
Dagstuhl Workshop
Presentation:

Learnings from Failure
Geoff Huston, APNIC

The 40 year Scorecard for the Internet

qStacked Protocol Architecture
qStateless Packet Switching
qACK-paced Transport
qEnd-to-End
qNetwork Management
qNames and Referential Frameworks
qSecurity

The 40 year Scorecard for the Internet

None of these areas are unqualified “successes” for the Internet
Protocol:
• Layer violations proliferate
• MPLS is a widely used circuit-based overlay for many IP service platforms
• Ack-paced transport is slow and clumsy
• The proliferation of network middleware shows a moderated view of “pure”

end-to-end
• The relationship between networks and hosts has never been made to work

(The saga of failed QoS efforts, for example)
• UDP is a glaring vulnerability in the DOS world

Learning from our Failures

IPv6
• What happened?
• Why didn’t the industry take a low risk path and avoid IPv4 address depletion

completely by adopting IPv6 earlier?
• Is IPv6 too complex for a simple-minded industry?

• Fragmentation and Extension headers
• SLAAC / DHCP / etc
• Chaotic address plan

• Is the lack of backwards compatibility a fatal flaw in any transition?
• Do we understand the economics of transition in a heterogenous market-

driven environment?

Learning from our Failures

DNSSEC
• Why doesn’t anyone validate what they learn from the DNS?
• Why don’t zone admins DNSSEC-sign everything?
• The DNSSEC design parameters looked good:

• Backward compatible, incremental extension, no protocol change to the DNS
• But its just not happening

• Resistance to signing
• Resistance to validating at the edge

• Is this a case of technical failure or economic failure? (or both!)

Learning from our Failures

Security and Robustness
• Obviously what we are doing is nowhere near enough - we are engaging in a

spiral process of escalation of the sophistication of the attacks and a response
of greater complexity
• Some commentary has suggested we would have been in a better place if we

had ”integrated” security into the basic protocol design at the outset
• Other commentary suggests that we really never knew how to do that and a

bolt-on approach allows for greater agility in our response
• Have we largely given up on network level security and just relying on

applications to fend for themselves?
• Is this enough?

A Case Study – Routing Security

• The Internet took the novel approach of self-orchestration in building
the routing system
• Routing is a distributed algorithm operating across a collection of

diverse mutually trusting entities
• Routing is easily abused:
• Deliberately by manipulation of the routing exchange
• Deliberately by a rouge entity abusing the trust model
• Inadvertently through operational mishap

• We assume(d) that if we addressed a packet to the “right” IP address,
then we could trust any response we received as “authentic”
• Corrupting the routing system undermined this assumption

Routing Security is a Hard Problem

The problem space includes:
• The integrity of the routing information
• The proper operation of the routing protocol to propagate this

information
• A definition of points of “absolute trust”

It’s taken more than 30 years and we’ve achieved little

RPKI and BGPSEC Efforts

The RPKI is a poor fit to the routing application space
• Routing needs to bring “all” of the PKI to every relying party – this is a scaling

flooding problem
• Routing is not transactional – the information in a routing update is trusted

until it is withdrawn or updated
• Omissions (deliberate or otherwise) in routing propagation are unverifiable
• Routing security works best when everybody signs and everybody validates

BGPSEC is over-burdened
• AS path validation is implemented by signing chains which impose a high

crypto burden on routers - BGP session resets become a problem
• Loading keys into routers and maintaining this framework is operationally

brittle

Does anyone care any more?

• After 30 years with no workable secure routing framework
applications have resigned themselves not to trust the underlying
network
• TLS is the general “solution” to this problem
• Irrespective of where the packet may have been delivered, if the remote end

cannot demonstrate that it is a genuine instance of the named service then its
an untrusted transaction
• This shifts authenticity function up from the IP address layer to the

session/application layer
• This devalues the incremental benefit from a secure routing system, and

reduces the motivation to deploy this technology

Why deploy BGPSEC?

• High cost, fragile framework
• The consequences of operational lapses tend towards enforced

disconnection – often a far more damaging outcome than the
problem that these measures they they are attempting to detect
• The network operators incur a high cost in deployment. Where is the

incremental benefit? Who accrues value from this benefit?
• Partial deployments are very challenging for AS Path protection, and

validating origination without propagation protection does not
mitigate the security risks of malfeasance
• Is TLS doing an adequate job for the purposes we need to use it for?

Learning from Successes

TCP
• Are we talking about TCP per se or about the use of a sliding window protocol

to implement reliable packet flows in a datagram substrate?
• TCP’s model of ACK-based sender clocking with AIMD-based sender

governance is not ideal in any individual scenario, but is adequately good in
most scenarios we’ve come across
• TCP’s use of sender-based controls allows servers to innovate without forcing

change on clients

Learning from Successes

• BGP - The Border Gateway Protocol
• This is a venerable protocol and continues to operate efficiently in spite of

considerable scaling demands
• What can we learn from BGP:

• Don’t try to solve everything all at once – work with a limited set of objectives
• Avoid flag days and forced change - use negotiation to add capabilities

Lessons for Protocol Utility

• Design for the general case, not a specific scenario
• But focus on a single function
• Keep it simple
• Every needless exposure of data can and will be used against the user!
• Avoid inter-dependencies on third parties wherever possible
• Backward compatibility and tolerance for piecemeal deployment are

essential
• Adopters need to be able to realise benefits of adoption from the outset –

if benefits are realizable only when everyone deploys then adoption will
stall

Transitional Considerations

• Backward Compatibility?
• Piecemeal uncoordinated adoption?
• Early adopter advantages?
• Late adopter penalties?
• Risk reduction?
• Alignment of cost and benefit?
• Reduce dependencies?

Lessons?

IPv6, DNSSEC, BGPSEC are all technology adoption failures in economic
terms
• Economic considerations are ultimately more important than just “good”

technology
• In a deregulated space, technology adoption is a function of markets, not

an outcome of regulatory fiat or imposed orchestration
• Technology adoption is not based on relative merit – adoption is based on

cost efficiencies, alignment of cost and benefit, and market dynamics
• The larger the system the greater the resistance to change - incumbent

technologies have a strong advantage
• Displacement occurs only when the relative cost advantages are massive

(10x, 100x, …)

