Measuring the End User

Geoff Huston
APNIC Labs, May 2015
The Internet is all about US!
What's the question?

How many users do <x>?

- How many users can are running IPv6?
- How many users are using DNSSEC validation?
- How many users support ECDSA in digital signatures in DNSSEC?
- etc
"Measurable" Questions?

- How much traffic uses IPv6?
- How many connections use IPv6?
- How many routes are IPv6 routes?
- How many service providers offer IPv6?
- How many domain names have AAAA RRs?
- How many domains are DNSSEC signed?
- How many DNS queries are made over IPv6?
...

Users vs Infrastructure

• None of these specific measurement questions really embrace the larger questions about the end user behaviour

• They are all aimed at measuring an aspect of behaviour within particular parameters of the network infrastructure, but they don’t encompass how the end user assembles a coherent view of the network
Private Data

• Very few measurements on the Internet are public
• Most “all of Internet” metrics are wild-eyed guesses
 – How many people use the Internet?
 – How many devices use the Internet?
 – How much traffic is passed across the Internet?
• And the bits that aren’t guesses are often folded into proprietary data
The Challenge:

How can we undertake meaningful public measurements that quantify aspects of the entire Internet that do not rely on access to private data?
For example… IPv6

• It would be good to know how we are going with the transition to IPv6
• And it would be good everyone to know how everyone else is going with the transition to IPv6
• What **can** we measure?
 – IPv6 in the DNS – AAAA records in the Alexa top N
 – IPv6 in routing – IPv6 routing table
 – IPv6 traffic exchanges – traffic graphs
• What **should** we measure?
 – How many connected endpoints devices on today’s Internet are capable of making IPv6 connections?
How to measure a million end devices for their IPv6 capability?
How to measure a million end devices for their IPv6 capability?

a) Be
How to measure a million end devices for their IPv6 capability?

a) Be Google

OR

b) Have your measurement code run on a million end devices
Ads are ubiquitous
Ads are ubiquitous
Ads are ubiquitous.
Ads use active scripts

• Advertising channels use active scripting to make ads interactive
 – This is not just an ‘animated gif’ – it uses a script to sense mouse hover to change the displayed image
Adobe Flash and the network

- Flash includes primitives in ‘actionscript’ to fetch ‘network assets’
 - Typically used to load alternate images, sequences
 - Not a generalized network stack, subject to constraints over what connections can be made

- Flash has asynchronous ‘threads’ model for event driven, sprite animation
APNIC's measurement technique

• Craft Flash/ActionsScript which fetches network assets to measure.
• Assets are reduced to a notional ‘1x1’ image which is not added to the DOM and is not displayed.
• Assets can be named (DNS resolution via local gethostbyname() styled API within the browser’s Flash engine) or use literals (bypass DNS resolution).
• Encode data transfer in the name of fetched assets
 – Could use the DNS as the information conduit:
 • Result is returned by DNS name
 – Could use HTTP as the information conduit
 • Result is returned via parameters attached to an HTTP GET command
 – Or just use the server logs!
Advertising placement logic

• Fresh Eyeballs == Unique IPs
 – We have good evidence the advertising channel is able to sustain a constant supply of unique IP addresses

• Pay by impression
 – If you select a preference for impressions, then the channel tries hard to present your ad to as many unique IPs as possible

• Time/Location/Context tuned
 – Can select for time of day, physical location or keyword contexts (for search-related ads)
 – But if you don’t select, then placement is generalized

• Aim to fill budget
 – If you request $100 of placement a day, then inside 24h algorithm tries hard to even placement but in the end, will ‘soak’ place your ad to achieve enough views, to bill you $100
Ad Placement Training – Day 1
Ad Placement Training – Day 4
Ad Placement Training – Days 5, 6 & 7
Fresh Eyeballs

Cumulative Unique IPs

Daily Unique IPs

Ads

Web Page
Success!

- 600K – 1M samples per day – mostly new!
- Large sample space across much of the known Internet
- Assemble a rich data set of end user addresses and DNS resolvers
Success ... of a sort!

- What we are after is a random sample of the entire Internet
- And we are close
- But what we have is a data set biased towards “cheap” eyeballs in fixed networks
<table>
<thead>
<tr>
<th>Country</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnam</td>
<td>155,430</td>
</tr>
<tr>
<td>China</td>
<td>103,517</td>
</tr>
<tr>
<td>Mexico</td>
<td>92,107</td>
</tr>
<tr>
<td>Thailand</td>
<td>79,092</td>
</tr>
<tr>
<td>India</td>
<td>73,702</td>
</tr>
<tr>
<td>Pakistan</td>
<td>65,402</td>
</tr>
<tr>
<td>Brazil</td>
<td>64,121</td>
</tr>
<tr>
<td>Turkey</td>
<td>54,637</td>
</tr>
<tr>
<td>United States of America</td>
<td>52,532</td>
</tr>
<tr>
<td>Argentina</td>
<td>52,240</td>
</tr>
<tr>
<td>Colombia</td>
<td>48,315</td>
</tr>
<tr>
<td>Indonesia</td>
<td>45,216</td>
</tr>
<tr>
<td>Peru</td>
<td>39,839</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>36,962</td>
</tr>
<tr>
<td>Philippines</td>
<td>34,529</td>
</tr>
<tr>
<td>Egypt</td>
<td>33,899</td>
</tr>
<tr>
<td>Taiwan</td>
<td>22,983</td>
</tr>
<tr>
<td>Romania</td>
<td>22,712</td>
</tr>
<tr>
<td>Ukraine</td>
<td>22,490</td>
</tr>
<tr>
<td>Spain</td>
<td>22,403</td>
</tr>
</tbody>
</table>

IP address to country code mapping for experiments placed on the 24th May 2015
ITU-T Internet User Census

155,430 VN Vietnam
103,517 CN China
92,107 MX Mexico
79,092 TH Thailand
73,702 IN India
65,402 PK Pakistan
64,121 BR Brazil
54,637 TR Turkey
52,532 US United States of America
52,240 AR Argentina
48,315 CO Colombia
45,216 ID Indonesia
39,839 PE Peru
36,962 RU Russian Federation
34,529 PH Philippines
33,899 EG Egypt
22,983 TW Taiwan
22,712 RO Romania
22,490 UA Ukraine
22,403 ES Spain

668,493,485 China
282,384,872 United States of America
252,482,905 India
110,345,878 Brazil
109,390,190 Japan
87,305,661 Russian Federation
72,663,301 Nigeria
71,823,404 Indonesia
71,174,958 Germany
61,579,582 Mexico
57,306,333 United Kingdom of Great Britain and Northern Ireland
54,114,094 France
45,416,941 Iran (Islamic Republic of)
45,019,465 Egypt
42,187,842 Republic of Korea
41,780,667 Philippines
40,980,368 Vietnam
39,256,999 Bangladesh
35,793,673 Italy
35,503,461 Turkey

ITU’s estimates of number of internet users per country
"Weighting" sample data to correct AD Placement bias

• We “weight” the raw data by:
 – Geolocating the IP address to a particular country
 – Multiplying the sample by the relative weight of the country
Weighting the Results

<table>
<thead>
<tr>
<th>CC</th>
<th>Country</th>
<th>DNSSEC Validates</th>
<th>Uses Google PDNS</th>
<th>Samples</th>
<th>Weight</th>
<th>Weighted Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>China, Eastern Asia, Asia</td>
<td>3.75%</td>
<td>8.84%</td>
<td>6726432</td>
<td>2.62</td>
<td>17603898</td>
</tr>
<tr>
<td>US</td>
<td>United States of America, Northern America, North America</td>
<td>22.71%</td>
<td>10.05%</td>
<td>2654162</td>
<td>2.8</td>
<td>7436237</td>
</tr>
<tr>
<td>IN</td>
<td>India, Southern Asia, Asia</td>
<td>9.60%</td>
<td>21.22%</td>
<td>2788239</td>
<td>2.38</td>
<td>6648806</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil, South America, Americas</td>
<td>25.96%</td>
<td>19.77%</td>
<td>3654367</td>
<td>0.8</td>
<td>2905814</td>
</tr>
<tr>
<td>JP</td>
<td>Japan, Eastern Asia, Asia</td>
<td>7.31%</td>
<td>4.77%</td>
<td>421526</td>
<td>6.83</td>
<td>2880651</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation, Eastern Europe, Europe</td>
<td>14.19%</td>
<td>10.36%</td>
<td>2331208</td>
<td>0.99</td>
<td>2299084</td>
</tr>
<tr>
<td>NG</td>
<td>Nigeria, Western Africa, Africa</td>
<td>13.75%</td>
<td>42.50%</td>
<td>33555</td>
<td>57.03</td>
<td>1913494</td>
</tr>
<tr>
<td>ID</td>
<td>Indonesia, South-Eastern Asia, Asia</td>
<td>13.69%</td>
<td>14.46%</td>
<td>2399551</td>
<td>0.79</td>
<td>1891377</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Western Europe, Europe</td>
<td>16.86%</td>
<td>4.73%</td>
<td>437365</td>
<td>4.29</td>
<td>1874295</td>
</tr>
<tr>
<td>MX</td>
<td>Mexico, Central America, Americas</td>
<td>4.78%</td>
<td>8.82%</td>
<td>3852726</td>
<td>0.42</td>
<td>1621619</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom of Great Britain and Northern Ireland, Northern Europe, Europe</td>
<td>7.25%</td>
<td>6.33%</td>
<td>609639</td>
<td>2.48</td>
<td>1509090</td>
</tr>
<tr>
<td>FR</td>
<td>France, Western Europe, Europe</td>
<td>24.23%</td>
<td>3.59%</td>
<td>1067161</td>
<td>1.34</td>
<td>1425021</td>
</tr>
<tr>
<td>IR</td>
<td>Iran (Islamic Republic of), Southern Asia, Asia</td>
<td>21.05%</td>
<td>37.95%</td>
<td>5895</td>
<td>202.88</td>
<td>1195992</td>
</tr>
<tr>
<td>EG</td>
<td>Egypt, North Africa, Africa</td>
<td>14.86%</td>
<td>16.53%</td>
<td>1478598</td>
<td>0.8</td>
<td>1185526</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea, Eastern Asia, Asia</td>
<td>1.78%</td>
<td>2.56%</td>
<td>671624</td>
<td>1.27</td>
<td>1110963</td>
</tr>
<tr>
<td>PH</td>
<td>Philippines, South-Eastern Asia, Asia</td>
<td>10.93%</td>
<td>12.62%</td>
<td>1360250</td>
<td>0.81</td>
<td>1100239</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam, South-Eastern Asia, Asia</td>
<td>29.67%</td>
<td>46.79%</td>
<td>5580740</td>
<td>0.19</td>
<td>1079161</td>
</tr>
<tr>
<td>BD</td>
<td>Bangladesh, Southern Asia, Asia</td>
<td>31.78%</td>
<td>42.05%</td>
<td>459167</td>
<td>2.25</td>
<td>1033783</td>
</tr>
<tr>
<td>IT</td>
<td>Italy, Southern Europe, Europe</td>
<td>15.78%</td>
<td>19.39%</td>
<td>805477</td>
<td>1.17</td>
<td>942582</td>
</tr>
</tbody>
</table>
Weighting the Results

It’s not perfect by any means, but it is a reasonable first pass to correct for the implicit ad placement bias in the raw data.

So now we have a method to measure a sample of Internet users and a process that can relate that measurement back to the Internet as a whole.

How can we use this?
The Generic Approach

• Seed a user’s browser with a set of tasks that cause identifiable traffic at instrumented servers
• Rely on unique dns names to ensure that DNS/Web caching is not used
• The servers collect DNS and Web activity traces that match the URLs in the provided tasks
• Analysis of server logs provides measurement data
What does this allow?

• In providing an end user with a set of URLs to retrieve we can examine:
 – Protocol behaviour
 e.g.: V4 vs V6, protocol performance, connection failure rate
 – DNS behaviours
 e.g.: DNSSEC use, DNS resolution performance, DNS response size, crypto protocol performance,...
Measuring IPv6
Measuring IPv6

Client is given 4 unique URLs to load:

- Dual Stack object
- V4-only object
- V6-only object
- Result reporting URL (10 second timer)

We want to compare the number of end devices that can retrieve the V6-only object to the number of devices that can retrieve the V4-only object (V6 Capable)

We can also look at the number of end devices that use IPv6 to retrieve the Dual Stack Object (V6 Preferred)
IPv6 Deployment

IPv6 Country Deployment for World (XA)
IPv6 Deployment in the US

IPv6 Country Deployment for United States of America (US)
IPv6 Deployment in Comcast

IPv6 Country Deployment for AS7922: COMCAST-7922 - Comcast Cable Communications, United States of America (US)
Measuring DNS Behaviours
Understanding DNS behaviour is "messy"

What we would like to think happens in DNS resolution!
Understanding DNS behaviour is "messy"

A small sample of what appears to happen in DNS resolution
Understanding DNS behaviour is "messy"

The best model we can use for DNS resolution
This means...

That it is hard to talk about “all resolvers”

– We don’t know the ratio of the number of resolvers we cannot see compared to the resolvers we can see from the perspective of an authoritative name server

– We can only talk about “visible resolvers”
This means...

And there is an added issue with DNSSEC:

– It can be hard to tell the difference between a visible resolver performing DNSSEC validation and an occluded validating resolver performing validation via a visible non-validating forwarder

(Yes, I know it's a subtle distinction, but it makes looking at RESOLVERS difficult!)
This means...

It’s easier to talk about end clients rather than resolvers, and whether these end clients use / don’t use a DNS resolution service that performs DNSSEC validation.
Measuring DNSSEC

Client is given 4 unique URLs to load:

- DNSSEC-validly signed DNS name
- DNSSEC-invalidly signed DNS name
- Unsigned DNS name (control)
- Result reporting URL (10 second timer)

All DNS is IPv4
DNSSEC Validation

Use of DNSSEC Validation for World (XA)
DNSSEC Validation in Sweden

Use of DNSSEC Validation for Sweden (SE)
What Else?

• We can isolate the behaviour of individual DNS resolvers using indirection (glueless delegation) within the delegation path
 – How many resolvers fail to resolve a name when the DNS response is 1,444 octets?
 – How many resolvers can use IPv6? How many resolvers prefer to use IPv6?
Q: a.b.example.com? @ example.com
A: NS nsb.z.example.com

Q: nsb.z.example.com? @ 2.example.com
A: 192.0.2.1

Q: a.b.example.com? @ b.example.com
A: 10.0.0.1
What Else?

- DNSSEC Crypto Support: How many users who use DNSSEC validating resolvers correctly validate when the signatures use ECDSA (as distinct from RSA)
What Else?

• The “market” for DNS resolution: how many users send their queries through Google’s Public DNS servers?
• How many users use resolvers located in a foreign country?
• Which countries?
What Else?

• Digital Stalking: We deliver a unique URL to a single end device via the AD placement mechanism
 – We expected that the script would be executed once.
 – But for some 2% of users we see the script executed a second time!
What Else?

• This approach allows us to analyze user behaviour when presented with particular tests
 – DNS: response size, TCP behaviour, resolver distribution, matching resolvers to users, resolver timers, EDNS0 use, EDNS0 client subnet use and accuracy, dual stack behaviour, response size,…
 – Web: Protocol preference, dual stack behaviour, response size, fragmentation behaviour, …
But...

• It's not a general purpose compute platform, so it can’t do many things
 – Ping, traceroute, etc
 – Send data to any destination
 – Pull data from any destination
 – Use different protocols

• This is a “many-to-one” styled setup where the server instrumentation provides insight on the inferred behaviour of the edges
Where now?

• We need to move this entire test system to use TLS
 – Too much malware is trying to intrude on the ad delivery system (i.e. the Great Canon!)
 – Ad delivery systems are pushing to secure any third party references
• We need to migrate the entire scripting system from Flash to an HTML5 base
• We need to migrate to use a customized DNS server that performs a combination of pseudo zone creation and on-the-fly signing
• We are moving off Apache to NGINX
• We need to improve our server infrastructure in location and capacity
In Summary…

• Measuring what happens at the user level by measuring some artifact or behaviour in the infrastructure and inferring some form of user behaviour is always going to be a guess of some form.

• If you really want to measure user behaviour then its useful to trigger the user to behave in the way you want to study or measure.

• The technique of embedding simple test code behind ads is one way of achieving this objective
 – for certain kinds of behaviours relating to the DNS and to URL fetching.
Questions?

APNIC Labs:
Geoff Huston research@apnic.net