Introduction to IP Routing

Geoff Huston

How do packets get from A to B in the Internet?

Connectionless Forwarding

 Each router (switch) makes a LOCAL decision to forward the packet towards B

Connectionless Forwarding

- This is termed *destination-based* connectionless forwarding
- How does each router know the *correct* local forwarding decision for any possible destination address?
 - Through knowledge of the *topology state* of the network
 - This knowledge is maintained by a *routing* protocol

Routing Protocols

- Distribute the knowledge of the current topology state of the network to all routers
- This knowledge is used by each router to generate a *forwarding table*, which contains the local switching decision for each known destination address

Routing Protocols

- correct operation of the routing state of a network is essential for the management of a *quality* network service
 - accuracy of the routing information
 - dynamic adjustment of the routing information
 - matching aggregate traffic flow to network capacity

ISP Routing Tasks

- customers
- internal
- peer / upstream

Interior Routing

 discovers the *topology* of a network through the operation of a *distributed routing protocol*

Path Selection

Minimum cost from A to B is 39 units

Dynamic Path Adjustment

If R5 – R7 breaks, minimum cost path from A to B is Now 46 units

- describe the current network topology
- Routing protocols distribute how to reach address prefix groups
- Routing protocols function through either
 - distributed computing model (distance vector)
 - parallel computing model (link state)

Routing Protocols

Distance Vector Routing Protocols

- Each node sends its routing table (dest, distance) to all neighbors every 30 seconds
- Lower distances are updated with the neighbor as next hop
- cannot scale
- cannot resolve routing loops quickly
- RIP is the main offender

Routing Protocols

Link State Routing Protocols

- Each link, the connected nodes and the metric is flooded to all routers
- Each link up/down status change is incrementally flooded
- Each router re-computes the routing table in parallel using the common link state database
- OSPF is the main protocol in use today

Suggestions

- Just engineering a physical link does not ensure that traffic will flow
 - some system somewhere must provide routing information about how to reach the newly connected network
- Installing backup circuits is easy, making the routing work may not be

Suggestions

 need a clear understanding of how the client networks want their traffic to flow before you can start making routing configuration changes

Interior and Exterior Routing Protocols

- You tell me all the address prefixes you can reach, but don't tell me the path you use to get there
 - I'll tell you the same
- If anything changes, please let me know
- If you tell me an address I'll send you traffic destined to that address.
 - If I tell you an address I will accept traffic destined to that address

- Border Gateway Protocol version 4 (BGP4)
- Each interior route collection is described by an Autonomous System (AS) number
- Internal topology is hidden
- Routes are announced with associated AS value
 - 139.130.0.0/16 + AS 1221

BGP example

BGP Example of TRANSIT

203.10.60.0/24 3561,1221

Internal transit paths use I-BGP

Q: How does router A tell router B about AS1221 addresses? A: Router A sets un an INTERIOR BGP session with router B

Normally chose minimal AS path length

203.10.60.0/24 701,3561,1221 → 203.10.60.0/24 5727,1221

Selected path is via peer session to AS 5727 as this Is 1 AS shorter that the other path

Exterior POLICY

- How can I share the traffic load between 2 or moreexterior providers?
- How can I create a backup link to support my main exterior link?

 You can bias minimal path selection by AS path filter lists or community attributes or local preferences

Exterior Routing Protocols plus Policy

Exterior Routing Protocols plus Policy

policy settings control

- what you advertise to your immediate peers
- What you accept from your immediate peers
- What transits you will accept (send traffic)

you cannot control

- transit path of received traffic
- symmetry of transit policy