Deploying New DNSSEC Algorithms

IEPG at IETF 93 19 July 2015 Prague, Czech Republic

Dan York, Internet Society

A Reminder of How DNSSEC Works

The Two Parts of DNSSEC

DNSSEC Algorithms

- Used to generate keys for signing
 - DNSKEY
- Used in DNSSEC signatures
 - RRSIG
- Used for DS record for chain of trust
 - DS

Used in validation of DNSSEC records

DNS resolvers

IANA Registry of DNSSEC Algorithm Numbers

• http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml

Number	Description	Mnemonic
0	Reserved	
1	RSA/MD5 (deprecated)	RSAMD5
2	Diffie-Hellman	DH
3	DSA/SHA1	DSA
4	Reserved	
5	RSA/SHA-1	RSASHA1
6	DSA-NSEC3-SHA1	DSA-NSEC3-SHA1
7	RSASHA1-NSEC3-SHA1	RSASHA1-NSEC3-SHA1
8	RSA/SHA-256	RSASHA256
9	Reserved	
10	RSA/SHA-512	RSASHA512
11	Reserved	
12	GOST R 34.10-2001	ECC-GOST
13	ECDSA Curve P-256 wSHA-256	ECDSAP256SHA256
14	ECDSA Curve P-384 wSHA-384	ECDSAP384SHA384
15-122	Unassigned	
123-251	Reserved	
252	Reserved for Indirect Keys	INDIRECT
253	private algorithm	PRIVATEDNS
254	private algorithm OID	PRIVATEOID
255	Reserved	

BUT... DNSSEC is an RSA world... (part 1)

- Ed Lewis (ICANN) presenting at CENTR, June 2015
- Breakdown of DNSSEC names
 - \odot 682 thousand DS-owning names
 - ⊙ 11 thousand RSA-SHA-1
 - \odot 562 thousand RSA-SHA-1-NSEC3
 - \odot 146 thousand RSA-SHA-256
 - ⊙453 RSA-SHA-512
 - \odot 16 GOST
 - ⊙ 38 ECC-256T
 - ⊙ 14 ECC-384T
 - ⊙ 6 DSA-SHA-1
- https://centr.org/system/files/agenda/attachment/rd7-lewis-dnssec_cryptographic_demographics-20150603.pdf

BUT... DNSSEC is an RSA world... (part 2)

- Ed Lewis (ICANN) presenting at CENTR, June 2015
- Top algorithms (raw keys, not names)

https://centr.org/system/files/agenda/attachment/rd7-lewis-dnssec_cryptographic_demographics-20150603.pdf

"Newer" DNSSEC Algorithms

- ECDSA RFC 6605 April 2012
- GOST RFC 5933 July 2010

• Future:

- Ed25519?
 - https://gitlab.labs.nic.cz/labs/ietf/blob/master/draft-sury-dnskey-ed25519.xml
- ChaCha? (RFC 7539)
- Others coming out of CFRG?

Why Do We Care About Newer Algorithms?

- Smaller keys and signatures
 - Packet size (and avoiding fragmentation)
 - Minimizing potential reflection/DDoS attacks
 - Enable large-scale deployment
 - Ex. CDNs

Better cryptography

• Move away from 1024-bit RSA

Aspects of Deploying New Algorithms

- Validation
- Signing / DNS Hosting Operators
- Registries
- Registrars
- Developers

Validation

 Resolvers performing validation need to be updated to accept and use the new algorithm.

Software needs to be updated

- Can be an issue of getting the underlying libraries updated
- Updates need to be deployed
 - Customer-premises equipment (CPE)

• Problem – RFC 4035, section 5.2:

"If the resolver **does not support any of the algorithms** listed in an authenticated DS RRset, then the resolver will not be able to verify the authentication path to the child zone. In this case, **the resolver SHOULD treat the child zone as if it were unsigned**."

Validation - measurement

- Geoff Huston at IEPG at IETF 92 (March 2015):
 - http://blog.apnic.net/2015/03/23/ietf92-geoff-presents-on-ec-dsa-at-iepg/
 - 1 in 5 validating resolvers would *not* support ECDSA

• Pier Carlo Chiodi using RIPE Atlas probes (Jan 2015):

- <u>http://blog.pierky.com/dnssec-ecdsa-aware-resolvers-seen-by-ripe-atlas/</u>
- "512 probes received an authenticated response for RSA-signed zone, 63 of those (12,3 %) missed the AD flag for the ECDSA-signed one."

Signing

- Software for authoritative DNS servers need updates
- Updated software needs to be deployed to signing servers
- DNS Hosting Operators (which could be Registrars) need to offer new algorithm to customers
- New key with new algorithm needs to co-exist with existing key for some period of time
 - Size impact

Registries

- Some registries are only accepting DS records with certain algorithms
 - Not accepting new algorithms
- No way to know what algorithms registries accept
 - Update EPP feed to indicate what algorithms are accepted?

Question: Why do registries need to check algorithm type?

Registrars

- When adding DS records, some registrars only accept certain algorithms in web interface
- Example BEFORE someone asked for ECDSA:

DN	ISS	EC

Domain Name System Security Extensions (DNSSEC) protect your domain from attacks such as DNS cache poison attacks and DNS spoofing. Your DNS provider can provide you with the values you need to activate DNSSEC.

Key tag	DSA/SHA1	SHA256 -	Digest	Add
KEY TAG 🚱	DSA/SHA1-NSEC3/SHA1 ECC	YPE 🚱 DI	GEST 🚱	
	RSA/SHA1	No DS reco	ords have been set up.	
	RSA/SHA1-NSEC3/SHA1			
Registered host	RSA/SHA256			
registered nos	RSA/SHA512			
Register public hos.	on your domain by it doute	s so they can	be found without first resolving your do	main in the DNS. Entries here are

Registrars

• Good news! – AFTER someone asked for ECDSA:

Domain Name Sy poofing. Your DN	3: DSA/SHA1 4: ECC	C) protect your domain from attacks such as DNS cache poison attacks and DNS e values you need to activate DNSSEC.		
Key tag	5: RSA/SHA1	1: SHA1 - Digest	Add	
KEY TAG 🚱	6: DSA/SHA1-NSEC3/SHA1 7: RSA/SHA1-NSEC3/SHA1	PE 🚱 DIGEST 🚱		
	8: RSA/SHA256	No DS records have been set up.		
	10: RSA/SHA512			
Registered hos	13: ECDSA/P256/SHA256			
togistered not	14: ECDSA/P384/SHA384	and a second		

 But this requires someone asking registrars to support new algorithms... and the registrars making the appropriate updates.

Registrars

- Question: why do registrars need to check the algorithm type?
 - Is this attempting to protect users from themselves? Minimize support calls?
- What is the harm in advertising an "unknown" algorithm type?

- Answer: Stop restricting and just accept all DS records.
 - Does this come down to a user interface issue?

Developers

- Give developers a list, they will check it!
- Sooo... IANA DNSSEC algorithm list:
- http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
- But... in this case bounds-checking is not necessary (if we accept idea that registrars/registries should accept all algorithms).
- Need to modify software to allow all algorithms
 - or simply not check algorithm type
 - or check IANA registry on some periodic interval

Next Steps

- Help people understand value and need to support new algorithms
- Document these steps in a form that can be distributed (ex. Internet-draft)
- Identify and act on actions. Examples:
 - Understand implications of registrars/registries simply NOT doing any checking on algorithm types.
 - Survey registries to find out which restrict algorithms in DS records
 - Explore idea of communicating accepted algorithms in EPP
 - Encourage registrars to accept wider range of algorithms (or to stop checking)
 - Encourage developers to accept all IANA-listed algorithms (or to stop checking)

Draft IAB Statement on Crypto Algorithm Agility

https://tools.ietf.org/html/draft-iab-crypto-alg-agility

Many IETF protocols use cryptographic algorithms to provide confidentiality, integrity, authentication or digital signature. Communicating peers must support a common set of cryptographic algorithms for these mechanisms to work properly. This memo provides guidelines to ensure that protocols have the ability to migrate from one mandatory-toimplement algorithm suite to another over time.

Dan York

Senior Content Strategist Internet Society

york@isoc.org

Thank You!

