
DNS Deep Dive
Wes Hardaker <hardaker@isi.edu>

Geoff Houston <gih@apnic.net>
João Damas <joao@apnic.net>

1

Note Well
This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to point you
in the right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF "contribution" and
"participation" are set forth in BCP 79; please read it carefully.

As a reminder:

● By participating in the IETF, you agree to follow IETF processes and policies.
● If you are aware that any IETF contribution is covered by patents or patent applications that are owned or controlled by you or your

sponsor, you must disclose that fact, or not participate in the discussion.
● As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and photographic records of meetings may

be made public.
● Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.
● As a participant or attendee, you agree to work respectfully with other participants; please contact the ombudsteam

(https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.

Definitive information is in the documents listed below and other IETF BCPs. For advice, please talk to WG chairs or ADs:

● BCP 9 (Internet Standards Process)
● BCP 25 (Working Group processes)
● BCP 25 (Anti-Harassment Procedures)
● BCP 54 (Code of Conduct)
● BCP 78 (Copyright)
● BCP 79 (Patents, Participation)
● https://www.ietf.org/privacy-policy/ (Privacy Policy)

2

https://www.ietf.org/contact/ombudsteam/
https://www.rfc-editor.org/info/bcp9
https://www.rfc-editor.org/info/bcp25
https://www.rfc-editor.org/info/bcp25
https://www.rfc-editor.org/info/bcp54
https://www.rfc-editor.org/info/bcp78
https://www.rfc-editor.org/info/bcp79
https://www.ietf.org/privacy-statement/

Overview
● Beyond the DNS basics

○ The underlying DNS distributed database model
○ DNS tree navigation basics
○ DNS Packet Evolution -- Some of the sharp / unusual edges of the protocol
○ Resource Record Types

● Resilience of the system
● DNS Software and APIs
● To be continued at IETF109?

3

DNS as the novice Internet user sees it

www.example.com

4

website

DNS as the Techy Internet user sees it

www.example.com?

93.184.216.34!

HTTP to 93.184.216.34

5

HTTP
Server

DNS
Serverhostname

DNS is Much Much More Complex

www.example.com?

93.184.216.34!

HTTP to 93.184.216.34

ISP DNS1

ISP DNS2

CLOUD DNS

DNS Root (x13 v4, 13 v6)

com (x13 v4, 13 v6)

www.example.com?

www.example.com?

www.example.com?

example.com (x2 v4, 2 v6)

Home Router

6

The example.com web page

Query Truncated
Authoratative/DNSSEC Response

You make a single request

7

● Each line is a DNS request
● The center node is an ISP resolver

ietf.org web page
(without caching)

8

You are here

webmd.com
(without caching)

You are here

9

TL;DR: Web pages generate many DNS requests

Webmd.com - after DNS caching

Lots of requests from you
to your ISP

10

● The resolver remembers some answers
● But must resolve others

The Underlying Distributed Model of the DNS

11

DNS was created as a replacement for /etc/hosts
Distributed system to replace static information

Back in my day:

127.0.0.1 localhost localhost.localdomain

::1 localhost localhost.localdomain

93.184.216.34 www.example.com

is all we needed.

12

The DNS ‘tree’ RFC103{4,5}

13

Root

net org

ietf icanniana-servers

a b

The Root (aka “.”)

Top Level Domains
(TLDs)

Second Level
Domains
(SLDs)

zone

com

example

wwwc ns

IMPORTANT: name server records in .net (13), .com (13), and .org (6) are not shown in these slides

Resolvers

ISP DNS1

ISP DNS2

CLOUD DNS

14

www.example.com?
root

net org

ietf icanniana-servers

a b

com

example

wwwc ns

Resolvers query the tree to find your answer

DNS resolver types:
● Stub
● Recursive
● Forwarders
● Validating
● Pay Wall

(to be described later)

Priming Queries -- Bootstrapping Resolvers

ISP DNS1

15

www.example.com?
root

net org

ietf icanniana-servers

a b

com

example

wwwc ns

When resolvers start:

1. They have minimal information about
the DNS tree: just the root server IP
addresses.

2. The first thing they do is query them
to ensure their hard-coded list is still
correct

This is called a “priming query”

Uses a static address
bootstrap list
of IPs

The DNS is a distributed protocol via delegations

16

root

net org

ietf icann

iana-servers

a b

com

.iana-servers.net zone

example

www

c

ns

The .net zone delegates everything
in .iana-servers.net and below
to .iana-servers.net
using nameserver (NS) records
that point to the authoritative servers
for that portion of the DNS tree

.net zone

delegation

Some DNS Terminology

17

root

net

iana-servers

a b

com

.iana-servers.net. zone

example

www

c

.net zone

.iana-servers.net
zone apex

other domain names in the zone
“terminal” (aka “leaves”)

a

b

.example.com. zone

empty
non-terminal

b.a.example.com.

Duplicate records needed in parent/child zones

18

root

net org

ietf icann

iana-servers

a b

com

.iana-servers.net zone

example

www

c

ns

.net zone
iana-servers.net. NS a.iana-servers.net.
iana-servers.net. NS b.iana-servers.net.
iana-servers.net. NS c.iana-servers.net.

Should be in both zones

The child is the
authoritative
source!

Does this work? -- Yes but actually not well

19

root

net org

ietf icann

iana-servers

a b

com

.iana-servers.net zone

example

www

c

ns

.net zone

iana-servers.net. NS a.iana-servers.net.
iana-servers.net. NS b.iana-servers.net.

iana-servers.net. NS b.iana-servers.net.
iana-servers.net. NS c.iana-servers.net.

Unfortunately many
zones exist with exactly
this problem

The result is timeouts
and delays for clients

If a.iana-servers.net can’t answer,
this is a “lame delegation”
(it’s not authoritative but .net thinks it is)

Trees that refer to the Forest
● Let’s query .com’s servers about example.com:

dig @a.gtld-servers.net. www.example.com A

;; AUTHORITY SECTION:

example.com. 172800 IN NS a.iana-servers.net.

example.com. 172800 IN NS b.iana-servers.net.

● The answer: .com doesn’t know where www.example.com is
● But it does know where to send you next: to IANA-SERVERS.NET
● But where is IANA-SERVERS.NET???

○ (here we go again)
20

2 day TTL

Finding Authoritative Servers -- Pictorially

21

root

net org

ietf icanniana-servers

a b

zone

com

example

wwwc ns

If you ask .com where www.example.com is, they tell
you to go ask a completely different part of the tree

Tricky Tree Grafting -- AKA, what is glue?
dig @c.gtld-servers.net. iana-servers.net ns (asking .net)

;; ANSWER SECTION:

iana-servers.net. 956 IN NS a.iana-servers.net.

iana-servers.net. 956 IN NS ns.icann.org.

iana-servers.net. 956 IN NS c.iana-servers.net.

iana-servers.net. 956 IN NS b.iana-servers.net.

How do I talk to a.iana-servers.net if it’s inside iana-servers.net itself??
;; ADDITIONAL SECTION:

a.iana-servers.net. 956 IN AAAA 2001:500:8f::53

b.iana-servers.net. 956 IN AAAA 2001:500:8d::53

...
22

Glue!

(note the random ordering of the answer section)

Including Glue

23

root

net org

ietf icanniana-servers

a b

com

example

wwwc ns

● .net’s nameservers knows where the authoratative source for iana-servers.net is
● “In-balliwick” name servers are within the zone itself

○ But {a,b,c}.iana-servers.net Must have glue records!
● “Out-of-balliwick” servers are external

○ ns.icann.org is out-of-balliwick for iana-servers.net

DNS Packet Evolution
 1 1 1 1 1 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | ID |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 |QR| Opcode |AA|TC|RD|RA| Z | RCODE |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | QDCOUNT |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | ANCOUNT |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | NSCOUNT |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | ARCOUNT |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

24

 1 1 1 1 1 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 / NAME /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | TYPE |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | CLASS |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | TTL |

 | |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | RDLENGTH |

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

 / RDATA /

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

DNS - A very very simple protocol
● DNS packets ship resource records around
● All Resource Records are composed of a triplet

○ A Query Name “www.example.com” (aka a “domain name”)
○ A Query Type AAAA = IPv6 address
○ A Query Class IN = Internet (aka, almost the only value used)

● Resource Record Sets
○ ALL matching combinations are an atomic unit
○ You can’t ask for “just 2”
○ They are not ordered

● Response Records also contain
○ A “Time To Live”
○ Response Data

25

DNS Packet Components
● Header

○ Transaction ID
○ Flags
○ Number of records in each section

● DNS Resource Record Sections
○ Question
○ Answer
○ Authoritative
○ Additional

26

RFC1035:
[This] section contains
QDCOUNT (usually 1)
entries

Why are multiple questions a problem?
● Do you wait for all authoritative answers?
● What if one authoritative answer has an

error and another doesn’t?
● What if there are two different errors?
● ...

DNS Packet Sections
● Question

○ Where the (single) question goes
○ Repeated in a response

● Answer
○ The answer to the question

● Authoritative
○ What DNS server is the “true” source for the answers

● Additional
○ Anything else you might want to know

■ But shouldn’t trust!
○ E.G., Glue

27

What happens when DNS things go wrong?
The DNS packet headers contain an “response code” (RCODE) field, yay!

28
Drat, it’s only 4 bits… There are way more than 16 problems

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| Opcode |AA|TC|RD|RA| Z | RCODE |

Let’s get creative about the RCODE problem

What if….

Now bear with me….

What if….

We stuck the extra bits somewhere else?

And thus, the “OPT” (pseudo-) resource record was created
29

EDNS0’s “OPT” record -- more bits! RFC2671
● An “extend” pseudo resource record to add to the additional section
● DNS servers only respond with one if the client indicates support
● Required to support some protocol modifications (e.g. DNSSEC)
● Reuses the Resource Record byte format, but changes many fields
● Features:

○ Total RCODE size becomes 4 + 8 = 12 bits
○ Supports additional protocol flags
○ Adds application level max message size / PMTU type discovery
○ Adds support for additional DNS extensions

● Used for other extensions:
○ Client Subnet in DNS Queries (RFC7871)
○ Extended errors (RFC-TBD)
○ ...

30

OPT Resource Record Field Reusage

31

RR Field New Meaning

NAME Must be empty

TYPE OPT(41) (16 bits)

CLASS UDP Payload Size (16 bits) -- max response accepted

TTL (32 bits) Extended RCODE (8 bits),
version (8 bits = 0) and
Flags (16 bits)

RDLEN Data length (same)

RDATA Atribute (16-bit)/value (variable length) pairs

Truncation
What happens when a response is too big?

● Greater than the client said it could handle in the OPT/UDP Payload Size

A few things:

● The Truncation bit (TC) is set
● Resource records are removed from the response to make it fit. Maybe.

○ Some try to remove unimportant items (the additional section goes first)
○ Some servers drop everything and just expect clients to use TCP
○ Response Rate Limiting (RRL) -- a DDoS defense -- triggers the TC bit due to query frequency

● Clients need to come back over TCP to get the full answer
○ Sometimes clients come back and sometimes they don’t if they got the answer they wanted

32

Ok, but what if you need MOAR errors, text, etc...

What if….

Now bear with me….

What if….

We stuck the extra bits somewhere else?

A soon to be RFC: extended errors!Another OPT

(it’s errors all the way down) 33

DNS Resource Record Types

34

Resource Record Types

35

Type Content

A IPv4 Address

AAAA IPv6 Address

SOA Zone information at the APEX

TXT Free-form text blob

IPv4/IPv6 Deployment: Happy Eyeballs (RFC8305)

ISP DNS1

36

www.example.com/AAAA?
root

net org

ietf icanniana-servers

a b

com

example

wwwc ns

www.example.com/A?

Step 1: Send a AAAA (IPv6) query
Step 2: Immediately send an A (IPv4) query
Step 3: Wait for answers from either query
Step 4: If first response is AAAA, open
connection. If first response is A, wait a bit
(50ms) for a AAAA and then give up and
open an IPv4 connection with sadness.
Step 5: Profit from your dual-stack
deployment!

CNAMEs and DNAMEs

37

root

org

example

www img

example.org zone

com

example

wwwjs javas

example.com zone

js.example.org. 3600 IN CNAME javas.example.com.
CNAMEs cannot occur at the apex

example.org. 3600 IN DNAME example.com.

CNAMEs are aliases for
other tree elements
(can be in the same zone or
 in another)

DNAMEs are aliases for
zones themselves

IMPORTANT: CNAMEs MUST exist alone at a name (minus DNSSEC entries)
IMPORTANT: CNAMEs point to ALL records at the other name (A, AAAA, NS, MX, etc)

MX Records

38

root

org

example

www

com

example

mail2smtp mail1

Mail Exchange (MX) records
● Where should e-mail for

a domain-name be
sent?

● Prioritized contact list

www.example.org. 3600 IN AAAA 2606:2800:220:1:248:1893:25c8:1946
www.example.org. 3600 IN MX 5 smtp.example.org.

example.org. 3600 IN AAAA 93.184.216.34
example.org. 3600 IN MX 10 mail1.example.com.
example.org. 3600 IN MX 20 mail2.example.com.

Outsourcing mail service
is very common

http://www.example.org
http://www.example.org
http://www.example.org
http://www.example.org

Wildcards (RFC4592)
● Generating responses for missing data

○ Left most label must be a “*” (and only a “*”)
○ Matches any label that doesn’t already exist

■ Including sub-labels under it
○ Causes a nameserver to synthesize and answer
○ Please read RFC4592! Good examples therein.

● Example records:
*.example.com. 3600 IN MX 10 mail.example.com
host1.example.com. 3600 IN A 192.0.2.1

● Reponses:
host1.example.com/MX MATCHES
host2.example.com/MX MATCHES
host1.example.com/A DOESN’T MATCH (returns 192.0.2.1)
host2.example.com/A DOESN’T MATCH (returns NXDOMAIN) 39

Underbar labels: “_foo” (RFC855{2,3})
● For a long time people kept putting TXT records at the APEX

○ SPF
○ DKIM
○ DOMAINKEY
○ DNS ownership verification (google, facebook, docusign, …)
○ …

● The “right” solution was to use a new RRTYPE rather than TXT
○ But this was slower to deploy

● The new solution: use TXT and RRTYPE records at “_” prefixes
○ _spf.example.com. IN TXT - The right “new” for SPF
○ _domainkey.example.com. IN TXT - DKIM key publishing
○ _25._tcp.mail.example.com. IN TLSA - DANE for secured SMTP (RFC7672)
○ _imaps._tcp.example.com. IN SRV - Service host discovery

40

Summary: DNS is a global distributed identifier DB
Yes, but how does this all scale so well?

I have no idea

Let’s ask Geoff

41

Extended Errors RFC -- in the RFC editor’s queue

● SERVFAIL error is the standard “I couldn’t” response
○ Operators are clueless as to why
○ e.g. most types of DNSSEC validation failures triggers this

● Extended error adds context for SERVFAIL (and others)
● With optional text providing greater debugging detail

42

DNS Deep Dive, IETF 108
Resilience

Resilience and Replication

One and Only One?

What would a ‘unitary’ DNS look like?

Stub Resolver

Recursive Resolver

Authoritative Servers

One and Only One?

What would a ‘unitary’ DNS look like?
• Each stub resolver has a single address for a recursive

resolver
• The stub resolver uses a single query for each name to be

resolved
• Each domain is served by a single authoritative server with

a single address
• Each recursive resolver uses a single query model

Stub Resolver

Recursive Resolver

Authoritative Servers

One and Only One = Fail!

• Obviously this model has multiple single points of failure
• Recursive resolver failure
• Authoritative server failure
• UDP packet loss

• And each of these SPOFs becomes a point of vulnerability for hostile
attack

Stub Resolver

Recursive Resolver

Authoritative Servers

More than One

Stub Resolver

Recursive Resolvers

Authoritative Servers

More than One

Resolv.conf
• Stub resolvers are typically configured with up to three recursive resolvers

• You can add more but…
• In a dual stack world each of these resolvers has both IPv4 and IPv6 addresses

and queries are made in parallel via both protocols (1)

• The order is usually important (2), and subsequent resolvers are only queried if
there is a UDP timeout from prior queries (3)

1. Unless the “single-request” resolv.conf option is enabled
2. Some measurement of behaviour of Chromium showed a round-robin pattern of use. This round-robin behaviour can be selected on some
systems with the resolv.conf option “rotate”
3. Or the resolver receives a response with response code RCODE 2, (SRVFAIL)

More than One

Authoritative Servers
• DNS domains are typically configured with more than one authoritative server
• The root zone uses 13 different server names each with IPv4 and IPv6 addresses
• Between 2 and 4 authoritative servers seems to be common practice these days
• For most applications 5 or more services is probably excessive, and 1 is regarded

as too few (1)

• The server list MAY round robin depending on the authoritative server code

1. A single unicast server is probably not enough, and a single anycast address with a set of servers using the same address may still not be enough to be
resilient! Diversity is the key here, not mindless replication

Resilience in Transport – not!
UDP

• All bets are off!
• You have no idea if the query or the response was lost
• The UDP sender uses a timeout to determine a “no answer” condition
• The timeout value depends on context:

• Stub resolvers are observed to use timeout values between 1 and 5 secs (1)
• Recursive resolvers are seen to use use values between ~300ms and 1 sec

• Should you ask the same server again? Or maybe change the address/protocol? Or maybe ask
a different server?

• When to just give up? The number of timeouts is typically limited (2)

1. resolv.conf sets the timeout to 5 seconds by default, with a minimum of 1 and a maximum of 30 configurable in
resolv.conf

2. resolv.conf sets the number of attempts to 2 by default with a maximum of 5 configurable in resolv.conf

Resilience in Transport
TCP
• If you can reach the server then you can reasonably expect a response

• Or an error code or some sort
• Asking the same server again is kinda pointless, particularly if you expected a

different answer
• But sometimes different recursives hide behind the same name or even the same protocol

and protocol address
• Asking a different server might be helpful if you didn’t like some first answers

(SERVFAIL or possibly REFUSED) but generally it’s not all that useful

Resilience in Transport++

• DNS over TLS over TCP (DoT)
• DNS over HTTPS over TLS over TCP (DoH)
• DNS over QUIC over encrypted TCP-like transport (DoQ)

Yes (1)

(1) Session time is finite, this topic is not! Best left to another session with more time!

If more is better…

When is “more” too much?

better

more than oneone too many

Pick your answer!

• Replication has its limits as a means of improving service resilience
• To avoid flooding clients typically use a serial query approach
• Clients typically limit the number of queries and the overall elapsed time and

then declare failure

• Adding more resolvers to resolv.conf, adding more name servers and
adding more addresses and protocols to each service name has an
initial benefit, but quickly degenerates in terms of added resilience
• How can we improve resilience?

Resilience Engineering

Replication is a coarse response to resilience - can we do this better?
Caching!
• DNS queries have a strong component of self similarity, and caching allows

such queries to be answered by the caching resolver and not passed onward
into the DNS name resolution infrastructure
• “Here’s an answer I received earlier that matches your question”

• Without caching in recursive resolvers the DNS as we know it would probably
collapse
• Caching is a balance between “freshness” and ”effectiveness”

• The DNS resolution infrastructure tends to prefer longer cache times over freshness to
improve resolution performance

• Name publishers have an interest in preferring shorter cache times to allow rapid
dissemination of changes to the zone contents

Caches

Who caches?
stub resolvers
recursive resolvers
forwarding resolvers
applications (typically browsers)

Who doesn’t cache?
caching is optional

Caches
What is cached?

resource records (not entire responses)

What should not be cached?
resource records learned through additional sections in responses

Corner Cases:
Responses with EDNS(0) Client Subnet (1) are cached with the Client Subnet value attached
NS records from Child vs NS records from Parent
resource records that fail local DNSSEC validation

cache them but only serve from cache if the query has the CD bit set
not clear what to do if the query has no EDNS(0) extensions

DNSSEC NSEC records, which can be used to respond to a range of qnames. This exploits the property that the total name space
is far larger than the occupied name space. So the “gaps” between the list of alphabetically sorted (2) names encompass a vastly
greater pool of names than the occupied names, so NSEC caching stores these “gaps” to increase the leverage of caches

(1) Which should never have happened

(2) NSEC3 works too, but now we sort the hashes of names, not the names (3)

(3) NSSEC3 should never have happened

Cache TTLs

TTL determines the cache lifetime
• Well not really – TTLs SUGGEST a cache lifetime (in seconds) (1)
• The resolver may shorten or lengthen the cache time
• Popular caching resolvers have a “Max TTL” setting to cap TTL values
• There does not appear to be a universal minimum TTL above 0

• And “0” is equivalent to “do not cache”
• And caches are finite-sized, so entries may be removed prior to TTL expiry

under high load

(1) The resolver may (should) treat the value as a timer, but its just a suggestion, so it may play whatever sgames it wants with the TTL value!

Resilience Engineering

Replication is a coarse response to resilience - can we do this better?

Anycast
• Use the routing system to determine “closest” instance
• Service instances can be added or removed seamlessly
• Relieves the client of the overheads of serial enumeration
• Anycast Recusive Resolvers

• Multiple recursive resolver service points that all respond to the same address
• Anycast Authoritative Servers

• Multiple auth servers all on the same address

Resilience Engineering

Replication is a coarse response to resilience - can we do this better?
Parallel Resolution!
• Increase resolver capacity though the use of resolver “farms”
• Common front end / query distributor
• Collection of resolver engines to form the back end

query
distribution

resolver
farm

Resilience Engineering

Resolver “farms”:
• How to distribute queries across the back end systems?

• IP 5-tuple hash (possibly router-based)
• IP source hash
• DNS Qname hash
• Hot caching (unbalanced engine load)

• Cache coherency in ”farms”
• Qname hashing is effective for positive caches, but not NSEC caches
• IP source hashing is less efficient than 5-tuple hashing, but is coherent for caching
• Shared caches across the resolver farm can create cache coherency irrespective of

the query distribution mechanism, but are challenging to implement efficiently

query
distribution

On to part 3…

João Damas, APNIC

DNS Deep Dive, IETF 108

Part 1, section 3, Software

DNS Software

• Stub resolver - what ships with every OS, different for every OS

• Forwarder - most commonly found in home routers

• Recursive resolver software - the hardest part of DNS software

• Authoritative servers - the source of the data

• All-in-one

Stub resolvers (API)

www.example.com?

ISP DNS1

ISP DNS2

CLOUD DNS

www.example.com?

www.example.com?

www.example.com?

Domain DNS servers

Home Router

DNS Root

TLD servers

Stub resolvers (API)

• Initially just a part of the BSD Unix API

• gethostbyaddr(), gethostbyname(), gethostent(), and sethostent() functions appeared in 4.2BSD [1983, at the time of
RFC 882/883]

• Still the most frequently used calls when working on Unix

• Windows has this and its own

• macOS/iOS also wrap these in more abstract calls/services

• More modern implementations like getDNS and its stub implementation, stubby, and language bindings implement
client side features such as DNSSEC validation

• Linux has recently seen the introduction of systemd resolved.service

• Some apps now have their own stub (typically web browsers or “things” that use web “engines”)

• Some may include a host (or application) level cache

More on APIs

• As things evolve we may see other APIs or API-like forms for DNS
transactions

• e.g. DNS Over HTTP, is currently a way of transporting DNS over HTTPS
but if you look at it with web app developer eyes, it is pretty much on the
way to an API

Forwarders

www.example.com?

ISP DNS1

ISP DNS2

CLOUD DNS

www.example.com?

www.example.com?

www.example.com?

Domain DNS servers

Home Router

DNS Root

TLD servers

Forwarders

• Forwarders fall in between stubs and recursive resolvers, both from a network
topology and a functionality point of view.

• They have some features typical of recursive resolvers such as a local cache
but do not perform the recursive lookups against authoritative servers, they
“forward” the queries they get to a full-service recursive resolver that
performs the heavy duty work.

Forwarder implementations

• dnsmasq

• by far the most common version of DNS forwarder, with various versions, of
very diverse vintage, in use in the wild

• Included as part of heaps of home router software images as it also
includes a DHCP server

• Includes added support for DNSSEC validation since v2.69 (2014)

Forwarder implementations

• BIND, MaraDNS, other recursive servers

• Configurable as a forwarders if you wish

• These days it is common to see ISPs use full resolver being used with
sizeable caches and forwarding queries to open DNS resolvers such as the
OpenDNS or the quads (1,8,9)

Recursive resolvers

www.example.com?

ISP DNS1

ISP DNS2

CLOUD DNS

www.example.com?

www.example.com?

www.example.com?

Domain DNS servers

Home Router

DNS Root

TLD servers

Recursive resolvers

• Even though today installing and running a local (to your device) recursive server is not a
difficult task (at least for non-mobile devices), most people just use what is provided by
the network configuration (DHCP, etc) and don’t bother with actual software deployment.

• ISPs and enterprises tend to use a mix of Open Source and proprietary software in their
services.

• An increasing trend is the use of “Public Open Resolvers” where users or network
administrators change their network configuration so that applications send queries to
well-known servers on the Internet

• These may be running proprietary implementations (e.g. Google, OpenDNS), or be
based on DNS recursive software (e.g. Quad1, based on Knot Recursive, Quad9
based on BIND 9, etc)

Recursive resolver

• Some servers (FLOSS or not) extend DNS service to include internal or
externally provided policies as part of domain blocking orders, security
policies, censorship, etc

• A lot of these feeds are proprietary, at least one option has been put to the
IETF (DNS RPZ)

Recursive resolver implementations
Open source

• Traditionally most DNS software has been Open Source software

• BIND 9

• Unbound

• Knot resolver

• PowerDNS Resolver

Recursive resolver implementations
Closed source

• Microsoft DNS server

• Nominum/Akamai

• Xerocole/Akamai

• Secure64

• Infoblox (mostly a front end on top of BIND, with extensions)

Authoritative servers

www.example.com?

ISP DNS1

ISP DNS2

CLOUD DNS

www.example.com?

www.example.com?

www.example.com?

Domain DNS servers

Home Router

DNS Root

TLD servers

Authoritative servers

• In principle these are straightforward: Load zone file and answer requests

• Life is never so simple, especially in such a long-lived protocol

• Years of evolution have led to heaps of configuration options and tunable
behaviour

• Split-horizon, ACLs, “Geolocation” and general DNS protocol featuritis

• Storage backends in SQL DBs, etc

Authoritative servers
Open source

• Just like for resolvers most DNS software has been Open Source software

• BIND 9

• NSD

• Knot DNS

• PowerDNS Authoritative server

Authoritative servers
Closed source

• Akamai (ex-nominum)

• Secure64

• Microsoft DNS: mostly relevant in networks where Active Directory is used as
it supports the required (extended) GSS-TSIG mechanism, based on RFC
2078

• Infoblox

Additional bits and pieces
DNS “load balancers”

• Loosely defined devices or applications that aim to present a front towards
the network for a series of not-directly accesible backend servers

• Embedded in traditional load balancer devices (e.g. F5)

• Most feel like afterthoughts (oh, #!$, we need to support DNS)

• Open source: dnsdist (sweet!) For the DNS by the DNS

• Routing techniques (e.g. ECMP) that rely on non-DNS software

Additional bits and pieces
DNS Interceptors

• Because DNS is your gateway to the net, it is frequently used as a control
point

• Captive portals (e.g. hotel networks)

• Censorship

• “optimisation”

• All of these are available as part of DNS servers or as extension modules

