
Learning From Our Miztakes

We’re currently experiencing
degraded performance issues
with xxxx. Our team is
currently working to restore
normal performance levels.
We apologize for any
inconvenience. Users may be
affected.

Helpful or Evasive?

Why are these reports so evasive?

• Do the service providers see outage reports as an admission of some
form of liability?
• Do they think that an open and direct appraisal of faults in their

service will cause them reputational harm in the eyes of their
customers?
• Or do they think that describing the causes of an outage somehow

compounds their potential liabilities?
• What are they covering up here?

Helpful or Evasive?
Early today Facebook was down or unreachable for many of you for approximately 2.5 hours. This is the worst outage we’ve had in over four
years, and we wanted to first of all apologize for it. We also wanted to provide much more technical detail on what happened and share one
big lesson learned.

The key flaw that caused this outage to be so severe was an unfortunate handling of an error condition. An automated system for verifying
configuration values ended up causing much more damage than it fixed.

The intent of the automated system is to check for configuration values that are invalid in the cache and replace them with updated values
from the persistent store. This works well for a transient problem with the cache, but it doesn’t work when the persistent store is invalid.

Today we made a change to the persistent copy of a configuration value that was interpreted as invalid. This meant that every single client saw
the invalid value and attempted to fix it. Because the fix involves making a query to a cluster of databases, that cluster was quickly
overwhelmed by hundreds of thousands of queries a second.

To make matters worse, every time a client got an error attempting to query one of the databases it interpreted it as an invalid value, and
deleted the corresponding cache key. This meant that even after the original problem had been fixed, the stream of queries continued. As long
as the databases failed to service some of the requests, they were causing even more requests to themselves. We had entered a feedback loop
that didn’t allow the databases to recover.

The way to stop the feedback cycle was quite painful - we had to stop all traffic to this database cluster, which meant turning off the site. Once
the databases had recovered and the root cause had been fixed, we slowly allowed more people back onto the site.

This got the site back up and running today, and for now we’ve turned off the system that attempts to correct configuration values. We’re
exploring new designs for this configuration system following design patterns of other systems at Facebook that deal more gracefully with
feedback loops and transient spikes.

Helpful or Evasive?
Root Cause Analysis – What Happened

Contributary Factors – What exacerbated the incident?

Short Term – what we did to fix it

In Progress – what we doing right now

Long Term – how we intended to avoid repeating this outage

Why is this important?

• The internet is now the foundation for all of our communications -
from the trivial and frivolous through to vital and life saving systems
• This is now a public safety issue, and we need to move away from the

handling of operational incidents as PR exercises and take steps that
other industries have already embraced

What are we doing about it?

• Time to call up Sean and Jared and have a chat

