
Measuring Query Name Minimization

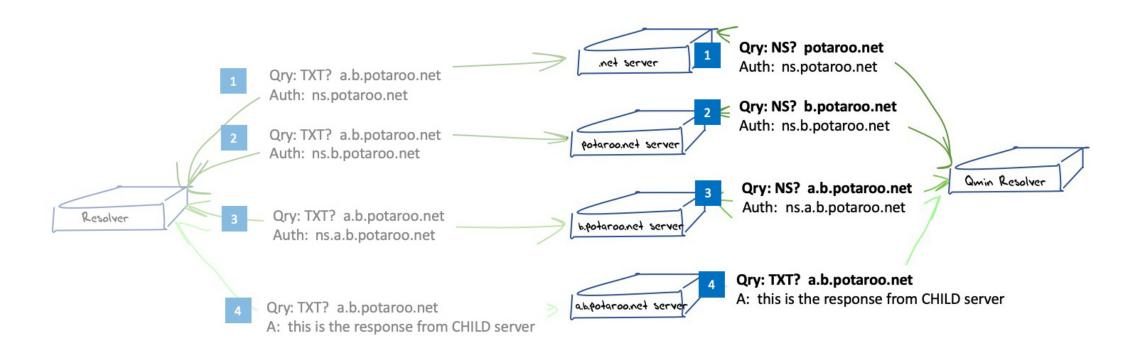
Geoff Huston Jogo Damas

APNIC Labs August 2020

Quick Summary

NON-query name minimisation resolution sequence

Quick Summary


Query name minimisation technique described in RFC 7816

Instead of sending the full QNAME and the original QTYPE upstream, a resolver that implements QNAME minimisation and does not already have the answer in its cache sends a request to the name server authoritative for the closest known ancestor of the original QNAME. The request is done with:

- o the QTYPE NS
- o the QNAME that is the original QNAME, stripped to just one label more than the zone for which the server is authoritative

Quick Summary

Query name minimisation technique described in RFC 7816

Common Resolver Implementation Status

• BIND 9

• Implemented in 9.14, active in "relaxed" mode by default

Unbound

• Implemented in 1.7.2, active in "non-strict" mode

Knot

• Implemented in 1.2.2, active by default

Power DNS Recursor

• Implemented in 4.3.0-alpha1, enabled by default since 4.3.0-beta 1

Common Resolver Implementation Status

- "It looks like all recursive resolvers should be doing query name minimisation these days.

 doing query
 - ...piemented in 4.3.0-alpha1, enabled by default since 4.3.0-beta 1

Juault

Measurements

We will look at adoption from the perspectives of:

Users and

Resolvers

Users whose Queries are handled with Qname Minimization

User Measurements

2019 Results

Experiments	Qmin	Query Typ	е		
		NS	Α	AAAA	
429,773,288	11,089,823	2,811,053	8,336,008	1,721	
	3%	1%	2%	0%	% of all experiments
		25%	75%	0%	% of Qmin experiments

User Measurements

2019 Results

Experiments	Qmin	Query Typ	ре		
		NS	Α	AAAA	
429,773,288	11,089,823	2,811,053	8,336,008	1,721	
	3%	1%	2%	0%	% of all experiments
		25%	75%	0%	% of Qmin experiments

2020 Results

Exp	eriments	Qm	n	Query Type			
				NS	A	AAAA	
1	17,370,478	3,136	, 77	238,903	2,909,184	0	
			18%	1%	17%	0%	% of all experiments
				8%	93%	0%	% of Qmin experiments

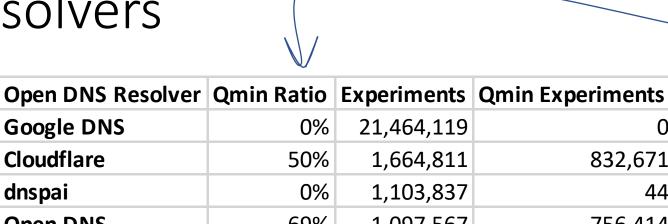
User Measures

The proportion of users who use recursive resolvers that perform Query Name minimization has risen from 3% of users to 18% of users in the past 12 months.

The common resolver behaviour is to perform the discovery queries using query type A, not NS or AAAA

Where are these Users?

CC	Qmin Ratio	Experiments	Qmin	CC Name
NE	71%	20,020	14,275	Niger
BW	70%	4,478	3,114	Botswana
CY	69%	4,550	3,120	Cyprus
IR	63%	266,671	169,234	Iran
MV	61%	1,627	985	Maldives
NP	56%	30,706	17,073	Nepal
IN	55%	2,533,754	1,388,757	India
GM	52%	2,321	1,203	Gambia
PT	47%	33,931	15,899	Portugal
ZW	45%	20,466	9,250	Zimbabwe
CG	42%	2,276	953	Congo
FR	41%	225,958	93,004	France
ZA	40%	150,206	60,289	South Africa
ВҮ	40%	32,183	12,818	Belarus
EC	38%	48,153	18,431	Ecuador
AF	36%	22,971	8,330	Afghanistan
NZ	33%	18,932	6,248	New Zealand
FI	29%	20,336	5,910	Finland
GA	29%	5,103	1,481	Gabon
GH	29%	57,957	16,768	Ghana


Resolver Measures

What's a "resolver"?

- Always hard to tell these days.
- Over a 3 day period we saw 48,191 distinct IP addresses of resolvers
 - 23,728 IPv4 addresses
 7,249 distinct /24 subnets
 - 24,463 IPv6 addresses
 6,549 distinct /48 subnets

Did we observe 48,191 resolvers or somewhere around 8,000 distinct resolvers?

Open Resolvers

What's behind these 50%-70% ratios? Is Qmin only partially deployed in the DNS service anycast constellation?

Open DNS Resolver	Qmin Katio	Experiments	Qmin Experiments
Google DNS	0%	21,464,119	0
Cloudflare	50%	1,664,811	832,671
dnspai	0%	1,103,837	44
Open DNS	69%	1,097,567	756,414
oneDNS	0%	584,099	9
114dns	1%	295,734	1,959
Verisign	0%	279,524	0
Quad9	70%	216,629	152,121
Neustar	59%	117,956	69,597
DNS Watch	56%	45,271	25,532
Oracle Dyn	59%	34,265	20,150
Hurricane Electric	98%	10,015	9,840
Yandex	0%	2,027	0
Uncensored DNS	0%	1,223	0

This is more expected!

ISP Resolvers

ASN	Qmin Ratio	Experiments	Qmin Experiments	ASN Name	CC
4134	9%	13,197,623	1,249,992	China Telecom	CN
55836	58%	7,153,342	4,172,335	Reliance Jio	IN
4837	7%	2,702,633	177,075	CHINA Unicom	CN
9808	12%	2,178,630	252,338	Guangdong Mobile	CN
9498	0%	2,100,413	0	BHARTI Airtel	IN
58543	0%	1,981,946	0	China Telecom Guangd	CN
7922	0%	1,326,612	123	COMCAST	US
56046	56%	1,296,970	722,674	Jiangsu Mobile	CN
6730	50%	1,243,256	624,727	SUNRISE	СН
24560	0%	814,734	0	Bharti Airtel Broadband	IN
30986	32%	774,841	250,644	SCANCOM	GH
4835	56%	730,662	405,636	China Telecom	CN
7552	0%	615,492	0	Viettel	VN
28573	0%	549,425	8	CLARO	BR
7018	0%	544,352	22	AT&T	US
12322	60%	505,703	302,042	PROXAD	FR
8151	0%	479,355	6	Uninet	MX
17676	2%	470,505	10,448	Softbank BB	JP
22394	0%	446,925	0	CELLCO	US
56040	0%	413,381	0	Guangdong Mobile	CN

Observations

- Query name minimisation is gathering momentum in the past 12 months (3% or users in mid 2019 to 18% of users in mid-2020)
- While all common vendor code has enabled Query name minimisation, enabling this behaviour in ISP and open resolvers is fragmentary
 - Why is it not deployed? What's the concern?

Questions

- Where and why is Query Name minimisation important? Does it differ by scale?
 - Small scale recursive resolvers at the edge of the network?
 - ISP-operated recursive resolvers?
 - Open recursive resolvers?
- Is the query name alone a privacy threat or is the combination of the recursive resolver with the query name the problem?

Are there residual issues with handling of empty non-terminals?

Thanksl