IPv4 Address Exhaustion: A Progress Report

Geoff Huston
Chief Scientist, APNIC
The mainstream telecommunications industry has a rich history
The mainstream telecommunications industry has a rich history

...of making very poor technology choices
The mainstream telecommunications industry has a rich history...of making very poor technology guesses and regularly being taken by surprise!
So, how are we going with the IPv4 to IPv6 transition?
Do we really need to worry about this?
Do we really need to worry about this?

Surely IPv6 will just happen — it's just a matter of waiting for the pressure of IPv4 address exhaustion to get to sufficient levels of intensity.
Do we really need to worry about this?

Surely IPv6 will just happen - its just a matter of waiting for the pressure of IPv4 address exhaustion to get to sufficient levels of intensity.

Or maybe not - let's look a bit closer at the situation ...
The "inevitability" of technological evolution

wires
The "inevitability" of technological evolution

wires → virtual circuits
Well what did you expect? They are VIRTUAL circuits, so a picture was always going to be a challenge!
The "inevitability" of technological evolution

wires → virtual circuits → packets
The "inevitability" of technological evolution

Now let's look at something a little more topical to today!
The "inevitability" of technological evolution?
The "inevitability" of technological evolution?
The challenge often lies in managing the transition from one technology to another.
The challenge often lies in managing the transition from IPv4 to IPv6, requiring an excursion through an environment of CGNs, ALGs, and similar middleware solutions to IPv6 address exhaustion.
Transition requires the network owner to undertake capital investment in network service infrastructure to support IPv4 address sharing/rationing.
Transition requires the network owner to undertake capital investment in network service infrastructure to support IPv4 address sharing/rationing.

What lengths will the network owner then go to to protect the value of this additional investment by locking itself into this “transitional” service model for an extended/indefinite period?
The challenge often lies in managing the transition from one technology to another.

The risk in this transition phase is that the Internet heads off in a completely different direction!
A digression...

How "real" is this risk?
A digression...

How "real" is this risk?

Is this industry seriously prepared to contemplate an IPv4 forever strategy?
Some Measurements

39% of the IPv4 transit networks appear to be dual stack capable

~50% of the Internet’s end devices have an installed IPv6 stack
IPv6 capability, as seen by Google

IPv6 capability, as seen by APNIC
Some Measurements

39% of the IPv4 transit networks appear to be dual stack capable.

48% of the Internet’s end devices have an installed IPv6 stack that can be tickled into life.

0.3% of the Internet’s end devices have native IPv6 delivered to them.
Some Measurements

39% of the IPv4 transit networks appear to be dual stack capable.

~50% of the Internet’s end devices have an installed IPv6 stack.

0.3% of the Internet’s end devices have native IPv6 delivered to them.

Where’s the problem here?
The last mile access service business is not doing IPv6 because:

A) they are stupid

B) they are lazy

C) they are uninformed

D) they are broke

E) they operate in an economic and business regime that makes provisioning IPv6 an unattractive investment option for them
The last mile access service business is not doing IPv6 because:

A) they are stupid
B) they are lazy
C) they are uninformed
D) they are broke

E) they operate in an economic and business regime that makes provisioning IPv6 an unattractive investment option for them
The last mile access service business is not doing IPv6 because:

A) they are stupid
B) they are lazy
C) they are uninformed
D) they are broke
E) they operate in an economic and business regime that makes provisioning IPv6 an unattractive investment option for them.
Back to networking basics....
Telco nostalgia...

The historical vertically integrated service architecture
Devolution of the integrated service architecture through an open IP service architecture and deregulation
Devolution of the integrated service architecture

Where's the money to invest in new network services?
Users

Access Provider

$ \rightarrow \$
Users

Access Provider

Services
CGNs and ALGs and similar IPv4 rationing middleware devices provide control points in the IPv4 network that allow monetary extraction from both consumers and content providers.
A digression...

How "real" is this risk?

Is this industry seriously prepared to contemplate an IPv4 forever strategy?

Yes — it’s a possibility!
How can we "manage" this transition?
How can we "manage" this transition?

To ensure that the industry maintains a collective focus on IPv6 as the objective of this exercise!
How can we "manage" this transition?

To ensure that the industry maintains a collective focus on IPv6 as the objective of this exercise!

And to ensure that we do not get distracted by attempting to optimize what were intended to be temporary measures.
How can we "manage" this transition?

This was always going to be a very hard question to try and answer!
How can we "manage" this transition?

This was always going to be a very hard question to try and answer!

And the data on IPv6 update so far suggests that we are still not managing this at all well. Progress at the customer edge of the network with IPv6 access is glacial.
How can we "manage" this transition?

This was always going to be a very hard question to try and answer!

And at the moment we seem to be making the task even harder, not easier, by adding even more challenges into the path we need to follow!
Challenges:

1. This is a deregulated and highly competitive environment
Challenges:

1. This is a deregulated and highly competitive environment

 It is NOT a case of a single "either/or" decision
Challenges:

1. This is a deregulated and highly competitive environment

 There are many different players

 Each with their own perspective
Challenges:

1. This is a deregulated and highly competitive environment

There are many different players
Each with their own perspective

And all potential approaches will be explored!
Challenges:

1. This is a deregulated and highly competitive environment
 There is no plan!
Challenges:

1. This is a deregulated and highly competitive environment.
 There is no plan, just the interplay of various market pressures.
Challenges:

1. This is a deregulated and highly competitive environment
 There is no plan, just the interplay of various market pressures

2. Varying IPv4 Address Exhaustion Timelines
IPv4 Address Exhaustion - APNIC
Address Exhaustion Projections
Exhaustion Predictions

<table>
<thead>
<tr>
<th>RIR</th>
<th>Predicted Exhaustion Date *</th>
<th>Remaining Address Pool (2 Oct 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APNIC</td>
<td>19 April 2011 (actual)</td>
<td>1.20 /8s (0.3 /8s rsvd)</td>
</tr>
<tr>
<td>RIPE NCC</td>
<td>9 June 2012</td>
<td>3.91 /8s</td>
</tr>
<tr>
<td>LACNIC</td>
<td>1 March 2014</td>
<td>4.27 /8s</td>
</tr>
<tr>
<td>AFRINIC</td>
<td>28 May 2014</td>
<td>4.38 /8s</td>
</tr>
<tr>
<td>ARIN</td>
<td>9 Oct 2014</td>
<td>5.91 /8s</td>
</tr>
</tbody>
</table>

* Here “exhaustion” is defined as the point when the RIR’s remaining pool falls to 1 /8
So what?
Reality Acceptance
Reality Acceptance

Or not
Reality Acceptance
Or not

Is IPv4 address exhaustion a "here and now" problem or a "some time in the future" problem?
Reality Acceptance

Or not

Is IPv4 address exhaustion a "here and now" problem or a "some time in the future" problem?

Well, that depends on where you happen to be!

If it hasn’t happened to you yet, then denial is still an option!
Reality Acceptance

Or not

Is IPv4 address exhaustion a "here and now" problem or a "some time in the future" problem?

It's not happening until it's happening to me!
Challenges:

1. This is a deregulated and highly competitive environment.
 There is no plan, just the interplay of various market pressures.

2. Varying IPv4 Address Exhaustion Timelines
 There is a credibility problem!
Challenges:

1. This is a deregulated and highly competitive environment.
 There is no plan, just the interplay of various market pressures.

2. Varying IPv4 Address Exhaustion Timelines.
 There is a credibility problem: This industry has a hard time believing reality over its own mythology.
Challenges:

1. This is a deregulated and highly competitive environment. There is no plan, just the interplay of various market pressures.

2. Varying IPv4 Address Exhaustion Timelines. There is a credibility problem: This industry has a hard time believing reality over its own mythology.

3. Regional Diversity.
Today

IPv4
IPv6
CGNs
ALGs
CDNs
APNIC
RIPE NCC
LACNIC
AFRINIC
ARIN

transition.
Mid 2012

IPv4

IPv6

transition.

RIPE NCC

CGNs

APNIC

LACNIC

ARIN

AFRINIC

ALGs

CDNs
2013

IPv4

IPv6

transition.

LACNIC

ARIN

AFRINIC

ALGs

CGNs

CDNs

APNIC

RIPE NCC

IPv4

IPv6
By 2013 it is possible that different regions of the world will be experiencing very different market pressures for the provision of Internet services, due to differing transitional pressures from IPv4 exhaustion.
By 2013 it is possible that different regions of the world will be experiencing very different market pressures for the provision of Internet services, due to differing transitional pressures from IPv4 exhaustion.

What's the level of risk that the differing environments of transition lead to significantly different outcomes in each region?
By 2013 it is possible that different regions of the world will be experiencing very different market pressures for the provision of Internet services, due to differing transitional pressures from IPv4 exhaustion.

Will we continue to maintain coherency of a single Internet through this transition?

What's the level of risk that the differing environments of transition lead to significantly different outcomes in each region?
The Myth of the Long Term Plan
The Myth of the Long Term Plan

"Transition will take many years...

5 years, maybe 10 years, maybe longer"
The Myth of the Long Term Plan

“Transition will take many years...
5 years, maybe 10 years, maybe longer”

Are we still firmly committed to the plans we had 5 years ago?
The Myth of the Long Term Plan

"Transition will take many years...

5 years, maybe 10 years, maybe longer"

Are we still firmly committed to the plans we had 5 years ago?
How about our 10 year old plans?
The Myth of the Long Term Plan

“Transition will take many years...

5 years, maybe 10 years, maybe longer”

Are we still committed to the plans we had 5 years ago? How about our 10 year old plans?

The longer the period of transition, the higher the risk of completely losing the plot and heading into other directions!
IPv4

IPv6

transition.

201x?

ARIN

LACNIC

AFRINIC

CGNs

RIPE NCC

IPv4

ALGs

CDNs

APNIC
20xx?

IPv4

N. America
S. America
Europe / Mid East
Asia
Africa

IPv6
Challenges:

1. This is a deregulated and highly competitive environment
 There is no plan, just the interplay of various market pressures

2. Varying IPv4 Address Exhaustion Timelines
 There is a credibility problem: This industry has a hard time believing reality over its own mythology

3. Regional Diversity
 One network is not an assured outcome!
Challenges:

1. This is a deregulated and highly competitive environment
 There is no plan, just the interplay of various market pressures

2. Varying IPv4 Address Exhaustion Timelines
 There is a credibility problem: This industry has a hard time believing reality over its own mythology

3. Regional Diversity
 One network is not an assured outcome:
 Market pressures during an extended transition may push the Internet along different paths in each region
if what we are after as an open and accessible platform for further network growth and innovation
then the public interest in a continuing open and accessible network needs to be expressed within the dynamics of market pressures.

Today’s question is:

How can we do this?
How can we help the Internet through this transition?
How can we help the Internet through this transition?

Or at least, how can we avoid making it any worse than it is now?
Yes, that was intentionally left blank!

I really don’t know what will work.
And as far as I can see, nor does anyone else!
But even though I don't have an answer here, I have some thoughts to offer about this issue of pulling the Internet through this transition.
Three thoughts...
Firstly

If we want one working Internet at the end of all this, then keep an eye on the larger picture

Think about what is our common interest here

and try to find ways for local interests to converge with our common interest in a single cohesive network that remains open, neutral, and accessible
Secondly

Addresses should be used in working networks, not hoarded or "safeguarded"

Scarcity generates pain and uncertainty
Extended scarcity prolongs the pain and increases the unpredictability of the entire transition process
No matter how hard we may want it to be otherwise, “scarcity” and “fairness” are not synonyms!
Finally...

Bring it on! A rapid onset of exhaustion and a rapid transition represents the best chance of achieving an IPv6 network as an outcome.

The more time we spend investing time, money and effort in deploying IPv4 address extension mechanisms, the greater the pain to our customers, and the higher the risk that we will lose track of the intended temporary nature of transition and the greater the chances that we will forget about IPv6 as the objective!
Thank You!