Dagstuhl Workshop
Presentation:
Learnings from Failure

Geoff Huston, APNIC



The 40 year Scorecard for the Internet

dStacked Protocol Architecture
(dStateless Packet Switching
(JACK-paced Transport
JEnd-to-End

dNetwork Management

JNames and Referential Frameworks

ASecurity



The 40 year Scorecard for the Internet

None of these areas are unqualified “successes” for the Internet
Protocol:
* Layer violations proliferate
 MPLS is a widely used circuit-based overlay for many IP service platforms
* Ack-paced transport is slow and clumsy

* The proliferation of network middleware shows a moderated view of “pure”
end-to-end

* The relationship between networks and hosts has never been made to work
(The saga of failed QoS efforts, for example)

 UDP is a glaring vulnerability in the DOS world



Learning from our Failures

IPv6
 What happened?

* Why didn’t the industry take a low risk path and avoid IPv4 address depletion
completely by adopting IPv6 earlier?

Is IPv6 too complex for a simple-minded industry?
* Fragmentation and Extension headers
* SLAAC / DHCP / etc
e Chaotic address plan

Is the lack of backwards compatibility a fatal flaw in any transition?

* Do we understand the economics of transition in a heterogenous market-
driven environment?



Learning from our Failures

DNSSEC

* Why doesn’t anyone validate what they learn from the DNS?
Why don’t zone admins DNSSEC-sign everything?
The DNSSEC design parameters looked good:

* Backward compatible, incremental extension, no protocol change to the DNS
But its just not happening

* Resistance to sighing
» Resistance to validating at the edge

Is this a case of technical failure or economic failure? (or both!)



Learning from our Failures

Security and Robustness

* Obviously what we are doing is nowhere near enough - we are engagingin a
spiral process of escalation of the sophistication of the attacks and a response
of greater complexity

 Some commentary has suggested we would have been in a better place if we
had ”integrated” security into the basic protocol design at the outset

* Other commentary suggests that we really never knew how to do that and a
bolt-on approach allows for greater agility in our response

* Have we largely given up on network level security and just relying on
applications to fend for themselves?

* |s this enough?



A Case Study — Routing Security

* The Internet took the novel approach of self-orchestration in building
the routing system

* Routing is a distributed algorithm operating across a collection of
diverse mutually trusting entities

* Routing is easily abused:
* Deliberately by manipulation of the routing exchange
* Deliberately by a rouge entity abusing the trust model
* Inadvertently through operational mishap

* We assume(d) that if we addressed a packet to the “right” IP address,
then we could trust any response we received as “authentic”

e Corrupting the routing system undermined this assumption



Routing Security is a Hard Problem

The problem space includes:
* The integrity of the routing information

* The proper operation of the routing protocol to propagate this
information

* A definition of points of “absolute trust”

It’s taken more than 30 years and we’ve achieved little



RPKI and BGPSEC Efforts

The RPKI is a poor fit to the routing application space

* Routing needs to bring “all” of the PKI to every relying party — this is a scaling
flooding problem

* Routing is not transactional — the information in a routing update is trusted
until it is withdrawn or updated

* Omissions (deliberate or otherwise) in routing propagation are unverifiable
* Routing security works best when everybody signs and everybody validates

BGPSEC is over-burdened
* AS path validation is implemented by signing chains which impose a high
crypto burden on routers - BGP session resets become a problem
* Loading keys into routers and maintaining this framework is operationally
brittle



Does anyone care any more?

 After 30 years with no workable secure routing framework
applications have resighed themselves not to trust the underlying
network

* TLS is the general “solution” to this problem

* |Irrespective of where the packet may have been delivered, if the remote end
cannot demonstrate that it is a genuine instance of the named service then its

an untrusted transaction

* This shifts authenticity function up from the IP address layer to the
session/application layer

* This devalues the incremental benefit from a secure routing system, and
reduces the motivation to deploy this technology



Why deploy BGPSEC?

* High cost, fragile framework

* The consequences of operational lapses tend towards enforced
disconnection — often a far more damaging outcome than the
problem that these measures they they are attempting to detect

* The network operators incur a high cost in deployment. Where is the
incremental benefit? Who accrues value from this benefit?

* Partial deployments are very challenging for AS Path protection, and
validating origination without propagation protection does not
mitigate the security risks of malfeasance

* s TLS doing an adequate job for the purposes we need to use it for?



Learning from Successes

TCP

* Are we talking about TCP per se or about the use of a sliding window protocol
to implement reliable packet flows in a datagram substrate?

* TCP’s model of ACK-based sender clocking with AIMD-based sender
governance is not ideal in any individual scenario, but is adequately good in
most scenarios we’ve come across

* TCP’s use of sender-based controls allows servers to innovate without forcing
change on clients



Learning from Successes

* BGP - The Border Gateway Protocol

* This is a venerable protocol and continues to operate efficiently in spite of
considerable scaling demands
 What can we learn from BGP:
* Don’t try to solve everything all at once — work with a limited set of objectives
* Avoid flag days and forced change - use negotiation to add capabilities



Lessons for Protocol Utility

* Design for the general case, not a specific scenario

e But focus on a single function

e Keep it simple

* Every needless exposure of data can and will be used against the user!
* Avoid inter-dependencies on third parties wherever possible

* Backward compatibility and tolerance for piecemeal deployment are
essential

* Adopters need to be able to realise benefits of adoption from the outset —
if benefits are realizable only when everyone deploys then adoption will
stall



Transitional Considerations

* Backward Compatibility?

* Piecemeal uncoordinated adoption?
* Early adopter advantages?

e Late adopter penalties?

 Risk reduction?

e Alignment of cost and benefit?

* Reduce dependencies?



Lessons?

IPv6, DNSSEC, BGPSEC are all technology adoption failures in economic
terms

* Economic considerations are ultimately more important than just “good”
technology

* In a deregulated space, technology adoption is a function of markets, not
an outcome of regulatory fiat or imposed orchestration

* Technology adoption is not based on relative merit — adoption is based on
cost efficiencies, alignment of cost and benefit, and market dynamics

* The larger the system the greater the resistance to change - incumbent
technologies have a strong advantage

* Displacement occurs only when the relative cost advantages are massive
(10x, 100k, ...)



