Architecting the Network Part 2

Geoff Huston Chief Scientist, Internet

Telstra

ISOC Workshop

Abstract Design

Router Interface design model

Single Homed Clients

- Permanently connected clients using any one of:
 - leased line
 - radio link
 - permanent modem connection
- Client uses single service provider who offers the client a "default" network service
- Client's networks are advertised to the Internet exclusively via the provider

- Clear demarcation of boundary between client and network is required for consistency of service
- Single demarcation model is required for the network to ensure manageability and operability.
- The network service should never transit a client network

- The POP Access Model
 - Client is responsible for CPE router and tail loop
 - Network Provider provides router attachment points at a number of locations
 - Network Bound ted at POP interface

The Comprehensive Service Model

- Network provider installs and operates CPE router and tail loop
- Network provider attaches to client LAN
- Network Boundary located at LAN attachment point

The Confused Model

- Network Provider installs tail loop
- Network Provider installs router interface card in client router
- Client and network provider operate client router simultaneously

- POP or end-to-end service model depends on:
 - telco bulk purchase tariff discounting
 - router vendor bulk purchase discounting
 - staff availability
 - client expertise levels
 - defined service level
- Client Site service model is preferable from a commercial perspective

- You can do both POP and end-to-end
 - as long as all routing integrity is maintained within the POP locations for all clients
- The integrity of the system is maintained within a set of "core" routers

- The client has a network with some IP addresses
- You operate a network with some IP addresses
- How do you join these two networks together at the IP level?
- This is a ROUTING problem

- Use of RIP as Network / client boundary routing protocol?
 - simple
 - widely implemented
 - **NOT** applicable in all cases
 - In support for classless address exchange

- Use of RIPv2 as Network / client boundary routing protocol?
- simple
- S not yet widely implemented
- **NOT** applicable in all cases
- no support for classless address exchange

- Use of STATIC ROUTES as Network / client boundary routing protocol?
 - simple
 - widely implemented
 - can support classless address advertisements

 - Cannot support dynamic multi-homed connections

- Use of Classless Client boundary routing protocol?
 - EIGRP proprietary B-F Distance Vector
 - OSPF IETF Std Link State
 - RIPV2 IETF Std B-F Distance Vector
 - BGP4 IETF Std Inter Domain Routing Protocol
- Issue of clean separation between interior routing environment and client boundary routing environment may dictate use of BGP4

- A proposed client interface routing architecture
 - use static routes for all singly homed clients
 - use statics of specifics plus aggregates for multiple connections to the same provider
 - use BGP4 for multiply homed clients using multiple providers

- Dynamic Routing Guidelines
 - Use of inbound routing filters to preserve network integrity
 - prevent client advertising bogus routes
 - preserve integrity of client network

Dynamic Routing Guidelines

- Use of outbound static default route to simplify client routing
 - stability of presented service
 - simplicity of presented service
 - client sees only an external default path

The Client Connection

Routers provide:

- security capability
- management capability
 - routing management
 - traffic management
 - service management
- efficiency
- integration

The Client Connection

SLIP / PPP implementations in hosts

- cheap!
- Capital price differential between hosts and router is small
- Operating cost is higher using hosts as routers
- use as single end host access system

Routing to the Client

- Multiple client interfaces
 - split of client and provider network multiple default paths
 - asymmetric routes can be generated
 - client network internal breakage causes black hole routing
- requires careful management and clear understanding of the routing issues
- need to use CIDR routing to best advantage!

Routing to the Client

Multiple providers

- Only one provider can provide "default"
- other connected providers must resort to explicit provision of routes to enumerated networks
- All providers must ensure that the client is not used as a transit facility through explicit route management on the part of all providers

Distributed Client support

Virtual Private Network architecture issues

- VPNs via filtering unwise!
- VPNs via tunnelling
- VPNs via MPLS

Variations

- Address translation technologies at the interface
- Combined firewall / routing interfaces
- Encryption at the interface

Dial Access

Dial Access Management

- PSTN dial access
- ISDN dial access

Support issues are similar:

user authentication and user access profile accounting and billing records infrastructure support for intermittent access

Dial Access Components

Access Mechanisms

- Modem banks entry level for small ISPs high management cost
- ISDN Primary Rate access
 - higher cost
 - more reliable
 - high manageability
 - smaller size and power budget
 - combine PSTN and ISDN service requirements

Authenticating the User

PPP component of link setup

- pass authentication details to access server
- access server consults Radius servers
- Radius server providers answer: no / yes with profile loaded into access server
- Session accounting enabled
- Radius Accounting provides per session accounting at session termination

User Accounting

Collect session accounting record: user identification location of session service (server and port) start time duration session termination reason volume counters IP address assigned for session

Address Management

- Address Pools configured per ISDN PRI port
- Dynamic address assignment per session this has service implications, as the client cannot assume a permanent name / address association
- Client LAN connection is not readily supported

dynamic route filter loading is required

Client Services

- Required Services
 - Mail server
 - POP access and account management
 - Proxy Domain name services
 - NEWS browser access
 - WEB server access

Other Services

Other services

- WEB proxy systems
- News servers
- ftp servers

. . .

game servers

Dial Access Services

Service Intensive Environment

- The Helpdesk is the major cost component of a dial access service
- Highly Competitive Environment
 - Small startup capital costs for new players
 - Linking of equipment retail with access service
 - High service margins are now a myth

Dial Access Directions

- commodity low margin market
- virtual dial pops via L2 tunneling from CO telco port banks
- QoS on dial access

Other Access Models

Cable

- shared infrastructure
- speed matching
- third party ISP access
- voice / data integration
- Integration with CATV rollout

Other Access Models

xDSL

- non-uniform service model
- speed matching
- third party ISP access
- PSTN impact
- CATV impact
- IP infrastructure impact
- use existing copper infrastructure

Other Access Models

wireless

- spread spectrum, packet radio, GSM data
- high utility model
- Iimited spectrum availability
- Imited coverage with LOS earth facilities
- Iimited available bandwidth
- But no wires!