Secure Internet Solutions

Geoff Huston
Chief Scientist, Internet
Telstra
User Beware

- I am not a security expert
- I am a simple consumer of security solutions as a user of Internet-based secure services and applications
User Beware

No security system is absolute

- All security measures mitigate risk, not eliminate it
- Security measures obey the law of diminishing return
- Determine what level of risk is acceptable
- Constantly review risk assumptions
The Issues

- Risks and vulnerabilities
 - DNS hijacking
 - Cache hijacking
 - Routing hijacking
 - Identity hijacking
 - Session hijacking
 - Session monitoring

- The Internet’s base trust model is very basic
 - Security is an overlay, not an intrinsic property of the network itself
Secure Solutions

What are the problems to be addressed?

- Identity authentication
- Application authentication
- Third party intervention
 - monitoring
 - awareness
 - alteration
 - disruption or denial
 - hijacking
Security has many dimensions

- Secure end-to-end IP conversations
- Secure application-to-application conversations
- Authenticated communications
- Secure transport systems
- Secure VPNs
Security Building Blocks

- IPSEC + IKE
 - End-to-End transport
 - Gateway-to-Gateway transport
 - Includes header and payload checksum
 - Includes payload encryption
 - Compute load is high
 - IKE is not absolutely robust (evidently)
 - Cannot tolerate NATs in the transport path
 - Used in CPE devices for overlay VPNs
Security Building Blocks

TLS (HTTPS)

- Application-level payload encryption
- Weak key exchange model
- Prevents interception monitoring of the application traffic
- No authentication
Security Building Blocks

SSH

- Secure telnet tunnels
- Secure encrypted conversation between a roaming satellite and a SSH server
- Supports tunnels for application access (using NAT at the server)
- Used to support extensions of corporate access into public Internet environments
 - Road Warrior tools
Security Building Blocks

Public Key Infrastructure (PKI)

- Public / Private key infrastructure
- Allows for third party validation of identity of the end systems
- Allows for use of keys to perform encryption
- Keys normally associated with the host system, not the user of the host
Security Building Blocks

Secure Transport Systems

- Data-link layer encryption
 - e.g. WEP for Wi-Fi
- Caveat regarding potential regulatory requirements for clear payload interception
- Not end-to-end
 - No authentication
Secure VPNs

Overlay VPNs with CPE-to-CPE IPSEC tunnels

- Issues with TCP MTU negotiation
- Issues with performance
- Issues with key management

- Vendor equipment available
- Common VPN solution
Secure VPNs

2547bis MPLS VPNS

- Use MPLS to switch from PE to PE across the provider core
- Further encryption of payload not strictly necessary (VC-style functionality)
- Requires explicit provider support
- Inter-provider interoperability limited
Secure Roaming

- IPSEC tunnel as overlay on dial PPP access
- SSH tunnel as overlay on access
Secure Application Services

- Certificates are excellent
 - Requires initial overhead on certificate exchange
 - Good browser support
 - But not portable across hosts

- User/password + TLS is more flexible, but at a cost of higher vulnerability
Discussion

- Security is an overlay across the Internet, not an intrinsic part of the network itself.
- Many security incidents are evidently the outcome of social rather than technical engineering.