DDoS and Collateral Damage risks: are TLDs oversharing DNS infrastructure? (ongoing work)

Giovane C. M. Moura, Moritz Müller, Marco Davids, Cristian Hesselman

IEPG – IETF 100 – Singapore 2017-11-12

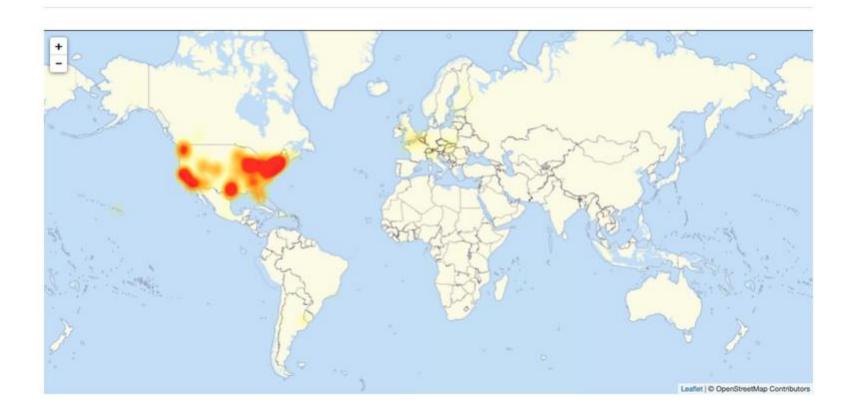
Introduction

- The DNS comprises one of the core services of the Internet
- Resilience due to good engineering: layers and layers of redundancy
 - Multiple NS records
 - IP anycast
 - Load Balancers

Introduction

- DDoS are becoming cheaper, bigger and more frequent:
 - Dyn DDoS peaked at 1.2TB/s (Mirai Botnet, October 2016) [1]
 - Root DNS DDoS 35Gb/s (Nov 2015) [2]
- In both cases, we have seen **collateral damage:**
 - .nl anycast sites close to Root letters also suffered during DDoS
 - multiple Dyn clients (Spotify, Netflix, etc.) were partially unreachable

Introduction


- Collateral damage only happens because *parts of* infrastructure are shared.
 - Name servers/ IP addresses/ pipes/ autonomous systems / datacenters
- Sharing, per se, it is not a problem: big DNS providers are more likely to have more capacity that small operators
- But they have a larger attack surface....

Dyn DDoS attack October 2016: 1.2TB/s (Mirai Botnet)

Hackers Used New Weapons to Disrupt Major Websites Across U.S.

By NICOLE PERLROTH OCT. 21, 2016

What do to?

Research question

How much sharing is in the Root zone?

- Approach: Measurements
- Motivation:
 - Operators: I want to know who my DNS provider shares infra
- Two parts:
 - Root Zone as a whole (Shared IPv4, Ases, IPv6, /24)
 - Individual TLDs (Number of ASes, NSes)

Part 1: Root Zone as a whole

• Look at all NSes, A Records, and how many TLDs share them

Root Zone Analysis: 2014 and 2017

	A	All		Orig. TLDs		ccTLDs		LDs
Metric	2014	2017	2014	2017	2014	2017	2014	2017
TLDs	613	1535	7	7	249	247	357	1281
NSes	1569	4326	38	40	1045	1047	608	3396
A Rec	1476	3805	32	34	1009	1003	567	2945
AAAA Recs	900	3364	14	28	510	626	459	2840
ASes(IPv4)	489	511	26	30	445	444	155	214
ASes (IPv6)	NA	241	NA	11	NA	202	NA	127

Table 1. Root Zone: 20140601 and 20170627

- Original TLDs: .com,.net, org, mil, gov, edu, int.
- ccTLDs: .nl, .ca, and .fr, etc.
- gTLDs: all the others, such as .amsterdam and .io.

Root Zone Analysis: 2014 and 2017

	All		Orig. TLDs		ccTLDs		$_{ m gTLDs}$	
Metric	2014	2017	2014	2017	2014	2017	2014	2017
TLDs	613	1535	7	7	249	247	357	1281
NSes	1569	4326	38	40	1045	1047	608	3396
A Rec	1476	3805	32	34	1009	1003	567	2945
AAAA Recs	900	3364	14	28	510	626	459	2840
ASes(IPv4)	489	511	26	30	445	444	155	214
ASes (IPv6)	NA	241	NA	11	NA	202	NA	127

Table 1. Root Zone: 20140601 and 20170627

- new gTLDs delegations
- 4.06 IPv4 per ccTLD, **2.29 for gTLDs**
- 1.79 ASv4/ccTLD, **0.16 for gTLDs**

Shared NSes

Shared NSes: getting more concentrated due to new gTLDs

(but 612 gTLDs < 10 domains¹)

1: https://ntldstats.com/

2014

NS	Unique TLDs		$\mathbf{D}\mathbf{s}$	Examples			
demand.gamma.aridns.net.au		165		newGTLDs: zone, works, today			
demand.delta.aridns.net.au		165		newGTLDs: zone, works, today			
demand.beta.aridns.net.au		165		newGTLDs: zone, works, today			
demand.alpha.aridns.net.au		165		newGTLDs: zone, works, today			
sns-pb.isc.org		42		ccTLDs: nl, nr, cl, cat			
rip.psg.com	19			ccTLDs: sa, lb,uy			
d0.cctld.afilias-nst.org		15		ccTLDs: vc, sc,bz			
c0.cctld.afilias-nst.info		15		ccTLDs: vc, sc,bz			
b0.cctld.afilias-nst.org	15			ccTLDs: vc, sc,bz			
a0.cctld.afilias-nst.info	15			ccTLDs: vc, sc,bz			
2017							

NS	Un	ique TLD	s Examples
demand.gamma.aridns.net.au		238	newGTLDs: zone, works, today
demand.delta.aridns.net.au		238	newGTLDs: zone, works, today
demand.beta.aridns.net.au		238	newGTLDs: zone, works, today
demand.alpha.aridns.net.au		238	newGTLDs: zone, works, today
ac4.nstld.com		160	newGTLDs:norton, samsclub
ac3.nstld.com		160	newGTLDs:norton, samsclub
ac2.nstld.com		160	newGTLDs:norton, samsclub
ac1.nstld.com		160	newGTLDs:norton, samsclub
l.gmoregistry.net		49	newgTLDs: yokohama, toyota
k.gmoregistry.net		49	newgTLDs: yokohama, toyota
70 11 0 TD 10 0	1	1 3 (0)	1 1 (707.15)

Table 2. Top 10 Shared NS names and number of TLDs

Shared NSes: considering TLDs zone size

2017

NS	Unique TLDs	MeanZone	Median	Total
demand.gamma.aridns.net.au	238	13,688.14	6,542	3,203,026
demand.delta.aridns.net.au	238	13,688.14	6,542	3,203,026
demand.beta.aridns.net.au	238	13,688.14	6,542	3,203,026
demand.alpha.aridns.net.au	238	13,688.14	6,542	3,203,26
ac4.nstld.com	160	435.82	1	62,323
ac3.nstld.com	160	435.82	1	62,323
ac2.nstld.com	160	435.82	1	62,323
ac1.nstld.com	160	435.82	1	62,323
l.gmoregistry.net	49	8,826.75	5	432,511
k.gmoregistry.net	49	8,826.75	5	432,511

Table 3. Top 10 Shared NS names and number of TLDs and Zone Sizes (zone sizes obtained on 20171025 from gtldstats.net, only for gTLDs).

Only new gTLD zone sizes: gtldstats.net

Shared IPv4 (A Records)

- Number of zones (TLDs)
 on each IPv4 A Record
- Growing concentration

201	.4	2017					
IPv4	# TLDs	IPv4	# TLDs				
37.209.198.7	165	37.209.198.7	238				
37.209.196.7	165	37.209.196.7	238				
37.209.194.7	165	37.209.194.7	238				
37.209.192.7	165	37.209.192.7	238				
192.5.4.1	45	192.42.176.30	160				
147.28.0.39	21	192.42.175.30	160				
72.52.71.3	16	192.42.174.30	160				
63.243.194.3	16	192.42.173.30	160				
38.103.2.3	16	37.209.198.9	49				
199.254.62.1	15	37.209.198.4	49				

2014

Table 3. Top 10 Shared IPv4 (A Records) and TLDs

Shared /24 of A Records

- Obtained IPv4 from each NS
- Aggregate it into /24
- Count unique TLDs
- Imagine a prefix hijack.

2014	1	2017						
/24	# TLDs	/24	# TLDs					
37.209.194.0	176	37.209.194.0	362					
37.209.192.0	176	37.209.192.0	362					
37.209.198.0	174	37.209.198.0	360					
37.209.196.0	174	37.209.196.0	360					
193.0.9.0	71	156.154.159.0	179					
204.61.21.0	64	156.154.158.0	179					
192.5.4.0	51	156.154.157.0	179					
194.0.1.0	41	156.154.156.0	179					
194.146.106.0	33	156.154.145.0	179					
72.52.71.0	25	156.154.144.0	179					

Table 3. Top 10 Shared /24 prefixes and of TLDs

Shared ASes of A Records (2017)

- Up to 363 TLDs/AS
- A TLD may use multiple Ases

IPv4				IPv6			
AS	#	TLL)s	AS	7	≠ TLI)s
134399	П	363		134390		363	Г
134395		363		134399		362	Г
134391		363		42		356	
134390	П	363		12008		263	Г
134386		363		12041		226	
42		362		19911		223	
18210		360		36625		163	
134396	П	360		36616		162	
12008		265		36617		161	
19911		262		15135		77	

Table 4. Top 10 Shared ASes and of TLDs – 2017

Part 2: Individual TLDs

How individual TLDs look like?

Looking at individual TLDs

\mathbf{TLD}	Country/Org	NSes	/24	ASes(IPv4)
.kp	North Korea	2	1	1
.pf	French Polynesia	2	1	1
.bb	Barbados	2	2	1
.gf	French Guiana	2	2	1
.sr	Suriname	2	2	1
.dj	Djibouti	2	2	2
.ax	Åland Islands	3	2	1
.bh	Bahrain	4	1	1
.mil	US DoD	6	6	1

Table 6. TLDs with 1 IPv4 AS

Looking at individual TLDs

- .dog, .money:
 Multiple Origin
 AS [3,4], and any
 TLD above line
 (Anycast)
- Most 4 Nses with< 4 Ases6 NSes also popular

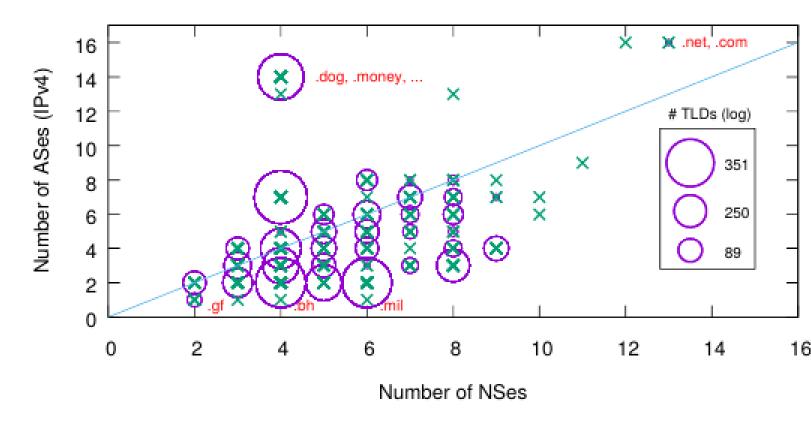


Fig. 4. TLDs: number of NSes vs number of ASes – IPv4

Looking at individual TLDs

Below line: TLDs
 with multiple NSes
 on a single AS
 (majority)

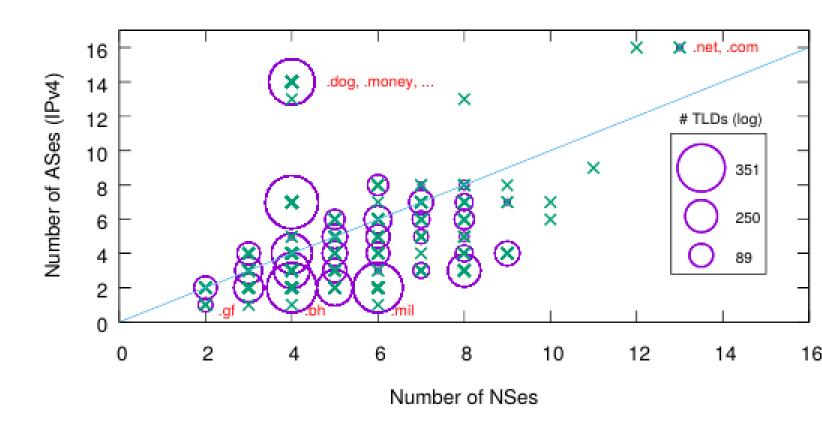


Fig. 4. TLDs: number of NSes vs number of ASes – IPv4

So far:

- ccTLDs have far less sharing than gTLDs
 - Market is very different, 50% new gTLDs (612) have < 10 domains
- 9 TLDs using 1 AS only
- Some /24 having 360+ zones
 - IPv6 subnetting also important, not that straightforward

Discussion

- Is this something we should be worried about ?
- What can we possibly do about it?
 - Ops: mixed 3rd party and in-home anycast services
- There's many other shared infra we can't possibly measure (pipes, other non DNS services)
- · Do we need a definition of what is "oversharing"?

Discussion

• We'd like feedback/suggestions on how to move forward

References

- 1. Perlroth, N.: Hackers Used New Weapons to Disrupt Major Web-sites Across U.S. (2016). https://www.nytimes.com/2016/10/22/business/internet-problems-attack.html.
- 2. Moura, G.C.M., de O. Schmidt, R., Heidemann, J., de Vries, W.B., Müller, M., Wei, L., Hesselman, C.: **Anycast vs. DDoS: Evaluating the November 2015 Root DNS Event**. In: Proceedings of the 2016 ACM Conference on Internet Measurement Conference. (October 2016) 255–270
- 3. Zhao, X., Pei, D., Wang, L., Massey, D., Mankin, A., Wu, S.F., Zhang, L.: **Analysis of BGP** multiple origin AS (MOAS) conflicts. In: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, ACM (2001) 31–35
- 4. Jacquemart, Quentin, Guillaume Urvoy-Keller, and Ernst Biersack. "A longitudinal study of BGP MOAS prefixes." International Workshop on Traffic Monitoring and Analysis. Springer, Berlin, Heidelberg, 2014.

Questions?

