
DNS Privacy
(an update)

Geoff Huston
APNIC Labs

https://xkcd.com/1361/

Why pick on the DNS?

The DNS is used by everyone and everything
– Because pretty much everything you do on the net

starts with a call to the DNS
– If we could see your stream of DNS queries in real

time we could easily assemble a detailed profile of
you and your interests and activities as it happens!

Why pick on the DNS?

The DNS is very easy to tap and tamper
– DNS queries are open and unencrypted
– DNS payloads are not secured and tampering cannot be

detected
– DNS responses are predictable and false answers can be

readily inserted

Why pick on the DNS?

The DNS is hard for users to trace
– Noone knows exactly where their queries go
– Noone can know precisely where their answers come from

DNS Surveillance

• Can we stop DNS surveillance completely?
– Probably not!

• Can we make it harder to collect individual profiles of activity?
– Well, yes
– And that’s what I want to talk about today

What’s the problem here?

• Is the DNS label being queried a secret?
– Well, not normally *

✵ Although there are DNS versions of steganography that can conceal data in the query string

What’s the problem here?

• Is the DNS label being queried a secret?
– Well, not normally

• Is the DNS response to a query a secret?
– Again, not normally *

✵ Although there are DNS versions of steganography that can conceal data in the response value

What’s the problem here?
• Is the DNS label being queried a secret?
– Well, not normally

• Is the DNS response to a query a secret?
– Again, not normally

• So what is the issue here?
– It’s the combination of query and the meta-data around a query that

creates a problem:
• The end user identity, from the IP packet header
• The DNS label (or sequence of labels) being queried, from the payload
• The date and time

How we might think the DNS works

Client DNS Resolver DNS Server

What we suspect the DNS is like

Client DNS Server

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r
DNS

Resolve
r
DNS

Resolve
r
DNS

Resolve
r
DNS

Resolve
r
DNS

Resolve
r

DNS
Resolve

r

DNS
Resolve

r
DNS

Resolve
r
DNS

Resolve
r
DNS

Resolve
r
DNS

Resolve
r
DNS

Resolve
r

What we suspect the DNS is like

Client DNS Resolver DNS Server

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r

DNS
Resolve

r
DNS

Resolve
r
DNS

Resolve
r
DNS

Resolve
r
DNS

Resolve
r
DNS

Resolve
r

Corrupted host platforms

Wireline and middleware
Inspection and interception

Resolvers that leak queries

Servers that leak
queries

Second-hand DNS queries are a
business opportunity these days

How can we improve DNS Privacy?

Let’s look at a few behaviours of the DNS and see what we are
doing to try and improve its privacy properties

1. The DNS is overly chatty
The DNS uses the full query name to discover the identity of the name
servers for the query name

Hi root server, I want to resolve the A record for www.example.com
Not me – try asking the servers for .com

Hi .com server, I want to resolve the A record for www.example.com
Not me – try asking the servers for example.com

Hi example.com server, I want to resolve the A record for
www.example.com

Sure – its 93.184.216.34

http://www.example.com/
http://www.example.com/
http://www.example.com/

The DNS is chatty
The DNS uses the full query name to discover the identity of the
name servers for the query name

Why are we telling root servers all our DNS secrets?

In our example case, both a root server and a .com server now
know that I am attempting to resolve the name
www.example.com

Maybe I don’t want them to know this

http://www.example.com/

QNAME Minimisation

• A resolver technique intended to improve DNS privacy where a
DNS resolver no longer sends the entire original query name to
the upstream name server

• Described in RFC 7816

Yes, but…

It’s a technique to minimise the information leak between a
recursive resolver and authoritative servers, as stub resolvers pass
the full query label to the recursive resolver

A number of commonly used recursive resolvers only perform
qname minimisation on the first three labels

(Why do they limit Qname minimisation to just the upper level domains)?

2. Interception and Rewriting
• The DNS is an easy target for the imposition of control over

access
– Try asking for www.thepiratebay.org in Australia
– Try asking for www.facebook.com in China
Etc, etc

• These days interception systems typically offer an incorrect
response

• How can you tell if the answer that the DNS gives you is the
genuine answer or not?
– This sounds like a question for DNSSEC!

http://www.thepiratebay.org/
http://www.facebook.com/

DNSSEC and Recursive Resolvers

• A DNS response that has been modified will fail to validate under DNSSEC
when:
• a client asks a security-aware resolver to resolve a name, and
• sets the EDNS(0) DNSSEC OK bit, and
• the zone is DNSSEC-signed

• A DNSSEC-validating recursive resolver will only return a RRset for the query
if it can validate the response using the associated digital signature, and It
will set the AD bit in the resolver response to indicate validation success
Otherwise it will return SERVFAIL

• But SERVFAIL is not the same as “I smell tampering”
– Its ”nope, I failed. Try another resolver”

Yes, but…
• The zone (and all its parent zones) must be DNSSEC-signed
• If the recursive resolver performs DNSSEC validation (using the

recursive resolver to validate is the most prevalent deployment model)
then the all-important stub-to-recursive link is still vulnerable to
interception and re-writing

• And if your recursive resolver is performing the re-writing of the
response then the stub is none the wiser if the stub does not perform
DNSSEC validation

• Stub resolvers don’t generally perform DNSSEC validation
– It’s too slow!

3. Middleware and WireTapping

• If we want to make DNS surveillance harder we should look at
encrypting the transport used by DNS queries and responses
between stub and recursive resolvers

• Today’s standard tool is TLS, which uses dynamically generated
session keys to encrypt all traffic between two parties

DoT - DNS over TLS
• TLS is a TCP ‘overlay’ that adds server authentication and session

encryption to TCP
• DoT uses a persistent stub-to-recursive relationship to amortize the setup

costs of TCP and TLS over many subsequent queries
– Which works efficiently in a stub-to-recursive scenario, but not even a

little bit for recursive-to-authoritatives!
• If the initial server name certificate is validated by the client then
– The client can be assured (to some extent) of who it is talking to by

name
– No third parties can intrude or observe the DoT session or its contents

Yes, but…
• The TCP session state is on port 853
– DNS over TLS can be readily blocked by CPE and middleware

• Will generate a higher recursive resolver memory load as each client
may have a held state with one or more recursive resolvers

• The privacy is relative, as the recursive resolver still knows all about
you and your DNS queries

• And until ECH* in TLS 1.3 is widely supported, the identity of the TLS
server is still in the clear, which also facilitates blocking even if the DoT
session jumps over to use TCP port 443

* Encrypting the Server Name in the Client Hello message of TLS setup

DoH - DNS over HTTPS
• DNS over HTTPS
• Uses an HTTPS session for the stub-to-recursive link
• Similar to DNS over TLS, but with HTTP object semantics

interposed between the DNS and TLS
• Uses TCP port 443, so can be masked within other HTTPS traffic
• Uses DNS wire format

Why use DoH over DoT?
• Bypass middleware blocking of TCP port 853 (DoT)

• DoH allows the stub resolver function to be merged into the
application at the client end and DNS resolver to be multiplexed at the
server side (browsers and web servers)
– HTTP object semantics allow for HTTP object caching in the client
– This enables server-side HTTP push of DNS responses
– Resolver-less DNS!
– Can speed up transactions through pre-provisioning of DNS

responses

Yes, but…

• Aside from changing the TCP port to 443 there is little difference
between DoH and DoT from a conventional DNS perspective

• Most of the issues with DoH are about the use of resolver-less
DNS and content-based DoH-server switching using the HTTP
framing shim, which are still largely speculative matters these
days

• Application-level DoH can be readily hidden from the platform
and from the local network – this can be seen as a good or bad
thing!

DNS over QUIC

• QUIC is a transport protocol originally
developed by Google and passed over to the
IETF for standardised profile development

• QUIC uses a thin UDP shim and an encrypted
payload
– The payload is divided into a TCP-like

transport header and a payload
• QUIC allows for multiple DNS queries without

TCP HOL blocking

DNS
TLS
TCP
IP

DNS

QUIC
UDP
IP

DOT DOQ

Yes, but…

• QUIC on UDP port 443 has issues with port blocking in
middleware

• There is little difference between DoQ, DoH and DoT from a
conventional DNS perspective
– The remote end recursive resolver still is privy to all your DNS

queries and your identity

DoH again!

• DNS over HTTPS/3
– From the perspective of the DNS its still DNS binary objects

encased in an HTTP wrapper, using POST for the query and a
HTTP Data Frame for the response

– From the perspective of the network, HTTP/3 can negotiate
the use of QUIC as its transport network

• DoH is morphing into DNS-over-HTTPS-over-QUIC-over-UDP at
about the same speed as HTTP/2 is morphing into HTTP/3 that
incorporates TLS 1.3 into QUIC

4. DNS Profiling

• Your identity and the sequences of your DNS queries represent a
rich vein of profiling information

• Can we deconstruct the DNS in such a way that no single party
has both pieces of information?

Oblivious DNS

• Uses the QUERY name to disassociate stub identity from query
– Stub resolver encrypts the DNS query label into a new query label
• Encryption uses the public key of a known oDNS server, and appends

the name of the oDNS server

– Stub resolver queries a ‘normal’ recursive resolver with this encrypted
query name

– Recursive resolver queries an oDNS server with this encrypted query name

– oDNS server strips out its own name and decrypts the query name, and
resolves this name and encrypts the DNS RR to send back to the stub via
the recursive resolver

Oblivious DNS

Yes, but…

• The DNS is still DNS over UDP port 53
– But nothing prevents a oDNS stub using Do[THQ] to a

recursive resolver. The recursive resolver has no knowledge of
oDNS and process the DNS query like any other

• The encryption is limited due to limited size and alphabet of the
query name field

Oblivious DoH

• Use double TLS wrapper on a DoH transport to dissociate query
name from stub identity

Oblivious DoH

• An outer TLS wrapper is used for the stub-to-oDoH Proxy hop
and a different TLS wrapper is used for the oDoH Proxy-to-oDoH
Target hop

• The inner TLS wrapper is used to encrypt the DNS query,
encrypted using the public key of the target

• The response is encrypted using a session key generated by the
client

Yes, but…

• This requires a modified DNS stub resolver that can send and
receive oDoH messages, an ODoH Proxy and an ODoH Target

• Oh, and the ODoH proxy and the ODoH Target should not
collude!
– But we can’t ensure that no collusion happens!

Obscured DNS

• Borrowed from the approach used by IDNS
• Apply a hash the zone file by passing the zone labels through a

hash to get a base32hex encoded version of the labels, keyed
with a passphrase

• The encrypted zone is published through conventional DNS
• Qnames need to be encrypted before passing them to the DNS
• Only holders of the common passphrase can decrypt the

responses – no DNS intermediary can determine the original
query label

Yes, but…

• “shared secrets” are often an oxymoron!

Hiding in the Crowd
• What if you use an encrypted session to a very busy open resolver?
– No third party can see you queries to the open resolver
– Noone else can see the responses from the open resolver
– The open resolver asks the authoritative servers which makes it

challenging to map the query back to the end user

– So if you you are prepared to trust Google, Open DNS, Cloudflare,
Quad9, etc with your DNS, and you use DoH or DoT on the stub-to-
recursive hop then its far harder for any third party to associate
your identity with your queries
• But that is a very large amount of trust you are investing here in

folk whom you are not paying to provide this service!

Hiding in the Crowds

• What if you round-robin your queries to a number of open
resolvers?
– No single open resolver provider can see your complete DNS

query set
– Which makes profiling at the open resolver more challenging

• Even though many open DNS providers assert that they do not retain queries nor profile users in any case

Where is this heading?

• Will any of these privacy approaches becomes mainstream in the
public Internet?

The DNS Economy
• In the Public Internet end clients don’t normally pay directly for

DNS recursive resolution services
– Which implies that outside of the local ISP, DNS resolvers are

essentially unfunded by their clients
– And efforts to monetise the DNS (such as NXDOMAIN

substitution) are generally viewed with disfavour
– Open Resolver efforts run the risk of success-disaster
• They more they are used the greater the funding problem

• The default option is that the ISP funds and operate the recursive
DNS service, funded by the ISP’s client base

My Opinion

• ISP-based provisioning of DNS servers without channel
encryption will continue to be the mainstream of the public DNS
infrastructure
– Most users don’t change from the defaults and CPE based

service provisioning in the wired networks and direct
provisioning in mobile networks will persist for the moment

• Some applications will shift to DoH support, but on the whole
will continue to use the default ISP-based resolvers (assuming
that they include DoH support)

If HTTPS worked, why not DoH?
• Any change to the DNS that requires user configuration, or a

change of CPE behaviour will not be easy to gather deployment
momentum

• There is no untapped financial return in DNS resolution, so this is
not an activity that has strong commercial impetus

• Many public environments use DNS oversight and alteration as a
means of content moderation. There is little appetite to make
that harder

• Browser vendors have far more limited leverage in the DNS, as
compared to content delivery over HTTP

“Split” DNS

• Is appears likely that browsers will hive off to use DoH to the ISP
default recursive resolver, while the platform itself will continue
to use libraries that will default to DNS over UDP

• Which will produce some awesome corner cases when failure
modes are encountered!

Choose your resolver carefully!

• The careful choice of an open recursive resolver and an
encrypted DNS session will go a long way along the path of DNS
privacy

• But the compromise is that you are sharing your activity profile
with the recursive resolver operator

• Or you could just take the default option, do nothing and pass
your queries, along with your traffic, to your ISP!

Thanks!

49

