Internet Addressing and the Address Registry System

David R. Conrad
David.Conrad@Nominum.com
Nominum, Inc.
Overview

- An Introduction to Addressing
- An Introduction to the Address Registries
- Registry Policies and Procedures
- Summary
Internet Addresses

- Any device wishing to use Internet protocols must have at least one Internet address
 - IPv4: 32 bit value
 - IPv6: 128 bit value

- These addresses provide dual functionality
 - Identifying (naming) an end point
 - Describing the path to reach that end point
The Beginning

- Back when the Internet protocols were first being designed, there was a big argument between fixed length and variable length addresses
 - Fixed length will always be limited
 - But if you make it big enough, no one will notice
 - Variable length will always take more cycles to process
 - But there are tricks you can play to minimize the difference
- The decision was made for fixed, 32 bit addresses
 - Rumor has it, by a flip of a coin...
IP version 4 Addresses

- 32 bit unsigned integers
 - possible values 0 - 4,294,967,295
- Typically written as a “dotted quad of octets”
 - four 8 bit values each having a range of 0-255 separated by “.”
 - For example, 202.12.28.129 can be written as below

```
202  .  12  .  28  .  129
```

```
1100101000000011000001110001100001000000000001
```
Internet Addresses

- A subset of IPv4 addresses
 - Just one of an infinite number of subsets, albeit an important one

- Guaranteed globally unique by the IANA
 - Generally allocated by delegated authorities such as Internet service providers or regional registries
 - Assumed to be routable
 - Bad assumption

- Partitioned into two parts
 - A host part that identifies a particular machine on a local or wide area network
 - A network part that gives routers information how to get to the local or wide area network via the Internet
Internet Address Structure

- Originally, the architects of the Internet thought 256 networks would be more than enough
 - Assumed a few very large (16,777,216 hosts) networks
 - They were wrong (in case you were wondering)

- Addresses were partitioned as below
 - 8 bit network part, 24 bit host part
Classfull Addressing

- Original addressing plan too limiting
 - More than 256 networks with many fewer hosts than 224
- Solution was to create address classes

- Class A
 - 128 networks
 - 16,777,216 hosts

- Class B
 - 16,384 networks
 - 65,536 hosts

- Class C
 - 2,097,152 networks
 - 256 hosts

- Class D
 - Multicast
 - 268,435,456 Addresses

- Class E
 - Reserved
 - 268,435,456 Addresses
The Problem

- **Class A way too big**
 - Originally, the TCP/IP architects thought there wouldn’t be many networks, and each network would have many hosts.
 - They were wrong

- **Class B too big**
 - Even 65536 host addresses is too many in most cases
 - Imagine 65534 hosts all responding to a broadcast

- **Class C too small**
 - Most sites initially connecting to the Internet were large Universities, 256 was too small for them
Subnetting

- Classfull addressing was a better fit than original
 - but class A and B networks impossible to manage
- Solution was to partition large networks internally into sub-networks (subnets)
 - Typically “class C” (8 bit host part) sized subnets although variable length subnets used too
Classless Addressing

- Forget what I just told you
 - Classfull addressing is officially “Bad”™
 • 3 sizes just don’t fit all -- very wasteful

- Better solution is to use variable length partitioning between the host and network parts
 - Actual partitioning for a site provided by routing protocol
 - notation is dotted quad followed by a “/” and the network part length, e.g., 202.12.28.129/26 → First host on 64 host network starting at 202.12.28.128

- No need for subnets
Example of Classless Addressing

- **Prefix 202.12.28.0/22**
 - 1024 host addresses
 - announced as a single network
- **Consists of 7 subnets**
 - 202.12.28.0/25
 - 202.12.28.128/26
 - 202.12.28.192/26
 - 202.12.29.0/24
 - 202.12.30.0/24
 - 202.12.31.0/25
 - 202.12.31.128/25
Overview

- An Introduction to Addressing
- An Introduction to the Address Registries
- Registry Policies and Procedures
- Summary
The Address Registries

- In order to assure global uniqueness for address, a “registry” of allocated addresses is used.
- Over time, the role of the registries has changed.
 - From a simple accounting role to one with significant policy making capabilities.
History

- Back when IP addresses first started being allocated, Jon Postel at USC ISI kept a record of which site had which (class A sized) network block
- This function was formalized into the “Internet Assigned Numbers Authority” in the early 80’s
The Internet Assigned Numbers Authority

- The IANA was (is) the parent of all regional registries and top level domain name administrators
 - In some context at least, the IANA can be said to “own” all administrative resources on the Internet
 - Hands out all globally unique numbers (IP addresses, protocol numbers, port numbers, object ids, etc.)

- The IANA is now a “function” of ICANN
 - Still at USC ISI

- Administration of the address registry has been sub-delegated to the “Registries”
Registry History

■ First NIC at Stanford Research Institute (SRI-NIC)
 – Located in California (near Stanford University)
 – Funded by DOD DARPA

■ SRI replaced by GSI in Washington DC area
 – Lowest bidder
 • Unpleasant transition
 – DOD DCA provided funding

■ NSF issued InterNIC 5 year Cooperative Agreement
 – Cooperative agreement issued in 1992
 – AT&T, General Atomics, and Network Solutions, Inc. each awarded part of InterNIC
InterNIC History

- InterNIC consisted of 3 parts
 - Registration Services operated by NSI
 - Database and Directory Services operated by AT&T
 - Information services operated by General Atomics

- Registration Services provided
 - Domain name registration
 - Address allocation and registration
Meanwhile, In Europe…

- Two organizations, EARN and RARE were investigating internetworking
 - Albeit with the OSI protocol suite
- Around 1989, folks wanting to get work done formed “RIPE”
 - A working group of RARE looking into internetworking with the TCP/IP protocol suite
- An informal group, funded by the EU (via RARE)
 - Established the RIPE Network Coordination Centre around 1990
RFC 1366

- In 1990, RIPE-NCC requested a large block of address space so it could manage allocations for Europe
 - Politically correct rationale: to distribute the address management load
 - The IANA allocated 193/8 and 194/8 to RIPE-NCC

- RFC 1366 was written to formalize the sub-delegation of address allocation authority to “regional registries”
 - Originally, the regional registries were to be agents of InterNIC
 - Not politically viable
 - The regional registries consider themselves peers
Before ICANN

- The regional registries operated under the authority of the IANA
- Allocation policies defined by the operations groups and the IAB/IETF
 - IEPG
 - NANOG/APOPS/EOF
 - IETF CIDRD and ALE Working Groups
- The regional registries self-organized themselves in a bottom-up fashion
 - Authority derived from their memberships
The US View

- When the Internet commercialized, the US Gov’t began to take notice
 - Prior to NSF permitting NSI to charge for domain names, US Gov’t involvement was characterized as “benign neglect”
- A top-down model was asserted
Enter ICANN

- As a result of the “White Paper” ICANN was given authority over all IP addresses
 - IANA becomes a function of ICANN
- The Address Supporting Organization (ASO) provides advice to ICANN on the management of address resources
- The ASO is comprised of an Address Council
 - Each regional registry provides 3 people to the AC
- Uncomfortable mixture of bottom-up and top-down models
Who Cares?

- The regional registries can still believe they gain their authority from their members
- ICANN is seen as a formalization of the IANA
 - provides legal and political authorization
- The registries continue to operate as they have in the past
 - The ASO may play a role in policy formalization
Registry Hierarchy

ICANN

APNIC
Asia and Pacific Rim

ARIN
Americas and S. Africa

RIPE-NCC
Europe, FSU and N. Africa

ISPs
Confederations
National NICs
Local Internet Registries

ISPs
ISPs
ISPs
ISPs
ISPs
ISPs
Regional Registries

- Registries allocate numbers
 - Internet addresses
 - (plus in-addr.arpa domains)
 - Autonomous System Numbers

- Currently three regional registries exist
 - APNIC, ARIN, RIPE-NCC
 - All are self-funded
 - ICANN may create others as needs arise
 - AfriNIC and LATNIC are fairly well along
Regional Registries (cont’d)

- Regional Registries are NOT regulatory bodies
 - They do not “license” ISPs
 • This is a national governmental issue
 - They are not the authority for who can or cannot connect to the Internet
 • Anyone can who is permitted by law in their country
 - They cannot control any organization
 • So complaining to them is pretty pointless
Regional Registry Funding

- Historically, Internet registries have been funded by the US government
 - Either NSF or DoD
- RFC 1366 specified the creation of regional registries
 - But didn’t indicate how they would be funded
- All 3 regional registries have a membership model that provides funding
 - APNIC and RIPE’s funding is almost exclusively membership fees
 - Most of ARIN’s money comes from allocation fees
APNIC

- Started as an APCCIRN/APEPG Pilot Project in Sept., 1993, received address space from IANA in April, 1994, Incorporated in April 1996
- Membership based organization with tiers (very large, large, medium, small) depending on total amount of APNIC allocated address space used
 - Used to be self-determined
- Has a staff of 15
- Located in Brisbane, Australia
- More info: see http://www.apnic.net
RIPE-NCC

- Created in 1990 as the IP networking special interest group of RARE, a EU funded group working to deploy OSI networks in Europe
 - Incorporated in 1998
- Membership based organization with a tiers (large, medium, small) depending on total amount of address space used (complex formula)
 - Used to be self-determined
- Has a staff of about 50
- Based in Amsterdam, The Netherlands
- More info: see http://www.ripe.net
ARIN

- Incorporated in 1998 with seed funding from NSI (InterNIC), took over address allocation functions performed by InterNIC (NSI Registration Services)
- Flat membership fee
 - Only small part of income
- Allocation fees dependent on amount of address space consumed within the last year
- Has a staff of around 25
- Based in Chantilly, US (near Washington, DC)
- More info: http://www.arin.net
Local Internet Registries

- Regional Registries delegate authority to “Local Internet Registries” to allocate resources
 - Usually Internet Service providers
 - Sometimes confederations of service providers
 - Sometimes national level Internet registries
 • APNIC and ARIN only

- Local Internet Registries sub-delegate to customers

- Each Local Internet Registry may have its own rules, but all must follow the rules of their parent registry
Creation of New Regional Registries

- An issue for the ASO
- Regional Registries are expected to be continental in scope
- Potential regional registries must demonstrate consensus in their region that they should be the regional registry for that region
 - A bit vague on how this is done
Overview

- An Introduction to Addressing
- An Introduction to the Address Registries
- Registry Policies and Procedures
- Summary
Address Delegation Policies

- RFC 2050 provides the guidelines for address delegations.
- Goals of the Registry policies are:
 - Conservation
 - IPv4 is a limited resource
 - Routability
 - Limit the addition of new prefixes to the routing system
 - Registration
 - Keep track of delegations
- The first two of these often conflict
Allocation Framework

- Addresses are allocated to LIRs for sub-delegation
 - Typically, this is address space delegated to ISPs so they can give their customers address space
 - Occasionally (at APNIC and ARIN), allocations are made to non-ISPs (confederations or national Internet registries)
- Allocations will be made by RIRs if the organization is at an Internet Exchange point or is multi-homed
Guidelines for Allocations

- **Don’t break up a block**
 - Assignments made from the allocation should be treated as “loans” of address space from an ISP to a customer
 - The customer should return the address space when they change providers

- **Address space is allocated on CIDR boundaries**
 - Sub-delegations should be aggregated

- **LIRs sub-delegate based only on justified requirements**

- **Sub-delegations must be registered at the RIR**
 - Known as “reassignments” or “SWIPs”
Slow-Start

- All RIRs use “slow-start” for allocations
 - Delegate a small block
 - Additional delegations occur when that block is consumed and reassigned
 - Typically doubling the amount of address space each time

- This policy is to improve address space utilization efficiency
 - Doesn’t conform to ISP market projections
 - Often a source of friction
Assignment Framework

- The delegation of address space to an end enterprise for its internal use
 - Address space is not sub-delegate as in the case of allocations
- Occurs from a RIR when
 - The organization is not connecting to an ISP and cannot use private address space
 - The organization is multi-homed
 - The request is very large
- All others should get address space from their ISP
Common Requirements

- Must document 25% immediate utilization, 50% utilization within 1 year
- Provide Network Engineering plans
 - Not business plans
 - Includes network deployment plans
 - Basically document how the address space will be used and when
- Reference previous delegation history (if any)
Specific Registry Quirks

- **APNIC**
 - May refer organizations to a national Internet registry
 - Confederations

- **ARIN**
 - Will not allocate address space unless the organization can demonstrate existing /21 utilization
 - May refer to a national Internet registry
Issues

- Divergent policies
 - What you get depends on where you are

- Registries-as-police
 - Registries have very few tools

- Scarcity vs. Routability
 - Which is most important

- IPv6
Summary

- IPv4 addresses are considered a limited resource that must be managed.
- The Internet Registry system has evolved over time to provide that management.
- Currently, 3 regional registries serve the world’s address allocation needs.
 - New regional registries are in the process of being formed.
- Significant issues continue to face the registry system.