
A Quick look at QUIC

Geoff Huston

QUIC is…

HTTP
Multi-stream

TLS
Session Encryption

TCP
Data stream integrity
Congestion Control

HTTP

QUIC
Multi-stream

Encryption
Data stream integrity
Congestion Control

UDP

IP

HTTP/2
QUIC

HTTP/3

e2e encrypted

e2e encrypted

TCP is..

A transport protocol that constructs a reliable full duplex adaptive
streaming service constructed on top of an unreliable IP datagram
service
• Uses a coordinated state between the two end systems without any network

intervention or mediation
• Uses a sliding window to allow lost data to be resent
• Uses ACK-clocking to regulate the sending behaviour to match network path

capacity estimate
• Has been tweaked to support (*to some degree) multi-stream and RPC

transport models

TCP isn’t…

• Fully independent of the underlying platform’s transport services
• Fully multi-stream (it has head of line blocking)
• Free from on-the-wire network intervention (TCP control parameters

are sent in the clear)
• Has e2e encryption as a second step / afterthought
• Everything for everyone – it relies on the application to perform data

framing and in-band control

QUIC is…

Constructed upon a transport level framing protocol that offers applications
access to the basic IP datagram services offered by IP through the use of UDP

All other transport services (data integrity, session control, congestion control, encryption)
are shifted towards the application. A platform may provide a QUIC API, but the application
can also provide its own service

So much more than “encrypted TCP over UDP”:
Support for multi-stream multiplexing that avoids head-of-line blocking and exploits a shared
congestion and encryption state
Faster - Combines transport and encryption setup exchange in a single 3-way exchange
Customisable - QUIC implementations can use individual flow controllers per flow
QUIC places it’s transport control fields inside the encryption envelope, so QUIC has minimal
exposure to the network
Supports record and RPC service models as well as streaming and datagram

QUIC is address agile

• NATs are hostile to QUIC because of the outer UDP wrapper
• A NAT may rebind (shift the externally visible address/port of a host

during a session), as NATs are not generally aware of UDP streaming
states
• QUIC uses a persistent “connection ID”
• If a host receives a QUIC frame with the same connection ID and a new IP

address / port it will send a challenge by way of a random value that should
be echoed back. This is all performed within the e2e encryption envelope.
That way QUIC can map into new address/port associations on the fly

QUIC also…

• Is IP fragmentation intolerant – QUIC uses PMTUD, or defaults to
1,200 octet UDP payloads
• Never retransmits a QUIC packet – retransmitted data is sent in the

next QUIC packet number – this avoids ambiguity about packet
retransmission
• Extends TCP SACK to 256 packet number ranges (up from 3)
• Separately encrypts each QUIC packet
• May load multiple QUIC packets in a single UDP frame

QUIC flow structuring

A QUIC connection is broken into “streams” which are
reliable data flows – each stream performs stream-
based loss recovery, congestion control, and relative
stream scheduling for bandwidth allocation

QUIC also supports unreliable encrypted datagram
delivery

QUIC and RPC

• By associating each RPC request/reply with a new stream QUIC can
support asynchronous RPC transactions using reliable messaging
• This can handle lost, mis-ordered and duplicated RPC messages without

common blocking or throttling

QUIC and Load Balancing

• This assumes that a front-end load balancer is capable of performing load
balancing on UDP flows using the UDP connection 5-tuple
• If the remote end performs NAT rebinding the load balancer will be thrown

by this shift, and it has no direct visibility into the e2e session to uncover
the connection ID
• Using UDP to carry sustained high-volume streams may not match the

internal optimisations used in server content delivery networks

• If we really want large scale QUIC with front end load balancing and we still
need to tolerate NATs then we will need to think about how the end point
can share the connection ID state with its front end load balancer, or
terminate the QUIC session in the front end and use a second session to
the selected server

QUIC and DOS

• Very little lies outside the encryption envelope in QUIC
• Which means all incoming packets addressed to the QUIC port need

to be decrypted
• But the session uses symmetric crypto so the packet decode

overhead is far smaller than the asymmetric load

• Its not the best answer, but its not disastrous either!

Looking for QUIC

• At APNIC we use Ads to perform large scale measurements of
network service capabilities as seen by users
• IPv6 deployment
• DNSSEC validation
• Fragmentation

• Can we use this measurement platform to see the level of use of
QUIC in today’s network?

Setting up QUIC

• Server:
• nginx v1.21.7 with QUIC functions included

• DNS:
• Set up an HTTPS record for each URL with value: alpn=“h3”

• Content:
• Alt-Svc: h3=“:443”

(This second method requires a subsequent query to allow the client to use the Alt-Svc
capability. We perform a delayed second query for this URL in the measurement experiment)

Two QUIC triggers, two
behaviours
• The Safari browser (V16) is triggered by the presence of the DNS

HTTPS record with an “alpn” value of “h3”
• Once established, the browser client expects the server to keep the QUIC

session open. If the session is closed “prematurely” Safari will drop have to
HtTP/2 over TCP/TLS
• What’s “premature” in seconds?

• I dunno!
• More than 1 second. Less than 65 seconds.
• We use a server session keepalive interval of 20 seconds and that seems to work

Two QUIC triggers, two
behaviours
• The Chrome browser is triggered by the content directive within the

delivered page
• But this creates an issue with HTTP/2 and persistent connection support
• When the browser performs the followup fetch after the initial fetch, the

connection is likely still open. The browser will prefer to use the open
connection rather then opening up a new QUIC connection, despite the
inclusion of a content directive. So this in-content signalling is not all that
effective as a QUIC trigger.
• How long should we wait before performing the second query? Or how long

should we set the server’s keepalive persistance timer?
• I dunno!
• More than 1 second. Less than 65 seconds.
• We use a keepalive interval of 20 seconds and that seems to work

Measuring QUIC use

First fetch

2nd and subsequent
fetches

Measuring QUIC Use

Why?

• If both Safari and Chrome support QUIC these days then why is the
measurement number not closing in on 100%?
• I suspect its about many enterprise environments blocking UDP port 443
• And some ISPs
• And of course the Great Firewall of China

Is QUIC Faster?

Let’s compare the user-measured time to load an object using HTTP/2
and the same user’s measured time to load the same object using
HTTP/3
• There are a number of variables in the user time measurement, including

varying time penalties relating to the internal task scheduling within the
browser, but these individual factors should be cancelled out over a large
enough sample set

Is QUIC faster?

Area where QUIC is faster

Non-QUIC Faster QUIC Fasterms

Is QUIC faster?

HTTP/3 is faster to
perform object
retrieval in 2/3 of
the observed cases

Non-QUIC Faster QUIC Fasterms

Thanks!

Ongoing HTTP/3 Measurement Report at APNIC Labs:
https://stats.labs.apnic.net/quic

