Recursives in the Wild: Engineering Authoritative DNS Servers

Moritz Müller^{1,2}, **Giovane C. M. Moura**¹, Ricardo de O. Schmidt^{1,2}, John Heidemann³

¹SIDN Labs The Netherlands

²University of Twente The Netherlands

³USC/Information Sciences Institute U.S.

IETF99 - IEPG Prague, CZ, July 16th, 2017

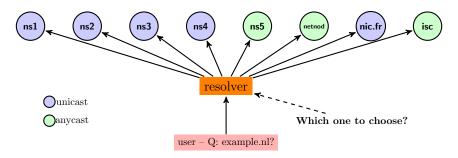


Figure: Resolving a Name under .nl TLD

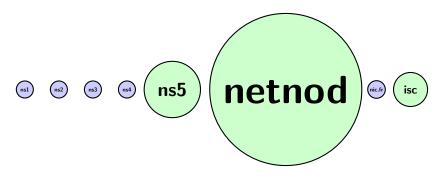


Figure: Authoritative Servers by Size (sites) - area proportional to number of sites on .nl (June 2016)

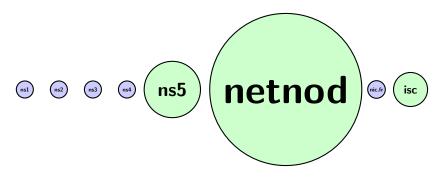
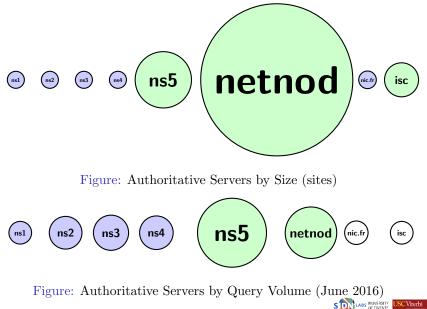



Figure: Authoritative Servers by Size (sites) - area proportional to number of sites on .nl (June 2016)

► The larger, the more queries it gets, right?

4/19

- Why is this hapenning?
- ▶ Meaning: why recursives choose this way → how do they behave in the wild?
- Study goal: analyze how recursives behaves in the wild with the goal with better enginnering authoritative servers
 - ▶ Previous work (Yu et al., [1]) was done in 2012, controlled environment
 - ▶ Recursives typically prefered low latency authoritatives

Approach

- 1. Set up an authoritative server infrastructure at 2LD (ourtestdomain.nl), using 7 Amazon AWS datacenters, IPv4
- 2. VPs: 9000+ Ripe Atlas probes
 - $VP = probe_id + IP of local recursive$
- 3. We vary the number/location of servers (NS records) and measure how VPs choose authoritatives
- 4. We use TXT records to determine which server responded to each probe/recursive
 - e.g: similar to chaos queries
 - Every 2min, for 1 hour
 - ▶ NS record TTL of 5 seconds (to ensure cold cache)
- 5. We also look at the root and .nl auth data

Setup

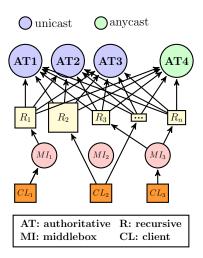


Figure: TLD Setup, Recursives, Middleboxes and Clients.

Setup

ID	locations (airport code)	\mathbf{VPs}
2A	GRU (São Paulo, BR), NRT (Tokyo, JP)	8,702
2B	DUB (Dublin, IE), FRA (Frankfurt, DE)	$8,\!685$
2C	FRA, SYD (Sydney, AU)	$8,\!658$
3A	GRU, NRT, SYD	$8,\!684$
3B	DUB, FRA, IAD (Washington, US)	$8,\!693$
4A	GRU, NRT, SYD, DUB	8,702
4B	DUB, FRA, IAD, SFO (San Francisco, US)	$8,\!689$

Table: Combinations of authoritatives we deploy and the number of VPs they see.

Do recursives query all authoritatives?

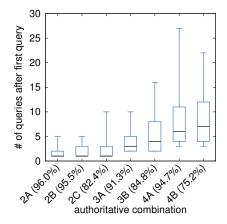


Figure: Queries to probe all authoritatives, after the first query.

▶ Yes! Most query all!

How are queries distributed over time?

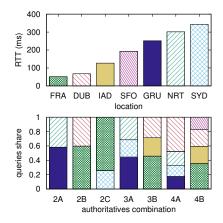


Figure: Median RTT (top) and query distribution (bottom) for combinations of authoritatives.

Confirming [1], but now in the wild

How do recursives distribute queries?

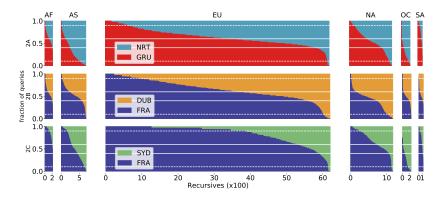


Figure: Recursive queries distribution for authoritative combinations 2A (top), 2B (center) and 2C (bottom). Solid and dotted horizontal lines mark VPs with weak and strong preference towards an authoritative.

UNIVERSITY

11/19

How do recursives distribute queries?

- ► 59-69% of resolvers have a a week preference for an auth (60% of queries to one auth)
- ▶ 10-37% have strong pref to one auth (90% of queries to one auth)
- Distribution is inversily proportional with median RTT

How do recursives distribute queries?

▶ What happens when Auth are more less the same?

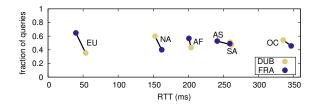


Figure: RTT sensitivity of 2B

- ▶ EU VPs get to FRA faster (13ms)
- ▶ Thus they prefer FRA slightly over DUB
- ▶ Asian VPs divide more equaly (despite 20.3ms diff!!)
- ▶ RTT influence decreases for far away resolvers

UNIVERSITY OF TWENTE

13/19

How query frequency affects the results?

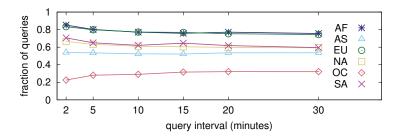


Figure: Fraction of queries to FRA (remainder go to SYD, configuration 2C), as query interval varies from 2 to 30 minutes.

Higher frequency, higher preference (infra-cache)

What about production zones? (root and .nl)?

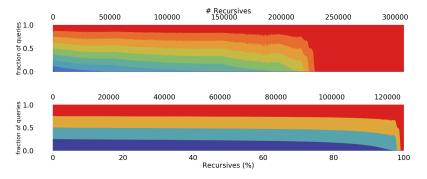


Figure: Distribution of queries of recursives with at least 250 queries across 10 out of 13 Root letters (top) and across 4 out of 8 name servers of .nl (bottom).

Conclusions and Recommendations

Main conclusion:

- Worst-case latency limited by the least anycasted authoritative
 - recursives use all authoritatives, query more often the better performing one (but diversity is important for them)
 - ▶ We (.nl) see 23% of incoming traffic in NL-based auth servers from the US, because of this (we're moving to anycast on all NSes)

Recommendation:

- ▶ Use Anycast on all your NS, and peer them very well, with multiple sites[2]
 - ▶ also important for DDoS[3]

Contact details

Giovane C. M. Moura

giovane.moura@sidn.nl

Download our paper and data at: https://tinyurl.com/y7exc5ts

Bibliography I

- Y. Yu, D. Wessels, M. Larson, and L. Zhang, "Authority server selection in dns caching resolvers," *SIGCOMM Comput. Commun. Rev.*, vol. 42, no. 2, pp. 80–86, Mar. 2012. [Online]. Available: http://doi.acm.org/10.1145/2185376.2185387
- R. d. O. Schmidt, J. Heidemann, and J. H. Kuipers, "Anycast latency: How many sites are enough?" in Proceedings of the Passive and Active Measurement Workshop. Sydney, Australia: Springer, Mar. 2017, pp. 188–200. [Online]. Available: http://www.isi.edu/%7ejohnh/PAPERS/Schmidt17a.html

Bibliography II

G. C. M. Moura, R. de O. Schmidt, J. Heidemann, W. B. de Vries, M. Müller, L. Wei, and C. Hesselman, "Anycast vs. DDoS: Evaluating the November 2015 root DNS event," in *Proceedings of the ACM Internet Measurement Conference*, Nov. 2016. [Online]. Available: http://www.isi.edu/%7ejohnh/PAPERS/Moura16b.html

