory pressure, it could easily decide to merge non-
   contiguous MPTCP segments, simply because they look contiguous from
   the subflow viewpoint.  This must be avoided, because the DATA_SEQ
   mapping option would loose its meaning in such a case, leading to all
   possible kinds of misbehaviors.

3.6.  At connection/subflow termination

   In Linux MPTCP, subflows are terminated only when the whole
   connection terminates, because the heuristic for terminating subflows
   (without closing the connection) is not yet mature, as explained in
   Section 3.3.

   At connection termination, an implementation must ensure that all
   subflows plus the meta-socket are cleanly removed.  The obvious
   choice to propagate the close() system call on all subflows does not
   work.  The problem is that a close() on a subflow appends a FIN at
   the end of the send queue.  If we transpose this to the meta-socket,
   we would append a DATA_FIN on the shared send queue (see
   Section 3.5.2).  That operation results in the shared send queue not
   accepting any more data from the application, which is correct.  It
   also results in the subflow-specific queues not accepting any more
   data from the shared send queue.  The shared send queue may however
   still be full of segments, which will never be sent because all gates
   are closed.

   IMPORTANT: Upon a close() system call, an implementation must refrain
   from sending a FIN on all subflows, unless the implementation uses an
   architecture with no connection-level send queue (like the one
   described in Appendix A.5).  Even in that case, it makes sense to
   keep all subflows open until the last byte is sent, to allow
   retransmission on any path, should any one of them fail.

   Currently, upon a close() system call, Linux MPTCP appends a DATA_FIN
   to the connection-level send queue.  Only when that DATA_FIN reaches
   the bottom of the send queue is the regular FIN sent on all subflows.

   DISCUSSION: In the Linux MPTCP behavior described above, a connection
   could still stall near its end if one path fails while transmitting
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   its last congestion window of data (because the maximum size of the
   subflow-specific send queue is cwnd).  This can be avoided by waiting
   just a bit more before to trigger the subflow-FIN: Instead of sending
   the FIN together with the DATA_FIN, send the DATA_FIN alone and wait
   for the corresponding DATA_ACK to trigger a FIN on all subflows.
   This however augments by one RTT the duration of the overall
   connection termination.

Barre, et al.           Expires September 8, 2011              [Page 24]



Internet-Draft           MPTCP Impl. guidelines               March 2011

4.  Configuring the OS for MPTCP

   Previous sections concentrated on implementations.  In this section,
   we try to gather guidelines that help getting the full potential from
   MPCTP through appropriate system configuration.  Currently those
   guidelines apply especially to Linux, but the principles can be
   applied to other systems.

4.1.  Source address based routing

   As already pointed out by [12], the default behavior of most
   operating systems is not appropriate for the use of multiple
   interfaces.  Most operating systems are typically configured to use
   at most one IP address at a time.  It is more and more common to
   maintain several links in up state (e.g. using the wired interface as
   main link, but maintaining a ready-to-use wireless link in the
   background, to facilitate fallback when the wired link fails).  But
   MPTCP is not about that.  MPTCP is about _simultaneously_ using
   several interfaces (when available).  It is expected that one of the
   mostly used MPTCP configurations will be through two or more NICs,
   each being assigned a different address.  Another possible
   configuration would be to assign several IP addresses to the same
   interface, in which case the path diverges later in the network,
   based on the particular address that is used in the packet.

   Usually an operating system has a single default route, with a single
   source IP address.  If the host has several IP addresses and we want
   to do MultiPath TCP, it is necessary to configure source address
   based routing.  This means that based on the source address, selected
   by the MultiPath TCP-module in the operating system, the routing-
   decision is based on a different routing table.  Each of these
   routing tables defines a default route to the Internet.  This is
   different from defining several default routes in the same routing
   table (which is also supported in Linux), because in that case only
   the first one is used.  Any additional default route is considered as
   a fallback route, used only in case the main one fails.

   It is easier to understand the necessary configuration by means of an
   example.  Let a host have two interfaces,I1 and I2, both connected to
   the public Internet and being assigned addresses resp. A1 and A2.
   Such a host needs 3 routing tables.  One of them is the classical
   default routing table, present in all systems.  The default routing
   table is used to find a route based on the destination address only,
   when a segment is issued with the undetermined source address.  The
   undetermined source address is typically used by applications that
   initiate a TCP connect() system call, specifying the destination
   address but letting the system choose the source address.  In that
   case, after the default routing table has been consulted, an address
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   is assigned to the socket by the system by applying [13].  The
   additional routing tables are used when the source address is
   specified.  If the source address has no impact on the route that
   should be chosen, then the default routing table is sufficient.  But
   this is a particular case (e.g., a host connected to one network
   only, but using two addresses to exploit ECMP paths later in the
   network).  In most cases, a source address is attached to a specific
   interface, or at least a specific gateway.  Both of those cases
   require defining a separate routing table, one per (gateway, outgoing
   interface) pair.  To select the proper routing table based on the
   source address, an additional indirection level must be configured.
   It is called "policy routing" in Linux and is illustrated at the
   bottom of Figure 3.

   +----------------------------------------------------+
   |                   Default Table                    |
   +----------------------------------------------------+
   | Dst: 0.0.0.0/0  Via: Gateway-IP1 Dev: I1           |
   | Dst: 0.0.0.0/0  Via: Gateway-IP2 Dev: I2           |
   | Dst: Gateway1-Subnet Dev: I1 Src: A1  Scope: Link  |
   | Dst: Gateway2-Subnet Dev: I2 Src: A2  Scope: Link  |
   +----------------------------------------------------+

   +----------------------------------------------------+
   |                      Table 1                       |
   +----------------------------------------------------+
   | Dst: 0.0.0.0/0  Via: Gateway-IP1 Dev: I1           |
   | Dst: Gateway1-Subnet Dev: I1 Src: A1 Scope: Link   |
   +----------------------------------------------------+

   +----------------------------------------------------+
   |                      Table 2                       |
   +----------------------------------------------------+
   | Dst: 0.0.0.0/0  Via: Gateway-IP2 Dev: I2           |
   | Dst: Gateway2-Subnet Dev: I2 Src: A2 Scope: Link   |
   +----------------------------------------------------+

   +----------------------------------------------------+
   |                 Policy Table                       |
   +----------------------------------------------------+
   |   If src == A1 , Table 1                           |
   |   If src == A2 , Table 2                           |
   +----------------------------------------------------+

          Figure 3: Routing table configuration for MultiPath TCP

   If only the default routing table were used, only the first default
   route would be used, regardless of the source address.  For example,
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   a packet with source address A2, would leave the host through
   interface I1, which is incorrect.

4.2.  Buffer configuration

   [3], Section 5.3 describes in details the new, higher buffer
   requirements of MPTCP.  Section 3.4.1 and Section 3.5.1 describe how
   the MPTCP buffers can be tuned dynamically.  However, it is important
   to note that even the best tuning is capped by a maximum configured
   at the system level.  When using MultiPath TCP, the maximum receive
   and send buffer should be configured to a higher value than for
   regular TCP.  There is no universal guideline on what value is best
   there.  Instead the most appropriate action, for an administrator, is
   probably to roughly estimate the maximum bandwidth and delay that can
   be observed on a particular connectivity setup, and apply the
   equation from [3], Section 5.3 to find a reasonable tradeoff.  This
   exercise could lead an administrator to decide to disable MPTCP on
   some interfaces, because it allows consuming less memory while still
   achieving reasonable performance.
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5.  Future work

   A lot of work has yet to be done, and there is much space for
   improvements.  In this section we try to assemble a list of future
   improvements that would complete this guidelines.

   o  Today’s host processors have more and more CPU cores.  Given
      Multipath TCP tries to exploit another form of parallelism, there
      is a challenge in finding how those they can work together
      optimally.  An important question is how to work with hardware
      that behaves intelligently with TCP (e.g. flow to core affinity).
      This problem is discussed in more details in [14].

   o  An evaluation of Linux MPTCP exists [4].  But many optimizations
      are still possible and should be evaluated.  Examples of them VJ
      prequeues (Section 3.1), MPTCP fast path (that is, a translation
      of the existing TCP fast path to MPTCP) or DMA support.  VJ
      prequeues, described in Section 3.1, are intended to defer segment
      processing until the application is awoken, when possible.

   o  Currently, support for TCP Segmentation Offload remains a
      challenge because it plays with the Maximum Segment Size.  Linux
      MPTCP currently works with a single MSS across all subflows (see
      Section 3.5.2).  Adding TSO support to MPTCP is certainly
      possible, but requires further work (Section 3.5.2).  Also,
      support for Large Receive Offload has not been investigated yet.

   o  There are ongoing discussions on heuristics that would be used to
      decide when to start new subflows.  Those discussions are
      summarized in Appendix B.1, but none of the proposed heuristics
      have been evaluated yet.
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Appendix A.  Design alternatives

   In this appendix, we describe alternate designs that have been
   considered previously, and abandoned for various reasons (detailed as
   well).  We keep them here for the archive and possible discussion.
   We also describe some potential designs that have not been explored
   yet but could reveal to be better in the future, in which case that
   would be moved to the draft body.

A.1.  Another way to consider Path Management

   In a previous implementation of MPTCP, it was proposed that the
   multipath transport had an even more abstract view of the paths in
   use than what is described in Section 2.  In that design, the sub-
   sockets all shared the same tuple (saddr,sport,daddr,dport), and was
   disambiguated only by the path index.  The advantage is that the
   Multipath Transport needs only to worry about how to efficiently
   spread data among multiple paths, without any knowledge about the
   addresses or ports used by each particular subflow.

   That design was particularly well suited for using Shim6 as a Path
   Manager, because Shim6 is already designed to work in the network
   layer and rewrite addresses.  The first version of the Linux MPTCP
   implementation was using Shim6 as path manager.  It looks also well
   suited to path managers that don’t use addresses (e.g. path managers
   that write a label in the packet header, later interpreted by the
   network).  Finally, it removes the need for the token in the
   multipath transport (connection identification is done naturally with
   the tuple, shared by all subflows).  The token hence becomes specific
   to the built-in path manager, and can be just ignored with other path
   managers (the context tag plays a similar role in shim6, nothing is
   needed if the path manager just sets labels to the packets).

   However, this cleaner separation between Multipath Transport and Path
   Management suffers from three drawbacks:

   o  It requires a heavy modification to the existing stacks, because
      it modifies the current way to identify sockets in the stack.
      They are currently unambiguously identified with the usual
      5-tuple.  This architecture would require extending the 5-tuple
      with the path index, given all subflows would share the same
      5-tuple.

   o  Although correctly implemented stacks could handle that new
      endpoint identifier (5-tuple+path index), having several flows
      with same 5-tuple could confuse middleboxes.

Barre, et al.           Expires September 8, 2011              [Page 32]



Internet-Draft           MPTCP Impl. guidelines               March 2011

   o  When the path manager involves using several addresses, forcing
      the same 5-tuple for all subflows at the Multipath Transport level
      implies that the Path Manager needs to rewrite the address fields
      of each packet.  That rewriting operation is simply avoided if the
      sockets are bound to the addresses actually used to send the
      packets.  Hence, this alternate design would involve avoidable
      costs for path managers that belong to the "multi-address"
      category.

A.2.  Implementing alternate Path Managers

   In Section 2, the Path Manager is defined as an entity that maintains
   a (path_index<->endpoint_id) mapping.  This is enough in the case of
   the built-in path manager, because the segments are associated to a
   path within the socket itself, thanks to its endpoint_id.  However,
   it is expected that most other path managers will need to apply a
   particular action, on a per-packet basis, to associate them with a
   path.  Example actions could be writing a number in a field of the
   segment or choosing a different gateway than the default one in the
   routing table.  In an earlier version of Linux MPTCP, based on a
   Shim6 Path Manager, the action was used and consisted in rewriting
   the addresses of the packets.

   To reflect the need for a per-packet action, the PM mapping table (an
   example of which is given in Table 1) only needs to be extended with
   an action field.  As an example of this, we show hereafter an example
   mapping table for a Path Manager based on writing the path index into
   a field of the packets.

    +---------+------------+---------------+--------------------------+
    |  token  | path index |  Endpoint id  | Action (Write x in DSCP) |
    +---------+------------+---------------+--------------------------+
    | token_1 |      1     | <A1,B1,0,pB1> |             1            |
    |         |            |               |                          |
    | token_1 |      2     | <A1,B1,0,pB1> |             2            |
    |         |            |               |                          |
    | token_1 |      3     | <A1,B1,0,pB1> |             3            |
    |         |            |               |                          |
    | token_1 |      4     | <A1,B1,0,pB1> |             4            |
    |         |            |               |                          |
    |         |            |               |                          |
    | token_2 |      1     | <A1,B1,0,pB2> |             1            |
    |         |            |               |                          |
    | token_2 |      2     | <A1,B1,0,pB2> |             2            |
    +---------+------------+---------------+--------------------------+

            Table 4: Example mapping table for a label-based PM
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A.3.  When to instantiate a new meta-socket ?

   The meta-socket is responsible only for MPTCP-related operations.
   This includes connection-level reordering for incoming data,
   scheduling for outgoing data, and subflow management.  A natural
   choice then would be to instantiate a new meta-socket only when the
   peer has told us that it supports MPTCP.  In the server it is
   naturally the case since the master subsocket is created upon the
   reception of a SYN+MP_CAPABLE.  The client, however, instantiates its
   master subsocket when the application issues a socket() system call,
   but needs to wait until the SYN+ACK to know whether its peer supports
   MPTCP.  Yet, it must already provide its token in the SYN.

   Linux MPTCP currently instantiates its client-side meta-socket when
   the master-socket is created (just like the server-side).  The
   drawback of this is that if after socket(), the application
   subsequently issues a listen(), we have built a useless meta-socket.
   The same happens if the peer SYN+ACK does not carry the MP_CAPABLE
   option.  To avoid that, one may want to instantiate the meta-socket
   upon reception of an MP_CAPABLE option.  But this implies that the
   token (sent in the SYN), must be stored in some temporary place or in
   the master subsocket until the meta-socket is built.

A.4.  Forcing more processing in user context

   The implementation architecture proposed in this draft uses the
   following queue configuration:

   o  Subflow level: out-of-order queue.  Used for subflow-level
      reordering.

   o  Connection level: out-of-order queue.  Used for connection-level
      reordering.

   o  Connection level: receive queue.  Used for storing the ordered
      data until the application asks for it through a recvmsg() system
      call or similar.

   In a previous version of Linux MPTCP, another queue configuration has
   been examined:

   o  Subflow level: out-of-order queue.  Used for subflow-level
      reordering.

   o  Subflow level: receive queue.  Used for storing the data until the
      application asks for it through a recvmsg() system call or
      similar.
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   o  Connection level: out-of-order queue.  Used for connection-level
      reordering.

   In this alternate architecture, the connection-level data is lazily
   reordered as the application asks for it.  The main goal for this was
   to ensure that as many CPU cycles as possible were spent in user
   context (See Section 3.1).  VJ prequeues allow forcing user context
   processing when the application is waiting on a recv() system call.
   Otherwise the subflow-level reordering must be done in interrupt
   context.  This remains true with MPTCP because the subflow-level
   implementation is left unmodified when possible.  With MPTCP, the
   question is: "Where do we perform connection-level reordering ?".
   This alternate architecture answer is: "Do it _always_ in user
   context".  This was the strength of that architecture.  Technically,
   the task of each subflow was to reorder its own segments and put them
   in their own receive queue, until the application asks for data.
   When the application wants to eat more data, MPTCP searches all
   subflow-level receive queue for the next bytes to receive, and
   reorder them as appropriate by using its own reordering queue.  As
   soon as the number of requested bytes are handed to the application
   buffer, the MPTCP reordering task finishes.

   Unfortunately, there are two major drawbacks about doing it that way:

   o  The socket API supports the SO_RCVLOWAT option, which allows an
      application to ask not being woken up until n bytes have been
      received.  Counting those bytes requires reordering at least n
      bytes at the connection level in interrupt context.

   o  The DATA_ACK [1] should report the latest byte received in order
      at the connection level.  In this architecture, the best we can do
      is report the latest byte that has been copied to the application
      buffers, which would slightly change the DATA_ACK semantic
      described in section 3.3.2 of [1].  This change could confuse
      peers that try to derive information from the received DATA_ACK.

A.5.  Buffering data on a per-subflow basis

   In previous versions of Linux MPTCP, the configuration of the send
   queues was as shown in Figure 4.
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                                  Application
                                      |
                                      v
                                Packet Scheduler
                                     /  \
                                    /    \
                                   |      |
                                   v      v
                                 | * |  |   |
    Next segment to send (A)  -> | * |  | * |
                                 |---|  |---|  <- Separate send queue
    Sent, but not acked (B)   -> |_*_|  |_*_|
                                   |      |
                                   v      v
                                  NIC    NIC

                    Figure 4: Send queue configuration

   In contrast to the architecture presented in Section 3.5.2, there is
   no shared send queue.  The Packet Scheduler is run each time data is
   produced by the application.  Compared to Figure 4, the advantages
   and drawbacks are basically reversed.  Here are the advantages:

   o  This architecture supports subflow-specific Maximum Segment Sizes,
      because the subflow is selected before the segment is built.

   o  The segments are stored in their final form in the subflow-
      specific send queues, and there is no need to run the Packet
      Scheduler at transmission time.  The result is more fairness with
      other applications (because the Packet Scheduler runs in user
      context only), and faster data transmission when acknowledgements
      open the congestion window (because segments are buffered in their
      final form and no call to the Packet Scheduler is needed.

   The drawback, which motivated the architecture change in Linux MPTCP
   is the complexity of the data allocation (hence the Packet
   Scheduler), and the computing cost involved.  Given that there is no
   shared send buffer, the send buffer auto-tuning must be divided into
   its subflow contributions.  This buffer size can be easily derived
   from Section 3.5.1.  However, when scheduling in advance a full send
   buffer of data, we may be allocating a segment hundreds of
   milliseconds before it actually goes to the wire.  The task of the
   Packet Scheduler is then complicated because it must _predict_ the
   path properties.  If the prediction is incorrect, two subflows may
   try to put on the wire segments that are very distant in terms of
   DATA_SEQ numbers.  This can eventually result in stalling some
   subflows, because the DATA_SEQ gap between two subflows exceeds the
   receive window announced by the receiver.  The Packet Scheduler can
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   relatively easily compute a correct allocation of segments if the
   path properties do not vary (just because it is easy to predict a
   constant value), but the implementation was very sensitive to
   variations in delay or bandwidth.  The previous implementation of
   Linux MPTCP solved this allocation problem by verifying, upon each
   failed transmission attempt, if it was blocked by the receive window
   due to a gap in DATA_SEQ with other subflows.  If this was the case,
   a full reallocation of segments was conducted.  However, the cost of
   such a reallocation is very high, because it involves reconsidering
   the allocation of any single segment, and do this for all the
   subflows.  Worse, this costly reallocation sometimes needed to happen
   in interrupt context, which removed one of the advantages of this
   architecture.

   Yet, under the assumption that the subflow-specific queue size is
   small, the above drawback almost disappears.  For this reason the
   abandoned design described here could be used to feed a future hybrid
   architecture, as explained in Section 3.5.2.  For the sake of
   comparison with Table 3, we provide hereafter the action/table
   implemented by this architecture.

   +-----------------+-------------------------------------------------+
   | event           | action                                          |
   +-----------------+-------------------------------------------------+
   | Segment         | Remove references to it from the subflow-level  |
   | acknowledged at | queue                                           |
   | subflow level   |                                                 |
   |                 |                                                 |
   | Segment         | No queue-related action.                        |
   | acknowledged at |                                                 |
   | connection      |                                                 |
   | level           |                                                 |
   |                 |                                                 |
   | Timeout         | Push the segment to the best subflow (according |
   | (subflow-level) | to the Packet Scheduler). In contrast with the  |
   |                 | solution of Section 3.5.2, there is no need for |
   |                 | a connection-level retransmit queue, because    |
   |                 | there is no requirement to be available         |
   |                 | immediately for a subflow to accept new data.   |
   |                 |                                                 |
   | Ready to put    | Just send the next segment from the A portion   |
   | new data on the | of the subflow-specific send queue, if any.     |
   | wire (normally  | Note that the "IMPORTANT" note from             |
   | triggered by an | Section 3.5.2 still applies with this           |
   | incoming ack)   | architecture.                                   |
   +-----------------+-------------------------------------------------+

   Table 5: (event,action) pairs implemented in a queue management based

Barre, et al.           Expires September 8, 2011              [Page 37]



Internet-Draft           MPTCP Impl. guidelines               March 2011

                          on separate send queues
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Appendix B.  Ongoing discussions on implementation improvements

   This appendix collects information on features that have been
   currently implemented nowhere, but can still be useful as hints for
   implementers to test.  Feedback from implementers will help
   converging on those topics and propose solid guidelines for future
   versions of this memo.

B.1.  Heuristics for subflow management

   Some heuristic should determine when it would be beneficial to add a
   new subflow.  Linux MPTCP has no such heuristic at the moment, but
   the topic has been discussed on the MPTCP mailing list, so this
   section summarizes the input from many individuals.  MPTCP is not
   useful for very short flows, so three questions appear:

   o  How long is a "too short flow"

   o  How to predict that a flow will be short ?

   o  When to decide to add/remove subflows ?

   To answer the third question, it has been proposed to use hints from
   the application.  On the other hand the experience shows that socket
   options are quite often poorly or not used, which motivates the
   parallel use of a good default heuristic.  This default heuristic may
   be influenced in particular by the particular set of options that are
   enabled for MPTCP (e.g. an administrator can decide that some
   security mechanisms for subflow initiation are not needed in his
   environment, and disable them, which would change the cost of
   establishing new subflows).  The following elements have been
   proposed to feed the heuristic, none of them tested yet:

   o  Check the size of the write operations from the applications.
      Initiate a new subflow if the write size exceeds some threshold.
      This information can be taken only as a hint because applications
      could send big chunks of data split in many small writes.  A
      particular case of checking the size of write operations is when
      the application uses the sendfile() system call.  In that
      situation MPTCP can know very precisely how many bytes will be
      transferred.

   o  Check if the flow is network limited or application limited.
      Initiate a new subflow only if it is network limited.

   o  It may be useful to establish new subflows even for application-
      limited communications, to provide failure survivability.  A way
      to do that would be to initiate a new subflow (if not done before
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      by another trigger) after some time has elapsed, regardless of
      whether the communication is network or application limited.

   o  Wait until slow start is done before to establish a new subflow.
      Measurements with Linux MPTCP suggest that slow start could be a
      reasonable tool for determining when it is worth starting a new
      subflow (without increasing the overall completion time).  More
      analysis is needed in that area, however.  Also, this should be
      taken as a hint only if the slow start is actually progressing
      (otherwise a stalled subflow could prevent the establishment of
      another one, precisely when a new one would be useful).

   o  Use information from the application-layer protocol.  Some of them
      (e.g.  HTTP) carry flow length information in their headers, which
      can be used to decide how many subflows are useful.

   o  Allow the administrator to configure subflow policies on a per-
      port basis.  The host stack could learn as well for what ports
      MPTCP turns out to be useful.

   o  Check the underlying medium of each potential subflow.  For
      example, if the initial subflow is initiated over 3G, and WiFi is
      available, it probably makes sense to immediately negotiate an
      additional subflow over WiFi.

   It is not only useful to determine when to start new subflows, one
   should also sometimes decide to abandon some of its subflows.  An
   MPTCP implementation should be able to determine when removing a
   subflow would increase the aggregate bandwidth.  This can happen, for
   example, when the subflow has a significantly higher delay compared
   to other subflows, and the maximum buffer size allowed by the
   administrator has been reached (Linux MPTCP currently has no such
   heuristic yet).
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