
Buffers, Bufferbloat
and BBR

Geoff Huston

APNIC

Networking is all about moving
data

• The way in which data movement is controlled is a key
characteristic of the network architecture

• The Internet Protocol architecture passed all controls to the
end systems, and treated the network as a passive packet
switching environment

• All this is changing again as we see a what could well be a
new generation of flow control algorithms being adopted in
the Internet

2

Let’s talk about speed…
• How fast can we push a single session

to move data through the network?
• Session speed is the result of a

combination of:
• available transmission speeds,
• transmission bit error rate,
• packet sizes
• switching capacity
• end-to-end latency,
• host buffer size and
• protocol efficiency

– All of these factors are critical

3

The Evolution of Speed
1980’s

– TCP rates of Kilobits per second
1990’s

– TCP rates of Megabits per second
2000’s

– TCP rates of Gigabits per second
2010’s

– TCP rates of Gigabits per second

4

80’s 90’s 00’s 10’s

K

M

G

Today

• Optical transmission speeds are approaching Terrabit
capacity, while network session speeds are not keeping up

580’s 90’s 00’s
10’s

K

M

G

T

optical
transport

TCP speed

TCP

• The Transmission Control Protocol is an end-to-end
protocol that creates a reliable stream protocol from the
underlying IP datagram device

• TCP operates as an adaptive rate control protocol that
attempts to operate fairly and efficiently

TCP Design Objectives
To maintain an average flow which is Efficient and Fair
• Efficient:

– Minimise packet loss
– Minimise packet re-ordering
– Do not leave unused path bandwidth on the table!

• Fair:
– Do not crowd out other TCP sessions
– Over time, take an average 1/N of the path capacity when there are N

other TCP sessions sharing the same path

It’s a Flow Control process

• Think of this as a multi-
flow fluid dynamics
problem

• Each flow has to gently
exert pressure on the
other flows to signal
them to provide a fair
share of the network,
and be responsive to
the pressure from all
other flows

TCP Control

• Ideally TCP would send packets at a fair share of
available network capacity. But the TCP sender has no
idea what “available network capacity” means.

• So TCP uses ‘rate adaptation’ to probe into network,
increasing the sending rate until it is ‘too fast’

• Packet drop is the conventional signal of “I’m going too
fast”

TCP Control

TCP is an ACK Pacing protocol

Data sending rate is matched to the
ACK arrival rate

TCP Control

ACK pacing protocols relate to a past network state, not
necessarily the current network state

– The ACK signal shows the rate of data that left the network at the
receiver that occurred at ½ RTT back in time

– So if there is data loss in the forward path, the ACK signal of that loss
is already at least ½ RTT old!
• So TCP should react quickly to ‘bad’ news

– If there is no data loss, that is also old news
• So TCP should react conservatively to ‘good’ news

“Classic TCP” – TCP Reno

• Additive Increase Multiplicative Decrease (AIMD)
– While there is no packet loss, increase the sending rate by one

segment (MSS) each RTT interval
– If there is packet loss decrease the sending rate by 50% over the

next RTT Interval, and halve the sender’s window

• Start Up
– Each RTT interval, double the sending rate
– We call this “slow start” – probably because its anything but slow!!!

Idealised TCP Reno

Time

Slow Start
Rate Doubles
each RTT
Interval

Congestion Avoidance
Rate increases by 1 MSS per RTT
Rate halves on Packet Loss

Notification of Packet Loss
via Duplicate ACKs causes
RENO to halve its sending
rate

TCP RENO and Idealized Queue
Behaviour

Total Queue Capacity
(Onset of Packet Loss)

Link Capacity Capacity
(Onset of Queuing)

Network Buffers Fill

Network Buffers Drain

TCP and Buffers – the Theory
• When a sender receives a loss signal it repairs the loss and halves its

sending window
• This halving of the sending window will cause the sender to pause for the

amount of time to drain half the outstanding data in the network
• Ideally this exactly matches the amount of time taken for the queue to drain
• At the time the queue is drained the sender resumes its sending at half the

rate (which should be equal to the the bottleneck capacity)
• For this to work, the queue size should equal the delay bandwidth product

of the link it drives
• All this works with an assumption of a single queue and a single flow

TCP and Buffers – the Theory

Queue formation
Queue drain

TCP and Buffers

• The rule of thumb for buffer size is

Size = (BW ∙ RTT)

17

Switching Chip Design TradeOffs

• On-Chip memory is fast, but limited to between ~16M to ~64M
• A chip design can include an interface to external memory banks

but the memory interface/controller also takes up chip space and
the external memory is slower

• Between 20% to 60% of switch chip real estate is devoted to
memory / memory control

• Small memory buffers in switch design allows for larger switch
fabric implementations on the chip

18

Example Switch Design

19

The Network Design Dilemma

What are the acceptable tradeoffs here?
– Larger buffers tend to create more efficient outcomes for aggregate

throughput
– Smaller buffers limit the achievable performance of some protocols

20

Buffer Sizing Factors

21

Flow Protocol

Number of Flows

Flow Bandwidth x Delay

Transmission BER

Transmission Jitter

Transmission Capacity

Flow Pacing

Buffer Sizing Factors

22

Flow Protocol

Number of Flows

Flow Bandwidth x Delay

Transmission BER

Transmission Jitter

Transmission Capacity

Flow Pacing

We can change these (possibly)

From 1 to N – Scaling Switching

23

• This finding of buffer size relates to a single flow through a
single bottleneck resource

• What happens with more flows and faster transmission
system?

• It appears that scaling has non-linear properties

Smaller buffers?

• If 2 flows use a single buffer and they resonate precisely
then the buffer still needs to be delay-bandwidth size

• If they are precisely out of phase the common buffer
requirement is reduced by ~25%

24

Smaller buffers?
• If 2 flows use a single buffer and they resonate precisely then the buffer still needs to be delay-bandwidth size

• If they are precisely out of phase the common buffer requirement is reduced by ~25%

• What about the case of N de-synchronised flows?

• Stanford 2004 study:
Size = (BW ∙ RTT) / √N

Assuming that the component flows manage to achieve a fair outcome of obtaining 1/N of the resource in a non-synchronised
manner, then the peak buffer resource is inversely proportionate to the square root of N

25

Protocols and Buffers

• TCP Reno strongly influenced the design assumption that
BDP-sized buffers are necessary in the Internet

• Which lead to vendors over-provisioning buffers in network
equipment

• But are there other protocols that can lead to different
assumptions about buffer sizes?

26

Refinements to RENO
• There have been many efforts to alter RENO’s flow control

algorithm
• In a loss-based AIMD control system the essential parameters

are the manner of rate increase and the manner of loss-based
decrease
– For example:

MulTCP behaves as it it were N simultaneous TCP sessions: i.e. increase by N segments
each RTT and rate drop by 1/N upon packet loss

• What about varying the manner of rate increase away from AI?

Enter CUBIC

• CUBIC is designed to be useful for high speed sessions while still
being ‘fair’ to other sessions and also efficient even at lower speeds

• Rather than probe in a linear manner for the sending rate that triggers
packet loss, CUBIC uses a non-linear (cubic) search algorithm

CUBIC and Queue formation

Total Queue Capacity
(Onset of Packet Loss)

Link Capacity Capacity
(Onset of Queuing)

Network Buffers Fill

Network Buffers Drain

CUBIC assessment

• Can react quickly to available capacity in the network
• Tends to sit for extended periods in the phase of queue

formation

• Can react efficiently to long fat pipes and rapidly scale up
the sending rate

• Operates in a manner that tends to exacerbate ‘buffer bloat’
conditions, but also operates efficiently in small buffer
environments

Can we do even better?
• Lets look at the model of the network once more, and observe that there

are three ‘states’ of flow management in this network:
– Under-Utilised – where the flow rate is below the link capacity and no queues form
– Over-Utilised – where the flow rate is greater that the link capacity and queues form
– Saturated – where the queue is filled and packet loss occurs

• Loss-based control systems probe upward to the Saturated point, and back
off quickly to what they guess is the Under-Utilised state in order to the let
the queues drain

• But the optimal operational point for any flow is at the point of state change
from Under to Over-utilised, not at the Saturated point

RTT and Delivery Rate with Queuing

Under-Utilised Over-Utilised Saturated

How to detect the onset of
queuing?

• By carefully measuring the Round Trip Time!

BBR Design Principles

• Probe the path capacity only intermittently
• Probe the path capacity by increasing the sending rate for a short

interval and then drop the rate to drain the queue:
– If the RTT of the probe equals the RTT of the previous state then there is

available path bandwidth that could be utilised
– If the RTT of the probe rises then the path is likely to be at the onset of

queuing and no further path bandwidth is available

• Do not alter the path bandwidth estimate in response to packet loss
• Pace the sending packets to avoid the need for network buffer rate

adaptation

Idealised BBR profile

sending rate

network queues

BBR Politeness?

• BBR will probably not constantly pull back when
simultaneous loss-based protocols exert pressure on the
path’s queues

• BBR tries to make minimal demands on the queue size,
and does not rely on a large dynamic range of queue
occupancy during a flow

From Theory to Practice

• Lets use BBR in the wild
• I’m using iperf3 on Linux platforms (Linode)

– The platforms are dedicated to these tests

• It’s the Internet
– The networks paths vary between tests
– The cross traffic is highly variable
– No measurement is repeatable to a fine level of detail

Cubic vs BBR over a 12ms RTT 10G
circuit

Wow!

• That was BRUTAL!
• As soon as BBR started up it collided with CUBIC, and BBR

startup placed pressure on CUBIC such that CUBIC’s
congestion window was reduced close to zero

• At this stage CUBIC’s efforts to restart its congestion
window appear to collide with BBR’s congestion control
model, so CUBIC remains suppressed
– The inference is that BBR appears to be operating in steady state

with an ability to crowd out CUBIC

BBR vs Cubic – second attempt

Same two endpoints, same
network path across the public
Internet

Using a long delay path AU to
Germany via the US

BBR vs Cubic

BB
R

 (1
) s

ta
rts

C
ub

ic
 s

ta
rts

BB
R

 (2
) s

ta
rts

C
ub

ic
 e

nd
s

BB
R

(2
) e

nd
s

The Internet is capable of
offering a 400Mbps capacity
path on demand!

In this case BBR is apparently
operating with filled queues,
and this crowds out CUBIC

BBR does not compete well
with itself, and the two sessions
oscillate in getting the majority
share of available path capacity

BBR and Loss
Recovery

42

Packet loss causes
retransmission that
appears to occur in
addition to the stable link
capacity model used by
BBR.

Once loss is reduced, BBR
maintains a more
consistent sending model

So what can we say about BBR?
It’s “interesting” in so many ways:

– It’s a move away from the more common loss-based flow control
protocols

– It looks like it will operate very efficiently in a high-speed small-buffer
world
• High speed small buffer switching chips are far cheaper, but loss-based TCP

reacts really badly to small buffers by capping its flow rate
– It will operate efficiently over ECMP paths, as it is relatively impervious to

packet re-ordering
– It also looks as if it will operate efficiently in rate policed environments
– Unlike AIMD systems, it will scale from Kbps to Gbps over long delay

paths very efficiently
– It resists the conventional network-based traffic control mechanisms

Why use BBR?

• Because it achieves
• Its incredibly efficient

• It makes minimal demands on network buffer capacity

• It’s fast!

Why not use BBR?

• Because it over achieves!

• The classic question for many Internet technologies is scaling
– “what if everyone does it?”
– BBR is not a scalable approach in competition with loss-based flows
– It works so well while it is used by just a few users, some of the time
– But when it is active, BBR has the ability to slaughter concurrent

loss-based flows
– Which sends all the wrong signals to the TCP ecosystem

• The loss-based flows convert to BBR to compete on equal terms
• The network is then a BBR vs BBR environment, which is unstable

Is this BBR experiment a failure?

Is it just too ‘greedy’ and too ‘insensitive’ to other flows to be
allowed out on the Internet to play?

– Many networks have been provisioned as a response to the
aggregate behaviours of loss-based TCP congestion control

– BBR changes all those assumptions, and could potentially push
many networks into sustained instability

– We cannot use the conventional network control mechanisms to
regulate BBR flows
• Selective packet drop just won’t create back pressure on the flow

Is BBR an outstanding success?
• We can’t achieve speed if we need also large high speed buffers

in network routers
– Loss-based flow-control systems have a sloppy control loop that is

always ½ RTT late

• We can use small buffers in switches if we use sender pacing
coupled with flow control systems that are sensitive to the onset
of queue formation (rather than being sensitive to packet loss
resulting from a full queue)

• BBR points to an approach that does not require large buffer
pools in switches

47

Where now with BBR?

BBR 2.0
– Alter BBR’s ‘sensitivity’ to loss rates, so that it does not persist with an

internal bandwidth delay product (BDP) that exceeds the uncongested BDP
This measure would moderate BBR 1.0’s ability to operate for extended periods with
very high loss levels

– Improve the dynamic sharing fairness by moderating the Bandwidth Delay
Product by using an estimated ‘fair’ proportion of the path BDP

– Accommodate the signal distortion caused by ACK stretching middleware
– Place an upper bound on the volume of in-flight data
– Alter the +/- 25% probe factors dynamically (i.e. allow this to be less than

25% overload)

The new Network Architecture

• We are seeing a shift in end systems to assert edge-centric
control and hide from network-level active middleware in
the Internet

• QUIC and BBR are instances of a recent push back from
the network-level QoS bandwidth control mechanisms, and
result in greater levels of autonomous control being passed
back to the end hosts

• For better or worse!

49

From “small” to “tiny” Buffers?

• Buffers in a network serve two major purposes:
– smooth sender burstiness
– Multiplexing

• What if all senders ‘paced’ their sending to avoid bursting, and were
sensitive to the formation of standing queues?

• Then we would likely have a residual multiplexing requirement for
buffers where:

B >= O(log W)
where W is the average flow window size

This would allow Tbps switches to operate with on-chip memory (10’s Mb) and still
allow highly efficient network utilisation

50

What is all this telling us?

• The Internet still contains a large set of important unsolved
problems

• And some of our cherished assumptions about network
design may be mistaken

• Efficiently moving large numbers of large data sets over
high speed networks requires a different approach to what
we are doing today

51

Questions?

