
Limiting Path Exploration in BGP
�

Jaideep Chandrashekar Zhenhai Duan Zhi-Li Zhang Jeff Krasky

Abstract

Slow convergence in the Internet can be directly attributed to the path exploration phe-
nomenon, inherent in all path vector protocols. The root cause for path exploration is the
dependency among paths propagated through the network. Addressing this problem in BGP is
particularly difficult as the AS paths exchanged between BGP routers are highly summarized. In
this paper, we describe why path exploration cannot be countered effectively within the existing
BGP framework, and propose a simple, novel mechanism—forward edge sequence numbers—
to annotate the AS paths with additional “path dependency” information. Then, we develop an
enhanced path vector algorithm, EPIC, which can be shown to limit path exploration and lead to
faster convergence. In contrast to other solutions, ours is shown to be correct on a very general
model of Internet topology and BGP operation. Using theoretical analysis and simulations, we
demonstrate that EPIC can achieve a dramatic improvement in routing convergence, compared
to BGP and other existing solutions.

1 Introduction

The Internet is a collection of independently administered Autonomous Systems (ASes), which are
glued together by the Border Gateway Protocol (BGP) [RLH03], the de facto inter-domain routing
protocol in the Internet. BGP is a path vector routing protocol where the list of ASes along the path
to a destination (AS path) is carried in the BGP routing messages. Using these “path vectors”, BGP
can avoid the looping problems associated with traditional distance vector protocols. However, BGP
may still take relatively long time to converge following a network failure. Experimental studies
show that in practice, BGP can take up to fifteen minutes to converge after a failure [LMJ99]. The
root cause of this slow convergence is the dependency among paths announced through the network,
which leads to path exploration: when a previously announced path is withdrawn, other paths that
depend on the withdrawn path (now invalid) may still be chosen and announced, only to be removed
later one by one. During path exploration, the network as a whole may explore a large number
of (valid and invalid) routes before arriving at a stable state. Theoretically, a path vector routing
protocol can explore as many as

�������	�
alternative routes to converge in the worst case. Addressing

path exploration within the framework of BGP is particularly challenging: the AS paths carried
with BGP route advertisements are highly summarized, making it difficult to capture dependencies
between different paths and to correctly distinguish between valid and invalid paths.

Path exploration has several undesirable side effects. First, it takes several minutes for the net-
work to converge after a failure. In this time, a large number of packets are lost or delayed, adversely

This paper is to be considered a work in progress.

1

affecting the performance of applications such as VoIP, streaming video, online gaming, etc. Sec-
ond, the additional protocol activity increases the load on routers, which are forced to process up-
dates for transient routes. In severe cases, this additional load can cause routers to “tip over”, leading
to cascaded network failures [CGH02]. Third, normal path exploration may be incorrectly identified
as instability (i.e., flapping routes), triggering damping mechanisms at routers [MGVK02]. Lastly,
it complicates the task of identifying the root-causes of routing updates, essential in understanding
inter-domain routing dynamics [Gri02].

In this paper, we propose a simple and novel mechanism—forward edge sequence numbers—to
annotate routing updates with path dependency information, so as to effectively address the path
exploration problem. Based on this mechanism, we develop an enhanced path vector routing pro-
tocol, EPIC, which limits path exploration and leads to faster protocol convergence after network
failure and repair events. Our solution has the following properties: 1) it considerably improves
convergence after a failure. The convergence time following a link/router failure is reduced to����� �

, where
�

is the “diameter” of the Internet AS graph; 2) in contrast to previous solutions
which assume a simplified setting, our solution is based on a more general and realistic model of
BGP operation and AS topology: ASes may contain internal routers and share multiple edges with
neighboring ASes; 3) it does not require ASes to expose detailed connectivity information; 4) it can
be implemented with fairly modest communication and memory overhead

The remainder of this paper is structured as follows: Sec. 2 briefly reviews BGP operation and
illustrates the path exploration problem. In Sec. 3 we introduce the proposed novel mechanism for
embedding path dependency, i.e., forward edge sequence numbers and use examples to show how
they are used. A detailed description of EPIC is presented in Sec. 4, along with correctness results.
Sec. 6 lists some analytical results for EPIC and simulation results are presented in Sec. 7. Finally,
we review some related work in Sec. 8 and conclude in Sec. 9.

2 Path Exploration

In this section, we briefly review the operation in BGP and subsequently discuss the path exploration
phenomenon. In particular, we show that path exploration is an inherent property of all path vector
protocols and describe why it is particularly hard to address, in the context of BGP.

2.1 Border Gateway Protocol

BGP is used between ASes to exchange network reachability information. Each AS has one or
more border routers that connect to routers in neighboring ASes, and possibly a number of internal
BGP routers. BGP sessions between routers in neighboring ASes are called eBGP (external BGP)
sessions, while those between routers in the same AS are called iBGP (internal BGP) sessions. Note
that two adjacent ASes may have more than one eBGP session. We now briefly describe the relevant
operation at a BGP router (see [RLH03] for the complete specification).

BGP routers distribute “reachability” information about destinations by sending route updates,
containing announcements or withdrawals, to their neighbors. In the rest of this paper, we implicitly
assume a fixed destination, say � .

A route announcement contains a destination and a set of route attributes, including the AS path
attribute, which is a sequence of AS numbers that enumerates the different ASes that have been
traversed by the route. We denote an AS path as � �������
	����������� , where ��� is the origin AS to

2

which � belongs. In contrast, route withdrawals only contain the destination and implicitly tell the
receiver to invalidate (or remove) the route previously announced by the sender.

When a router receives a route announcement, it first applies a filtering process (using some
import policies). If accepted, the route is stored in the local routing table. The collection of routes
received from all neighbors (external and internal) is the set of candidate routes (for that destina-
tion). Subsequently, the BGP router invokes a route selection process— guided by local policies—
to select a single “best” route from this set [bgp]. After this, the selected best route is subjected to
some export policies and then announced to all the router’s neighbors. Importantly, prior to being
announced to an external neighbor (in a different AS), but not to an internal neighbor, the AS path
carried in the announcement is prepended with the ASN of the local AS.

2.2 Network Model

We introduce an abstract model for an idealized (and somewhat simplified) inter-domain path vector
protocol that captures and incorporates most of the complexity in BGP. This abstract model frees
us from many nitty-gritty details and operational considerations (e.g., policy issues) of BGP, while
allowing us to focus on the relevent issues.

To represent the two-level inter-domain routing structure of the Internet, we adopt the following
two-level graph model. First, we model the Internet as an undirected (border) router-level graph,���������
	��

. Here the vertices,
�������������������������� ��!"�$# � �

, represent the collection of
border routers (e.g., BGP speaking routers): each

�%�&�
,
�'�(!)��# �

, denotes border router
!

in AS�
, and

� � �*�+�,���-�.�/�0!��0# � �
is the set of border routers in AS

�
. Henceforth, we simply use

the word router for
�,���

. The edge set
	

represents the “logical links” (e.g., BGP Sessions) between
the border routers. We distinguish between two types of edges: internal edges, i.e., edges between
routers within an AS; and external edges, i.e., edges between routers in different ASes. For each AS�
, we use

	21�
to denote the set of internal edges in AS

�
. The collection of external edges is denoted

by
	43

. Hence
	5� �7698�;: � 	 1� �<6=	>3 .

To simplify our discussion of our abstract path vector protocol model, we impose the following
restriction on the set

	
:

1. ? �@�'!"A�!CBEDGFH�,�&�7�I� ���KJCL)M 	 1
. In other words, we require that routers within an AS are fully

connected, i.e., form a full mesh.

However, later in the paper, we discuss situations where this does not hold and how such situations
can be handled.

Given this router-level graph
�

, we can now construct an induced AS Graph;
�<N<O����PQN<OR�TS)NROE�

.PUNRO����V�,� �� �W�X� and
S)NRO����YFC�T�
�7B L �>FC� �[Z �I�,� J Z JHL-M 	43\�

. We will refer to a vertex in
�ENRO

as an
AS node, and an edge in

�ENRO
an AS edge.1 Note that neighboring ASes may share multiple adjacent

edges. For convenience, by
	23]_^ ` we take to mean the set of all edges between ASes a and

�
, when

a �
� M PQN<O , or the set of all edges between the ASes that contain a and
�

, when a �
� M � . Clearly,	43]_^ ` �b	43`+^] .
We now describe the abstract path vector protocol. The description below is with respect to a

specific, fixed destination , say � (in c�d �). Each AS
�

announces or withdraws network reachability
(to destination �) to a neighboring AS based on network reachability it has learned from other AS

1However, when there is no confusion, we will simply refer to them as a node and an edge.

3

neighbors. Thus, network reachability is represented in the form of AS-level path vectors, i.e., paths
in
� N<O

.
Consider a router

�,���
in AS

�
and let

� �&� � � � denote the set of all AS paths to destination �
(in c d �) that it learns from its neighbors in other ASes. Since � is implicitly specified in our
description, we shall simply use

� �
to represent the set of all paths at any router in c�d�� . This allows

us to operate at the AS level, rather than considering each router. Abstractly, for each c�d�� , we
define a path preference function � � that selects the “preferred” path, or possibly the empty path,
from the set

� �
. We define ���� � � � � � � � . Since we are discussing protocol convergence, we will

only consider policy configurations i.e.
� � � �R� M PUN<O � , that are safe (see [VGE99, GW99] for a

discussion of this problem). If the path ���� happens to be empty (and AS
�

previously announced
a non-empty path), then AS

�
sends a withdrawal to its neighbors; otherwise it announces the path

� �� .
We use the term physical event to denote a lower-level network event (e.g., a link failure) that

causes an edge between two internal or external border routers to be affected (e.g., the E-BGP or
I-BGP session between the two BGP routers is down). We use the term (inter-domain) routing event
to denote the resulting generation or propagation of routing protocol messages, such as a route
withdrawal or a new route announcement. In this respect, we distinguish between primary (routing)
events and secondary (routing) events. A primary (routing) event is generated by the routers that are
directly affected by a physical event, and corresponds to the generation of a new routing message
(route withdrawal or update) in its own right. Secondary (routing) events are triggered in response
to a primary event, for example, the generation of a new route announcement upon receipt of a route
withdrawal message, or the continued propagation of the route withdrawal message.

This distinction between primary and secondary behavior is key to correctly handling path
exploration. In many cases, physical events within the AS, as well as events associated with the
external edge, can trigger the same secondary behavior. One of the key ideas that we will describe
in this paper is the embedding of additional information that will enable this distinction to be made.

We now define some notation that describes the exchange of messages between nodes. For each
AS
�
, we use

�
	��%� � �� � to indicate a route announcement2, namely the announcement of its (current)
best path � to its neighbor AS

�
. Sometimes, to emphasize the two border routers involved, we will

use
�,�&��	 � Z�� � � �� � to indicate that the announcement is sent from router

�_���
of AS

�
to router

� Z��
of AS

�
. Note that upon receiving

��	��%� � � � � , AS
�

will add � into its pathset
� Z

, replacing the
previous best path � B announced by AS

�
, if it exists.3 Similarly, we use

�
	��%� � �� � to indicate a
route withdrawal from AS

�
to AS

�
, which invalidates its previous best path � announced to AS

�
.

Upon receiving
�
	��%� � �� � , AS

�
will remove � from its pathset

� Z
.

Note that the receipt of a route announcement
��	��%� � � � � or withdrawal

�
	��%� � � � � may trigger
AS

�
to generate a secondary event (a route announcement or withdrawal), depending on whether

� will affect the selected best path of AS
�
.

In a system as large as the Internet, there is a very high likelihood of many primary events (link
failures, router resets, policy changes, and so on) taking place at the same time. In addition, it is
possible that many logical edges in the graph share the same underlying physical link, whose failure
affects all the logical connections. For ease of exposition in this paper, we will assume that any

2To be more general, we use the notation ��������������� �"!"!"!"��� # $�% &(')+* to indicate that AS � sends the identical announce-
ment to each of �������,�,�"!"!"!"��� # , which are neighbors.

3More precisely, upon receiving ���-��% &(').* , the corresponding border router propagates the router announcement to
other routers within AS � , each of them will add) its pathset /1032 , replacing the old path)

J
if it exists.

4

single time, there is at most a single primary event, and this affects a single edge (which may be
internal or external). This allows us to make the description of our solution and the subsequent
analysis easy to understand.

2.3 Path Exploration and BGP

Vectoring protocols are inherently associated with path dependencies: the path selected by a
router depends on paths learned by its neighbors, which in turn is influenced by the paths selected
at the neighbors’ peers, and so on. This natural property leads to the so-called path exploration
phenomenon that prolongs protocol convergence. Note that the path vectors that are carried in path
vector protocols prevent routing loops, but they cannot avoid path exploration. As a path vector
protocol, BGP exhibits path exploration. More significantly, it introduces additional complexity
that makes it particularly difficult to address this problem. In the rest of this section, we illustrate
the path exploration phenomenon by an example, then describe why, in general, it is impossible to
avoid it by solely relying on the AS paths associated with BGP routes.

Consider the topology in Fig. 1. Now suppose c d�� announces a path to destination � . This
announcement is received at its neighbors and propagated hop by hop. Finally, when the network
converges, c d�� knows three paths to reach � , i.e. ����� � � � , � �	� � � � , and ��
� � � � , listed here in the order
preferred.

Now consider what happens when the link between c d�� and c�d � fails, making � unreachable
at c�d � . This failure triggers the following sequence of events: c�d � sends withdrawals to c d�� and
c d�� . In turn, each of them sends withdrawals to their own neighbors. Eventually, c�d�� will receive
withdrawals from each of c d�� , c d�� and c�d�
 (in some order). Suppose the first one was from
c d�� ; then c d�� removes the path � ��� � � � , selects � ��� � � � as the “best path” and sends it to its (other)
neighbors. However, if the withdrawal from c�d�� arrives next, then this “best path” is invalidated
and c d�� selects (and announces) ��
�� � � � . Finally, after c d�� receives the withdrawal from c�d�
 , it
invalidates the path announced earlier and sends a withdrawal.

This cycle of selecting and propagating (invalid) paths is termed path exploration. Clearly, the
cycle stops after all the obsolete routes have been explored and invalidated.

Path exploration significantly prolongs the protocol convergence after a network failure or re-
pair event. Labovitz et.al. showed that in the worst case, as many as

�������	�
alternate paths may be

explored after a failure [LABJ01]. However, in practice, such a worst-case scenario is rare in to-
days Internet: common routing policies, which reduce the number of available routes, and protocol
timers, that limit how fast updates can be sent, have a beneficial effect. Nonetheless, path explo-
ration can still adversely impact performance, especially after network failures. It is quite common
for Internet convergence to take several minutes, and even a relatively short convergence delay can
cause pronounced packet loss. This is most severe in the Internet core, where link speeds are very
is characterized by high link speeds and rich connectivity. 4

Having discussed why addressing path exploration is important, we now explain why BGP-
specific details make it especially hard to solve this problem, and argue that a new augmented
mechanism is necessary.

Addressing path exploration in BGP is hard. The crux of this matter is that it is impossible to
accurately detect (or even describe) the path dependencies based solely on the AS path information
carried in BGP announcements. The AS path is a very high level summary of the actual router level

4The so-called tier-1 ISP’s peer with each other at more than 15 different locations [coo02].

5

Figure 1: BGP and Path Exploration. Solid lines represent eBGP sessions, while dashed lines indicate iBGP sessions.

paths, and does not reflect the (often) complicated internal AS topologies and interconnections.5 The
devil being in the details, this summarization conceals information that would have made it possible
to detect path dependencies. In the following, again using Fig. 1, we illustrate how different failure
events can generate the same updates, complicating the task of detecting path dependency in BGP.

Note that when the network is in a stable state, c d�� knows of three routes to � , i.e. ����� � � � ,
� ��� � � � and ��
� � � � . Now, suppose that some external event causes the edge between c d � and c d��
to fail. Then, router �� � can no longer reach � . Thus it is the event originator, and generates a
withdrawal to invalidate the route � � � � . This primary event will cause both routers �
 � and �� � to
withdraw the route(s), ��� � � � previously announced to c�d�� and c d�� earlier. In other words, this
primary event should affect both routes that c d�� learned earlier through c�d�� and c d�� (i.e. ����� � � �
and � �	� � � � respectively).

Now consider a different failure event, this time affecting the internal edge between �
 � and
�� � , but not the edge

F
�
 �,� �� � L . In this case router �� � detects the event and is the event originator.

Correspondingly, it will generate a withdrawal invalidating the route ��� � � � sent to c d�� earlier.
When the withdrawal is forwarded to c�d�� from c�d�� , the only route that should be invalidated is
����� � � � .

In both these distinct scenarios, c d�� will send a withdrawal to c d�� , (implicitly) invalidating
the same ��� � � � . How can c�d�� know that in the first case, the withdrawal from c d�� should cause
two routes to be invalidated, and only one in the second case? By simply inspecting the AS path
information in the route updates, c�d�� cannot distinguish between these two scenarios.

To make things more complicated, now consider a third scenario, where the internal edge be-
tween router �� � and router �� � fails. This may cause router 6.2 (the event originator) to withdraw
the route � � � � � (announced earlier). In turn, router 7.1 will send the withdrawal of ��� � � � to router
7.3. Compare this scenario vs. the scenario where the edge between c�d�� and c d � fails, which
also causes router

 � to send the withdrawal of ��� � � � to
� � . Can router
� � tell that in the former
case it can still reach � via router
� � , but not in the latter? Again, by simply inspecting the AS path
information in the route updates, it cannot!

Furthermore, multiple network events may occur in a relatively short interval. Due to the gen-
eral complexity of AS topology and the varied propagation delays along different paths, updates
for events may arrive at a router in a different order than which the events occurred. To make this
concrete, consider the situation when the edge between c�d�� and c�d � fails, causing c d � to with-
draw the previously announced path � � � � . But now, suppose this is a transient failure, and the edge
comes back up quickly; causing c�d � to re-announce � � � � . However, the delays along the paths
towards c�d�� are different. Then, possibly, the withdrawal and subsequent re-announcement arrive

5For instance, large ISPs peer with each other at many locations and the same AS path may be announced at each
location. Although these paths correspond to distinct routes, this is not reflected in the actual AS paths.

6

at c�d�� through c d�� faster than the withdrawal sent along the path � �	� � � � . When c d�� receives
this “duplicate” withdrawal from c d�� , it will treat it as a withdrawal for the route ����� � � � , instead
of simply discarding it.

These examples clearly illustrate that AS paths, carried with BGP routes, do not contain suffi-
cient information to correctly distinguish valid and invalid paths, which is critical in suppressing the
exploration of obsoleted paths. Clearly, to address this problem effectively, we need to incorporate
additional information into route updates that will: (1) correctly capture the dependencies between
invalidated paths, and (2) be able to distinguish between route updates triggered by old and new
events. Also, ideally, such a mechanism should not require an AS to expose detailed (or internal)
connectivity information, nor impose undue processing, memory or communication overheads upon
a router. In the next section we introduce the notion of forward edge sequence numbers, which sat-
isfy all these requirements. Using this AS path “annotation”, routers can identify all routes that are
rendered obsolete by some failure event, and invalidate them at once, significantly improving the
protocol convergence time.

3 Forward Edge Sequence Numbers

As discussed previously, the AS path route attribute is insufficient to correctly distinguish invalid
paths from those that are valid.

This is because a router makes no distinction between AS paths it exports to different neighbors.
In other words, the outgoing (or forward) edge is not embedded in the announced AS path. In this
section, we describe how the “forward edge” captures the (missing) information that will enable
a router to identify paths obsoleted by a failure event. Our solution uses the notion of a forward
edge sequence numbers (or fesns) to capture the “state” of a forward edge. There are two different
types of fesn’s used in our scheme: major and minor. The former is defined uniquely for a pair
of adjacent ASes and is shared across all the minor edges between them. The latter is used to
distinguish between routes learned over distinct minor edges (from the neighbor AS).

Formally, a major fesn is described as follows: at any AS, say c�d � , corresponding to each
of its neighbors, say c d�� , we associate a major fesn (specific to each destination). We use the
notation (X:Y,n) to describe the major fesn for the forward edge from c�d � to c d�� . Note that the
integer

�
is incremented when

F�� ��� L
is restored after a failure. Importantly, it is not incremented

when the edge fails. Note that (X:Y,n) is ”managed” by c d � , i.e., c�d � is (solely) responsible for
incrementing the sequence number.6

When c d � sends a route announcement to neighbor c�d�� , it attaches (more precisely, prepends)
the corresponding major fesn, i.e., (X:Y,n), to the route.7 The same operation is performed at every
router along the way and consequently, a route contains a list of major fesn’s, which we call the
fesnList of the route.

Since fesns are distinct, c d � may send the same route update (with the exact same AS path)
to neighbors c d�� and c d	� , but the attached fesn’s are different, i.e., (X:Y,n) and (X:Z,m) re-
spectively. In other words, though the AS paths carried in the route updates are identical, the

6However, in a few special cases, in order to preserve consistency, we may also require
��� to independently
increment the fesn.

7Hence the designation “forward edge” sequence number. When the announcement is from
���� to
��� , we can
consider ��� ����� as the forward edge.

7

corresponding fesnList’s are different! More generally, the fesnList’s sent to different neighbors are
always distinct. This simple property allows us to capture the complex dependencies in AS paths.

Figure 2: AS level topology. Each (internal) router is labelled ����� ����	��
��� � � . Numbers along edges
represent the fesn values. The routing table at c d�� is shown in the table.

If there are multiple minor edges between neighboring ASes, they will all be associated with the
same major fesn. In order to distinguish between routes learned from different routers in the same
AS neighbor, a minor fesn, specific to each router level peering session, is used. Given router-router
edges, say

F�� B ��� B L
and

F�� B B ��� B B L
, between c�d � and c d�� , we associate them (uniquely) with distinct

minor fesn’s, i.e.
��� B ��� B ��� B �

and
��� B B �� B B ��� B B �

. However, they are both associated with the same AS
level major fesn. Like its counterpart, a minor fesn is incremented after the corresponding (minor)
edge is repaired. A key difference is that minor fesns are only carried in internal routing updates,
but never exported to a different AS. For example, in Fig. 2, when � � and � � send announcements
over the forward edges to routers
� � and
� � , the corresponding minor fesn’s, i.e. for

F
�� � �
� � L

and
F
�� � �
� � L , are attached. These are preserved when

 � and
� � forward the announcements

to internal neighbors. However, this is stripped out from any updates sent to a different AS, for
example, when router

 � sends a route to c�d�� .

In the rest of this section, using examples, we describe how the fesnlist is constructed, and
how network events i.e., failures and repairs, are handled. A detailed algorithmic description, is
presented in the next section.

Consider the topology in Fig. 2; the (major) fesn’s for each forward edge are indicated along the
edge (the numbers in parenthesis are the minor fesn values). By [ASPATH]

�
fesnList

�
, we mean a

route announcement containing both the AS path as well as the associated fesnList. Thus, the route
advertised by c d�� to c�d � , with ASPATH=[0] and fesnList=

�
(0:1,3)

�
is written as [0]

�
(0:1,3)

�
.

When c d � propagates this route further to c�d�� and c d�� , the announcements received at routers
�� � and � � are [10]

�
(1:2,2) (0:1,3)

�
and [10]

�
(1:6,1)(0:1,3)

�
respectively. Note, between these

announcements, the AS path is identical, but the fesnList’s are distinct.
When routes are advertised internally, the fesnlist is not changed. Hence both routers �� � and

�� � will receive the (same) route announcement, i.e. [10]
�
(1:2,2)(0:1,3)

�
. When these routers,

in turn propagate the route to their neighbors, the announcements received at c d�� and c d�� are
[210]

�
(2:3,1)(1:2,2)(0:1,3)

�
and [210]

�
(2:4,2)(1:2,2)(0:1,3)

�
, respectively. Again, notice that the

fesnlist’s are distinct. Finally, when the route announcements have been processed everywhere, the
routing table at c�d�� is as shown in Fig. 2.

Following a failure, when an event originator generates a route withdrawal, it will insert— into
the withrawal— the fesnList of the route being withdrawn. When the neighbor (an event propaga-
tor) generates a subsequent routing update, it sends along the (original) withdrawal without change.

8

In other words, an event propagator will forward an exact copy of the withdrawn fesnList it receives.
In the case that the propagator selects a new best route after processing the withdrawal, the original
withdrawal is “piggybacked” onto the (resulting) route announcement. Thus, every router that re-
ceives an update after the failure will see exactly the fesnList, inserted by the originator. Note that
the invalid (or withdrawn) route may not directly correspond to an AS path announced by a router.
To make this distinction clear, we refer to the path described in the fesnList as the “path-stem”, since
all the invalid AS paths are essentially its “branches”.

In the rest of this section, we revisit the failure scenarios described in section 2.3 and illustrate
how the fesnlist attribute can be used to identify the obsolete routes following a failure, avoiding the
problems previously mentioned.
External edge

FI���
�
L

fails: This is detected by router �� � in c�d�� , which originates a route with-
drawal sent to its internal peers �
 � and �� � . In keeping with previous notation, a withdrawal mes-
sage is described as W:[AS PATH]

�
fesnList

�
. Then the withdrawal sent by �
 � is W:[10]

�
(1:2,2)

(0:1,3)
�
.8 Subsequently, �
 � and �
 � will “propagate” the failure event by forwarding the withdrawal

to their respective (external) neighbors in c d�� and c d�� , and they in turn send the withdrawal(s) to
c d�� . Note that in each case, the contents of the withdrawal are identical.

When it receives a withdrawal message, perhaps attached to a route announcement, a router
checks the routes in its routing table and invalidates those that depend on the withdrawn “path-
stem”. In other words, the router invalidates every route for which the fesnList attribute contains the
withdrawn fesnList.

So, when the (first) withdrawal reaches c�d�� , the router searches its routing table to identify
routes whose fesnList contains

�
(1:2,2) (0:1,3)

�
. Notice that the first two routes in c�d�� ’s routing

table (see Fig. 2) match, and will be removed. However, note that the third route, with AS path
[7610] does not satisfy this condition and will be retained. Thus, the first withdrawal received at
c d�� will at once invalidate routes learned through c d�� and c�d�� , which both depend on the failed
edge. In BGP, each withdrawal message will invalidate a single route, i.e., the route previously
announced by the sender.

Now suppose that
FI�,�

�
L

is repaired; then c d � will increment the fesn for the edge. In response
to the repair event, it generates a primary routing event, i.e., the route announcement [10]

�
(1:2,3)(0:1,3)

�
,

and sends it to router �� � . At �� � , this new route, where the fesnlist contains the new value for
F ���

�
L
,

is installed in the routing table. The route is then exported to �
 � and �� � , which in turn will forward
the route to c�d�� and c d�� , and so on. Note that a new route announcement will always overwrite
an older route from the same neighbor.

Internal edge
F
�� ��� �
 � L fails: Notice that this failure will only affect the AS-level path [210] an-

nounced earlier by �� � to c d�� , but not the (same!) AS-level path ��� � � � announced by router �� �
to c d�� . Since only AS-level paths are announced and withdrawn, router �� � will withdraw ��� � � � ,
which it previously announced to c�d�� . When c�d�� forwards the withdrawal to c d�� , there are two
routes that contain the AS path �

�
� , learned from c d�� and c�d�� . Clearly, this withdrawal should

not cause the path learned from c�d�� to be invalidated. This is hard to know without any additional
information. This is where the fesn becomes important. Note that fesnList’s announced by �
 � to
c d�� and c�d�� , with the same AS path, i.e., [210], are distinct: the former contains the fesn forF
�
�
�
L
, while the latter does not (and instead contains the fesn for

F
�
�
�
L
). This ensures that the router

8As a technical detail, the withdrawal will not explicitly contain the AS Path since it is embedded in the fesnList.
However, we include it here to make the examples easier to follow.

9

at c d�� can clearly differentiate the same AS path announced by �
 � to different neighbors.
Thus, in response to

F
�� ��� �� � L failing, router �
 � sends a withdrawal message to c�d�� containing

[210]
�
(2:3,1) (1:2,3)(0:1,3)

�
, which in turn is forwarded to c�d�� . When this reaches c�d�� , only the

first route (through c d��) depends on the withdrawn path-stem and is invalidated, while the other
two routes are still valid.

External edge
F
� � �

 � L fails: Here, the failure only affects the AS-level path announced by
� �

to

 � , but not the route announced by
� � , associated with the same AS path, i.e., [610]. Thus,
when
� � receives the withdrawal from
� � , the route learned from
� � should not be invalidated.
While the AS path cannot be used to distinguish between the distinct routes, note that that minor
fesn attribute is different in each route.

Thus, after
F
� � �

 � L fails,
� � (the originator) sends withdrawals to

 � and
� � containing

[610]
�
(6:7,1)(1:6,1)(0:1,3)

�
(6.2:7.1,6). Note that the minor fesn for the failed edge is attached. At

� � , both fesnList and minor fesn, as present in the withdrawal, are used to identify invalid routes.
Note that only the route learned from

 � matches both the fesnList and minor fesn. Thus,
� � will
invalidate the route from
� � , but not that from
� � , which does not match the withdrawn minor fesn.

Now, after this, if
� � selects the route from
� � as its best route, note that the AS path has
not changed, and no subsequent route update is required. Alternatively, if it selects a route with a
different AS path, it will generate a subsequent route announcement.

These examples shows that by embedding forward edge information into route updates, we can
correctly detect path dependancies without having to include any information about the internal
connectivity in an AS.

4 Detailed Description

In this section, we present the detailed description of EPIC, which is the enhanced path vector
protocol which supports the new route attributes we have defined. As discussed previously, a key
notion in our solution is the distinct operations performed by event originators and propagators. In
the following, we separately describe each.

First, we describe some notation to be used in this section. By � � , we mean the “best route”
selected at router a . Recall that when a announces this route to an external neighbor

�
, it prepends

the AS path and fesnList with the corresponding values. To make this distinction clear, by � a 	 � � , we
mean the actual route announced by a to

�
. Following this notation, we refer to particular attributes

associated with each route as � � ��

 � and � a 	 � �����

�� , e.g., � � ���������
	� , � a 	 � � �
������� � �
 , and so on.
In the remainder of this section, we discuss the detailed operation at originators and propagators in
response to various events.

In the description that follows, in order to describe things cleanly, we shall assume that internal
routers in an AS are fully meshed. In the next section, we discuss the situation when this is not true.

Event Originator: A router becomes an event originator if a failure or repair is detected on an
adjacent edge (or peering session). We first discuss the operation after failure and subsequently the
repair scenario. Note that in either case, route updates will be originated only if the event causes the
router to change its best route.

Failure: When edge
F a �I� L fails, the originator, which is node

�
, does the following: first, it in-

validates the route previously learned from a and selects a new best route; then it generates a new

10

(a) External Failure (b) Internal Failure

Figure 3: The “path stems” that become invalid after a failure are different for internal and external
failures. The shaded path segments describe the “path stem” after failure.

routing event if the best route has changed, which is a route withdrawal if no best route exists, or
a route announcement is an alternate (valid) route was chosen. Note that in the latter case, a with-
drawal is attached to the announcement. In either case, the withdrawal contains the fesnList of the
invalidated route. Note that a new routing event is originated only if the failure affects the best route
at
�

. The detailed algorithm after a failure is presented in Alg. 1. The remaining issue is how the
invalid path-stem (or fesnList) is identified, and this depends on whether the (failed) edge is internal
or external.

First, we consider the case where
F a �I� L is external. Now suppose that after

F a �
� L fails, router
�

does not know of any other routes learned from the same AS neighbor. This could result from any
one of the following situations:

� There is a single edge, i.e,
F a �
� L , between the ASes involved.

� There are multiple edges between the ASes, but all of them are invalid. In other words, at the
time

F a �I� L fails, the other edges had already failed.

� There are multiple edges incident to other routers in the same AS, but no routes were an-
nounced over these, or else the router(s) in the same AS as

�
prefer some other route.

In any of the above cases, the effect is the same as if all the edges, between the two ASes, had failed.
Consider the example of Fig. 3(b). Here, when

F a �
� L fails, there are no other edges between the
adjacent ASes, and all routes that depend on the shaded path-stem, which includes

F a �
� L , become
invalid. Moreover, the “shaded” path stem is exactly the fesnList announced by a to

�
, i.e., � a 	� � �
��	��� � �
 . Importantly, the same fesnList is “embedded” in previous announcements to each of�

’s neighbors. Thus, when an external edge fails and no other valid minor edge is visible to the
event originator, a single (failure) routing event is generated:

�
generates a withdrawal containing

� a 	 � � �
������� � �
 which is sent to all its neighbors.
The alternate situation to consider is when

F a �I� L fails, but the event originator i.e.,
�

“knows”
of other valid minor edges. Here, notice that even though the failure affects the best route at

�
, it

might not cause routes learned over other minor edges to become invalidated. Hence,
�

can only
only invalidate the specific route learned over

F a �I� L , but not routes learned over other minor edges.
This is where the minor fesn, uniquely associated with

F a �I� L , can be used. After the failure,
�

generates a (failure) withdrawal event, which contains the fesnList, i.e., � a 	 � � �
������� � �
 and also the
minor fesn associated with the edge

F a �
� L . Note that routes learned over other minor edges will not
be associated with this particular minor fesn.

Thus, in either case, when
F a �I� L is external (and fails),

�
will always generate a single (failure)

routing event.

11

The last failure scenario to consider is when
F a �
� L is internal. Here, note that the “edge”

F a �I� L
is not captured in any AS path or fesnList. However, our notion of “forward edges” can address this
easily. The situation is captured in in Fig. 3(a): when the internal edge

F a �
� L fails, the affected path-
stem, shown by the shaded area, includes the forward edge

FH� ��� L
. Thus, the affected path-stem is

described by � � 	�� � �
������� � �
 , which was exactly what was sent with the earlier route announcement
(to
�

). However, when
�

has multiple external neighbors, note that the routes announced to each
are distinct, as the fesnLists are different. Thus, the failure of the internal edge

F a �I� L invalidates
each of the (distinct) routes announced by

�
to its neighbors. To correctly handle the situation,�

originates distinct (failure) routing events corresponding to each external neighbor: if
�

is an
external neighbor of

�
, then

�
will generate a withdrawal containing � � 	�� � �
������� � �
 and send it to

�
. Note that this might be attached to the announcement of an alternate route.

Algorithm 1 FAILURE(
F a �I� L)

@ router
�

:
�
notation means “do the following at router a ”

�
remove � a 	 � � from routing table� � = SELECT BEST ROUTE()
if
� � has changed then
ANN =

� �
if
F a �I� L is external then

�
generate single routing event

�
WDRAW
��	��� � �
 � � a 	 � � �
������� � �

for all

� M � S������
	 ��� � � �
do

send (ANN,WDRAW) to
�

end for
else

�
generate (distinct) multiple (failure) events

�
for all

� M � S������
	 ��� � � �
do

WDRAW �
��	��� � �
 � � � 	�� �
������� � �

send (ANN,WDRAW) to

�

end for
end if

end if

Repair: Recall that repair events also trigger route updates. The detailed operation is described in
Alg. 2. Unlike the failure case, when

F a �I� L is repaired, the identity of the originator depends on
several factors: whether there are multiple edges between the ASes, whether the edge is internal or
external, and so on. We first describe the operation when

F a �
� L is external and then discuss the case
that

F a �I� L is internal.
Given that

F a �I� L is external, there are two possibilities: there are other valid minor edges at
the time of the repair, or there are not. Notice that in the former case, all the other routers in
the same AS as a , incident to minor edges, need to synchronize the value of the major fesn—
common to all the minor edges. Typically, these routers are oblivious to each other and hence this
synchronization will require some out of band mechanisms. An alternate solution, which we use, is
to ensure synchronization in the neighboring AS. In other words, when

F a �I� L – an external edge– is
repaired, router

�
will also increment the major fesn (if required) and ensure that all routers in its

own AS have a consistent value of the major fesn. Note that since a and
�

are both notified whenF a �
� L is repaired, so they can independently increment the major fesn for
F a �I� L . Thus, when an

12

external edge
F a �
� L is repaired, a generates the route announcement event, but

�
“manages” the

major fesn. In the following we describe exactly how this is done.
First consider the case that

F a �I� L , between c�d�� and c�d�� , is repaired and also that
�

knows of
another route learned over a different minor edge between c d�� and c d�� . Clearly, the edge being
repaired does not require the major fesn to be incremented.9. In this scenario,

�
(and also a) will

simply increment the minor fesn for
F a �
� L . Subsequently, a will generate a new route announcement

and send its best route to
�

.
Now, consider the scenario that

F a �I� L , is repaired and
�

does not know of any other routes
learned from the same neighboring AS.10 Note that in case,

�
cannot be sure that there are no other

valid minor edges between c d�� and c�d�� . Consequently, it cannot unilaterally increment the
major fesn for

F a �I� L , as there might be a valid edge that is currently not being used. However, if
�

selects the new route–learned over
F a �
� L –as its best route, then it will announce the new route to all

of its internal neighbors. In this particular situation,
�

can increment the major fesn and by using
this new value in the route announcement, force all its internal neighbors to synchronize the major
fesn.11 When

�
’s internal neighbors receive the route update from

�
, they are forced to update the

major fesn value (as they know it).
However, the situation is slightly more complicated if the repair does not trigger a route update

at
�

, i.e., if the new route announced by a is not the most preferred at
�

. Note that since
�

does
not generate a routing update, unilaterally incrementing the major fesn will lead to inconsistencies
with other routers in the same AS. However, we can handle this by noting that we can allow the
inconsistency temporarily, as long as no routing event is exported from the AS. To perform the
synchronization,

�
flags (or marks) the major fesn corresponding to

F a �
� L in its local tables. Sub-
sequently, one of two things can take place; the route learned from a could become the preferred
route at

�
, or else

�
could receive a route announcement that contained a different value of the major

fesn (for
F a �
� L). In the former case, all routers that receive the route announcement with a different

major fesn (for
F a �I� L) are forced to update their own values.12 In the latter case,

�
will change its

own value for the major fesn to the value contained in the route update it receives. In either case,
after

�
sends an update (or processes one), the flag associated with the major fesn is cleared and the

major fesn is assumed to be synchronized.
The last case to consider is when

F a �
� L is internal. Here,
�

is the event originator. If the new
route learned from a replaces its current best route,

�
will originate route announcements to send its

neighbors. Importantly,
�

will increment the fesn for each of the forward edges prior to sending the
announcement. At each of

�
’s neighbors, the route announcement overwrites the older route from�

.

Event Propagator: When a router receives a route update from a neighbor, it acts as an event prop-
agator. In other words, it processes the event captured in the update and may generate a secondary
routing update to tell its own neighbors about the event. The route update is processed as follows:
if it contains a withdrawal, then all routes in the routing table, which depend on the fesnList in the

9Recall that the major fesn is only incremented when all the edges have failed, and one of them is subsequently
repaired.

10Again, this might be true for any of the reasons discussed earlier in the failure case.
11Note: this might lead to the major fesn being incremented even if some other minor edges are active (but “invisible”

to �).
12In other words, all fesnLists containing the major fesn for ��� �	� � will be updated.

13

Algorithm 2 REPAIR(
F a �
� L)

if
F a �I� L is external then

� a is the originator
�

@ router a :
increment ����� � �TF a �I� L �
ANN =

� �
send (ANN) to

�
else

�
internal edge repair;

�
is the originator

�
@ router

�
:

include � a 	 � � in candidate set� � = SELECT BEST ROUTE()
if
� � has changed then
ANN =

� �
for all

� M � S������
	 ��� � � �
do

increment ����� � �TFH� � � L �
ANN =

� �
send (ANN) to

�

end for
end if

end if

withdrawal, are marked invalid;13 then, any new route announcement is included in the router’s can-
didate set (older routes from the same neighbor are overwritten). Subsequently, a new best route is
selected, and if this has changed, then a (secondary) route announcement is generated. On the other
hand, if no other routes exist, then the secondary update contains only the (original) withdrawal.
Importantly, if a route announcement is generated, then the original withdrawal is piggybacked.
The important point here is that a withdrawal received by the propagator, if it causes a route change,
is forwarded as is. Thus, every router that learns of the failure event uses the exact same fesnList,
selected by the originator, to invalidate routes.

Clearly, the crucial step in processing a withdrawal is the correct identification of routes that
depend on the withdrawn path-stem. Here, the structure of the fesnList attribute makes it easy
to identify dependent routes. Essentially, if �
� � F ��� � �	� � � � � �W� �� ����
%�	��
%� �
 � L is the withdrawn
fesnList contained in the withdrawal, and ��� ��F ��� B � ��� B � � � B � � � �� ��� B� �	� B� � � B� � L is associated with some
route in the candidate set, with

� �!
, we can say that the � � depends on the withdrawn path-stem

� � if and only if ��� � ��� B� �� ��� � ��� B� �� ��� ��� � � � � ���,� �� ���
Note that the comparison is performed fesn by fesn. Two fesns are comparable if they correspond to
the same edge. The last conjunction follows from the fact that the fesn for an edge is incremented
every time it is repaired; hence larger fesn values indicate “newer” information. Thus, any routes
that “match” in the manner described are invalid and will be excluded from the set of candidate
routes. It should be stressed that if a received withdrawal causes a route change, then the exact same
withdrawal is sent with any route updates to all the router’s neighbors.

13Note that the routes are–at this stage–not removed from the routing table, since they are required to determine if
updates received later correspond to newer events.

14

When either of the assumptions made at the start of this section fail to hold, there is a “loss of
visibility” within an AS. For example, route reflection used in very large ISP networks, in which
case the internal routers are not fully meshed, and a particular router might not know the route
selections at others. This “loss of visibility” introduces additional complexity into BGP and we
need additional mechanisms to address them. For instance, we can correctly handle multiple edges
between ASes by using minor fesns. In later sections we detail how our solution can handle such
situations.

4.1 Correctness

Here, we establish some theoretical properties of our solution. In particular, we show that following
a single failure (routing) event, no router will select an invalid route.

Lemma 1. At an event originator, upon a failure event, the withdrawal contains the invalid path
stem.

Proof. When
F a �
� L fails, all routes that depend on

F a �I� L are invalid. In other words, any route that
was announced from a to

�
are invalid. When the external

F a �
� L fails, the withdrawal contains
� a 	 � � �
������� � �
 . This explicitly contains the edge

F a �I� L , and the result follows.
Now, if

F a �
� L is internal, then � a 	 � ��
��	��� � �
 does not contain the failed edge. However, if
�

is
any (external) neighbor of

�
, the withdrawal sent to

�
contains � � 	 � � �
������� � �
 . Note that the route

� � 	 � � does not depend on any other internal edge in the same AS as
�

. Thus, when
F a �
� L fails,

� � 	�� � � s rendered invalid, and the result follows.

Lemma 2. After a withdrawal is processed at an event propagator, all routes that depend on the
invalided path are removed from the routing table. Also, no valid route is removed.

Proof. It is trivial to show that all invalid routes are removed when a withdrawal is processed.
Now suppose that a valid route, say

�
, associated with an fesnList,

���\��F ��� B � ���WB � � �<B � � � �� � ��� B
 ���WB
 � �RB
 � L
is invalidated when a withdrawal,

�
, containing

��� � F ��� � ��� � � � � � � �� � ���
%����
 � �
 � L is received.
Clearly,

� � !
and

F�� � �	� � L ��F�� B� �	�TB� L
, for

�@����� �� � � as otherwise,
�

would not have been invali-
dated.

Now, if the withdrawal was originated due an external (failure) event, then
F �
%�	��
 L

must have
failed and

�
cannot be valid.

On the other hand, suppose that the withdrawal was due to an internal event, in which case,F��
 	�� ���
 L has failed. Since the route
�

was invalidated, we have
F��YB
 	�� ���WB
 	�� L � F���
 	�� ����
 	�� L andF�� B
 �	� B
 L �$F��
%�	��
 L

It follows that
�

was announced over the failed edge
F��
 	�� ����
 L , and cannot be a valid route after

the failure.

Theorem 3. In EPIC, following a single failure event, no router selects (and propagates) an invalid
path.

15

Core Router Campus Router

Prefixes 128735 123632
Routes 5284198 393230
Number of AS paths 731853 64287
Memory used for AS paths 6877.13 kB 788.54 kB
Memory for fesnList 14872.44 kB 1652.59 kB

Proof. Suppose that the edge
F a �I� L fails and a single routing event is originated. Without loss of

generality, we can assume that the failure affects the best route at
�

(the event originator), and forces
router

�
to send a route update. Otherwise, no new routing event is generated.

First, note that the event originator will not announce a route that depends on the failed edge
(from lemma 1). Suppose that router � is the earliest router that, in response to a route update, an-
nounces an invalid route that depends on the failed edge. We show that this leads to a contradiction.

Since the failed edge affects the best route at
�

, the new route update sent by to its neighbors
must either be a withdrawal or a new route announcement piggy-backed with a withdrawal (con-
taining the appropriate fesnList). Then, if the withdrawal reaches � , which is an event propagator,
it will invalidate any existing route that depends on the failed edge (by lemma 2). Hence route �
cannot possibly announce a new route update that depends on the failed edge. The only scenario in
which this could happen is if none of the route updates received at � contain a withdrawal.

Now consider the invalid route announced by router � . Since it depends on the failed edge, we
must have a “propagation chain”, � �
� � �I� ��	�� � �� �
� � �
� � , where � is the previous best route at

�
(now being withdrawn), and

� Z
,
� �$��� �� � � , are propagators that “forwarded” the route updates to

� . Since
�

generates a withdrawal, all the nodes in the chain
� � � �� �I� � will propagate the withdrawal.

Thus � will receive the withdrawal originated at
�

. This contradicts the earlier statement that none
of the route updates received at � contains a withdrawal.

4.2 Overhead

Here, we briefly discuss the additional overhead introduced by EPIC, in memory and commu-
nication.

Recall that route announcements carry an additional fesnList attribute which will be stored in
a routers’ routing table. In the following, we estimate the additional memory required at a router.
For any given route, the length of the fesnList is at most the AS path length. Thus, any fesnList
contains at most � fesns, where � is the longest AS (policy permitted) path length. Also, a router
will receive at most one route (to a destination) from each of its neighbors. Thus, a router with
degree � , will have to store

� � ���(� �
fesns, where � is the the number of routed prefixes in the

Internet. In practice however, most AS paths in the Internet tend to be much shorter than � , and
furthermore route aggregation tends to reduce number of prefixes, so we expect the actual overhead
to be lower.

Also, note that the fesn does not need to explicitly describe the edge it is associated with. Correct
operation only requires that fesn’s be distinct, i.e., the fesn

F � � � L
is unique. Thus, it is possible

to use a “compressed” representation of each fesn. For example, using
� ��� � � � � to “encode” the

edge, and 2 bytes for the sequence number, each fesn can be described with only � bytes. Table 4.2
lists the estimated memory requirements to store the fesnList attribute. Note that data for the “core
router” was obtained from Route-Views [Vie00].

16

In addition to storing the fesnList attribute in the routing table, a router needs to keep track of
major fesns associated with adjacent “forward edges”, i.e., external BGP sessions. Since only the
fesn values are stored, an additional

���
� � � �

bytes of memory is required.
With respect to the communication overhead, first note that EPIC will not generate more routing

updates than BGP. Also, every EPIC routing announcement and withdrawal carry the additional
fesnList attribute, which slightly increases the size. However, the benefit of using this additional
information is that invalid paths are not explored and there is less protocol traffic. Thus, the cost
of carrying the additional information is offset by the reduced protocol traffic during convergence.
However, we do not explicitly investigate this tradeoff in this paper.

5 Route Reflection and Policy

In our description so far, we implicitly assumed that the iBGP connections in an AS were fully
meshed, i.e. each internal router maintained iBGP sessions with every other internal router. How-
ever, in few large ISP’s (with several hundred routers), route reflection is used instead.

The introduction of a hierarchy within an AS defeats the assumption made in the previous
section — “a router will know when all minor edges fail”. With route reflectors in place, a border
router can no longer be sure to know of all the routes available to the AS. Along another dimension,
routing policies configured within an AS can also have the same effect. For example, a router could
be configured not to re-advertise a particular route to specific internal neighbors. In both of these
cases, internal routers no longer have a complete view and may possibly not know of all the minor
edges, or be notified when they fail. To illustrate this, consider the topology in Fig. 4. Here, there
are multiple edges between c d � and c d�� , i.e.

F�� � ��� � L and
F�� � ����� L . Suppose the ranking of

routes at
� � �

is as indicated along the edges. Now, when
F a �
� L fails,

� � �
selects the alternate

path through router
� �

and sends it along to
� �

� and
� �

� along with a withdrawal for the path
stem corresponding to � � � 	�� � � , which eventually reaches router

���

. Lets say that
F�� � ��� � L fails

soon after. Since this does not affect the current best route at
� � �

, i.e. the route learned from
� �

,
no withdrawal is triggered, and consequently

���

cannot really know that all minor edges between
c d � and c d � have failed. Note from the previous section that if all minor edges have failed,

� �

would have originated a withdrawal for the path stem
�
� �� � �

Figure 4: Internal Hierarchy and information abstraction. The labels on edges adjacent to
� � �

indicate the preference. The RR’s are connected in a full mesh and the router
�

is a client of
� �

� .

In spite of this additional complexity, our separation of roles between event originator and event
propagator enables our solution to handle such situations. Suppose we assume that the routers
within an AS do not have complete knowledge of the topology and routing policy (at other routers).
This can be easily indicated by a flag that is set consistently at each router in the AS. Now, when a
border router receives a withdrawal for an external edge, for example when

�	�

receives a withdrawal

17

for
F�� � ��� � L , it originates a different event that mimics an internal edge failure. In other words,

� �

will generate a withdrawal that includes the forward edge. Stated differently, an egress router will
originate a different routing event, for the failure of an internal edge, when it receives a withdrawal
corresponding to an external edge failure. Note that any external failure will lead to the same
behavior, even when the external edge is the only one between the neighbors. This follows directly
from the router being unaware of other edges.

This “loss of information” does inflict a penalty in terms of performance since we cannot be
aggressive— as before— while invalidating routes. However, we can still guarantee correct oper-
ation by taking a slightly conservative approach. Moreover, we estimate that less than 100 of the
15,000+ ASes actually employ Route Reflection. So only in cases where a failure is local to one of
these, EPIC performance will be slightly reduced (though no worse than BGP).

6 Performance Analysis

Table 1: Performance bounds for fail-down.

BGP Ghost Flushing EPIC
Time

� � � �
��� � � � �

��� ��� � � ���
Message

� � � �
� ��� S�� � � � ��	�
� 	 ����
�� ��� 	�� �� � S�� � �

Table 2: Performance bounds for fail-over.

BGP Ghost Flushing EPIC
Time

������ �� � � ��� ���� � � ��� � ���� �� ��� � � �

Message
������ �� � � � ��� S�� � � � �

�����S�� � � � ���� �
��� 	�� � 	� � �����S!� � � �
"�#
$	&% � ��

Here, we derive upper bounds for the time and communication complexity of EPIC, and contrast
it with the performance of BGP and Ghost Flushing[BBAS03].

'
The abstract AS level graph ((��))

(The set of AS nodes.
) The set of AS-AS edges.*

Size of the graph i.e.
*,+.- (-

)0/ The “best path” selected at node 1 , with length
-)2/ -3

Diameter of
'

i.e.
34+6587�9 /�:<; � -) / - $=

Length of a longest simple path in
'

>
Hold timer for path announcements?
Processing delay at a node

Table 3: Notation used in the analysis.

In order to make the analysis tractable, we use the discrete-time synchronized model described
in [LABJ01]: in each time step, a node processes all of the messages received in the last stage and

18

then selects a single “best path”. Then, if the best path has changed, it is exported to all its neighbors.
Withdrawal messages are processed differently in each: in BGP, withdrawals are sent only if a node
has no valid paths to the destination; Ghost Flushing (GF) sends a withdrawal message when a node
receives a route announcement for a longer path, even if alternate routes exist in the routing table.
Finally, in EPIC, a node forwards a withdrawal message only if the received withdrawal causes the
best path to change.

We analyze the bounds in two distinct failure scenarios: fail-down and fail-over. A fail-down
event is one which causes the network to become partitioned. In other words, after the event, some
destinations become unreachable, i.e., there is no valid path to reach them. In a fail-over situation,
there is some valid alternate path available and the network is still connected after the failure. The
notation that will be used in the derivations is enumerated in Table 3.

6.1 Fail-down case

The upper bounds in the fail-down scenario are summarized in Table 1. The performance bounds
for BGP and Ghost Flushing follow directly from the results in [LAWS01, BBAS03], so we only
derive the bounds for EPIC here.

Proposition 4. After a fail-down event, the convergence time in EPIC is at most
��� � � ��� . The

number of messages generated during convergence is bounded by
��� S�� � � �

Proof. When a withdrawal message is received at a router, all paths that depend on the failed path
stem are invalidated. Clearly, in a fail-down situation, there are no alternate paths (the network is
disconnected) and every path in the routing table will be invalidated. Since it has no valid path, the
router will send a withdrawal to all of its neighbors.

Note that the node farthest from the location of the failure is at most
��� � � � hops away. Since

each node takes up to
�

to process the and forward withdrawal, all nodes receive a copy of the the
withdrawal within

� � � � ��� time after the first withdrawal is generated.
To estimate the number of (withdrawal) messages, notice that at most one withdrawal message

will be sent across any edge after the failure. This follows from the following fact: when a router
processes the first withdrawal after the (fail-down) event, all the paths are invalidated and a with-
drawal is sent. Subsequent withdrawals received by the router have no effect and are discarded.
Moreover, no message goes across the failed edge. Therefore the number of messages generated in
the network is at most

��� S!� � � � .

6.2 Fail-over case

In this section, we analyze the performance of BGP, Ghost Flushing, and EPIC in the fail-over case.
The analysis here is a little more involved and we introduce some additional notation.

First, assume some fixed destination. When a link fails, and alternate paths (to the destination)
exist, we can partition the set of nodes into

�P
and

P � �P
as follows: if the best path at a node is

invalidated after the failure, it is in
�P

. Also, all of this node’s neighbors are in
�P

.
Informally,

�P
contains nodes whose preferred path is affected by the failure, along with their

direct neighbors. Clearly, the nodes in
P � �P

are not affected by the failure and will not take part
in the convergence process i.e., they will neither receive nor propagate any updates, since their best
path does not change after the failure. Thus, we can imagine a “zone of convergence” in

�
, defined

19

by the induced graph
� � �P � � � �P � �S �

. Finally, the last piece of notation we will use is
�� , which is

the length of any longest path from a node in
�P

to the destination i.e.
�� � ����� `�� ��

�0� � ` � � . Note

that the path with length
�� is not constrained to lie in

� � �P � . To simplify the analysis we assume
shorter paths are preferred.

The performance bounds of the protocols in the fail-down case are summarized in Table 2 and
are derived below.

Proof. To begin with, lets assume that the nodes in
�P

do not have a valid, alternate path to the
destination. From the previous result for BGP (in the fail-down case), we know that it takes at most���� � � � for all these nodes (in

�P
) to realize that there is no other path. We could call this the flush

out phase, where the “stale” information about the invalid paths is removed from the system.
After this, suppose that the nodes in

�P
start receiving updates for the valid paths from the bound-

ary nodes in the “zone of convergence”, then it takes at most
� ��

, for all the nodes to learn about
the alternate paths. We could call this stage as the re-convergence phase. The subtlety in the proof
is that these two different stages can overlap — when an node first learns about the alternate path
that it will eventually use (after convergence), there might be other invalid paths in the routing table.
Consequently, the valid path might not be chosen until all the invalid paths have been removed.

Assume the network failure occurred at time � � . Then suppose
� M �P

learns of its (eventual)
best path � �� at � � (���
	�� �). Note that � �� might not be selected for a while, but it will be the

�
’s best

path when the network converges. We know that if there are no other invalid paths in the routing
table at

�
, � �� will be selected and propagated. In other words, the selection of � �� could be delayed

till the flush out stage is complete. Since the length of the flush out stage is at most
� �� � � ��� ,

clearly the system has no invalid paths at � �8� � �� � � � � . It follows that ���� will be selected and
propagated no later than � � � � �� � � � � . Since the diameter of the affected region is

��
, it takes

at most
����

for the alternate path(s) to be available at all the nodes in
�P

. In other words, at time
� � � � �� � � ��� � ����

, all the nodes would have converged. Therefore, the convergence time is
bounded above by

���� � �� � � ��� .
To derive message complexity, note that in each interval

�
, at most one message is sent from

a node to its neighbor i.e. the rate to sending messages is
�� �

. So in the time taken to converge,
at most

�� � �� � � messages are sent across an edge. Thus, the number of messages generated is
bounded by

������ �� � � � ���"�S!� � � �

Proposition 5. After a fail-over event, EPIC will converge within
�� � � � � �

and require at most� �� � � � � ���"� � ��� �S�� � � � messages.

sketch. From the description of the protocol in Sec. 4, note that a router will does not select and
propagate a path unless the current “best path” changes. Now consider all the nodes whose best
path is invalidated by the link failure. When these nodes receive a withdrawal (perhaps attached to
an announcement), they will each select a new best path and send a route announcement to their
other neighbors (with the same withdrawal attached).

Clearly, the nodes that send and/or receive route announcements are exactly the nodes in
�P

.
Thus, if

��
is the diameter of the induced graph

� � �P � , it takes
����

for the withdrawal information
to reach all the nodes in

�P
. On the other hand, in the reconvergence process, a node might wait up

to
�

time before announcing a new path to its neighbors, and thus the delay on the longest path is

20

5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

10
3

Size

C
on

ve
rg

en
ce

 T
im

e

BGP
GF
EPIC

(a) Clique Fail-down

10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

10
3

Size

C
on

ve
rg

en
ce

 T
im

e

BGP
GF
EPIC

(b) Waxman Fail-down

5 10 15 20 25
10

1

10
2

10
3

Size

C
on

ve
rg

en
ce

 T
im

e

BGP
GF
EPIC

(c) Clique Fail-over

Figure 5: Convergence Time in Clique and Waxman topologies. In all the graphs, the bottom curve
represents the performance for EPIC.
exactly

�� � � � � �
. Since the network does not converge until the nodes learn of the alternate paths,

the convergence time is dominated by
�� ��� � � �

, and the result follows.
To derive the message complexity, note that in each interval

�
, at most one message is sent from

a node to its neighbor. In other words, the rate of sending messages is
� �"�

. So, in the time taken to
converge, at most

�� � � � � � � �
messages are sent across each edge, and the message complexity is

bounded by
� �� ��� � � � � � � ��� �S�� � � � .

7 Simulation

In this section, we discuss the results of simulation results carried out with the SSFNet simulation
package. In particular, we contrast the performance of our solution against BGP and GhostFlush-
ing [BBAS03].

We used different topology families for our simulations: Cliques, Waxman Random Graphs
(�
�

� � ��� � ����), and Barabasi-Albert (BA) Random Graphs. The latter two topology families
were generated using the Brite topology generator [bri]. In each topology, links were assigned a
uniform propagation delay of 300ms. Furthermore, for each protocol, we used an MRAI value of 30
seconds, which is the BGP default.

In each topology, we simulated both fail-down and fail-over scenarios. We discuss two perfor-
mance metrics: convergence time and message complexity. Due to lack of space, we only include
results for the clique and Waxman topologies. In the following, we describe the fail-down and
fail-over characteristics.

7.1 Results for fail-down

In this scenario, in each simulated experiment, a dummy node is attached to a single node in the
network and is disconnected by the failure event. In the clique(s), the additional node is attached to
node � , while in the other topology families, we repeat the simulations varying the attachment points
over all the other nodes. Simulation were repeated multiple times with different random seeds, and
the average performance is plotted.

In Figs. 5(a) and 5(b), we plot the network size against the convergence time, with the y-axis
shown in logscale. In each of these, the values for EPIC, which is the bottom line, are far better

21

5 10 15 20 25
10

1

10
2

10
3

10
4

Size

M
es

sa
ge

s

BGP
GF
EPIC

(a) Clique Fail-down

10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

Size

M
es

sa
ge

s

BGP
GF
EPIC

(b) Waxman Fail-down

5 10 15 20 25
10

1

10
2

10
3

10
4

Size

M
es

sa
ge

s

BGP
GF
EPIC

(c) Clique Fail-over

Figure 6: Number of Messages generated during convergence. Note that 6(a) and 6(b) correspond
to fail-down. Again, in all the plots, the bottom curve represents EPIC performance.
Ghost Flushing or BGP (which is the topmost curve in each graph). Notice that in the clique
topology, i.e., Fig. 5(a), the convergence time for EPIC is constant. This can be explained as follows:
all the nodes are directly connected to node � , which originates the withdrawal event. In EPIC,
the first withdrawal will cause a node to invalidate all existing routes (since every path contains
the failed edge), and the network converges immediately. The constant value corresponding to
the EPIC curve is the link propagation and processing delay. On the other hand, BGP and Ghost
Flushing cause the alternate (invalid) paths to be flushed from the system one by one, though at
different rates. Note that Ghost Flushing performs better than BGP, as it is aggressive in generating
withdrawals. However, it performs worse than EPIC because each withdrawal only invalidates the
previously announced route, while in the case of EPIC, all the routes are invalidated.

In Figs. 6(a) and 6(b), we plot network size against the number of messages generated during the
convergence period. We see that EPIC generates far fewer messages than the other two protocols. In
Fig. 6(a), i.e., the clique graphs, EPIC causes approximately

��� � � � � withdrawals to be generated:
every node other than � receives a withdrawal from � and subsequently forwards the withdrawal to
every other node (the previously announced path must be invalidated).

Unlike the clique topologies, it is difficult to analytically estimate the convergence time or the
message volume in the Waxman and BA graphs, since the different sized graphs are independently
generated. Nevertheless, the graphs plotted in Figs. 5(b) and 6(b) clearly illustrate that EPIC gener-
ally performs better than BGP and Ghost Flushing. This is as expected, since when the dummy node
is disconnected, there are no valid alternate paths, and EPIC causes only withdrawals to be gener-
ated. In the other protocols, we expect a certain number of invalid paths to be explored. Though
not included here, we found the results for the BA topologies to be qualitatively similar to what we
described for the Waxman graphs.

7.2 Results for fail-over

In this scenario, a dummy node is attached to two nodes in the network and the failure event causes
one of these adjacencies to fail. In the clique graphs, node � and

�
were the attachment points. In

addition, we force the path through
�

to be the least preferred path in the network. In the other
models, we repeat the simulations with different pairs of attachment points.

The convergence process for the fail-over case can be understood as follows: when a link in-
cident to the dummy node fails, the node on the other side of the link sends withdrawals to its

22

10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

Size

Co
nve

rge
nce

 Ti
me

BGP
GF
EPIC

(a) Convergence Time

10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

Size

Me
ssa

ge
s

BGP
GF
EPIC

(b) Messages generated

Figure 7: Performance in Waxman graphs, fail-over scenario. Bottom curve corresponds to EPIC,
topmost curve corresponds to BGP.

neighbors, which are then propagated through the network. This causes some of the nodes in the
graph to switch to an alternate path. Note that some nodes might already be using the alternate path,
and will not be affected by the failure. In the clique topologies, all nodes are forced to choose an
alternate path, since the fail-over backup path has the lowest preference.

In EPIC, when the withdrawal is generated, the nodes that receive it remove all invalid paths
immediately, and the convergence time is determined by the time taken to distribute the alternate
path to nodes that don’t already have it. Fig. 5(c) and 6(c) show the relative performance of the
protocols in the clique topologies, while Figs. 7(a) and 7(b) illustrates the same for the Waxman
topologies.

It is clear from these graphs that EPIC performs better than the other protocols. This is to be
expected, since in the cases of Ghost Flushing and BGP, once the preferred path is withdrawn, the
routers begin to “explore” the longer paths that contain the failed edge. Another interesting point
to note with this set of graphs is that the convergence time of Ghost Flushing is quite close to that
of BGP, and in some cases worse! (while it was always better in the fail-over case). This seems
to suggest that when there are alternate paths, it might be counter-productive to be aggressive in
withdrawing paths. The additional withdrawals may actually delay nodes from learning the valid
alternate path.

8 Related Work

Add citation[GP01].
The notion of “tagging” withdrawals with location information was first mentioned in [MVW % 00].

More recent work discussed in [PAN % 03, ZAL03] build on the same idea. While all these ideas
share some similarity with ours, i.e., the notion of attaching “event information” to BGP with-
drawals, they not take into account the complexity introduced by BGP. In particular, all of the above
ideas assume a network model where each AS has a single router and adjacent ASes share a single
edge. However, as discussed in Sec. 2.3, an AS cannot be modelled as a single node, since the
routers in the AS are independent entities making independent routing choices with different infor-
mation available to each. To the best of our knowledge, ours is the first solution to use a realistic
model of BGP and Internet topology.

23

In [PZW % 02], the authors discuss a solution based on “consistency rules” in announcements
from a set of neighbours. The drawback is that these rules are applicable only in specific settings, for
example, when the paths from from different neighbors have a mutual dependency. Ghost Flushing,
described in [BBAS03], is a simple idea to reduce convergence following a failure. The underlying
idea is to aggressively send withdrawals, forcing the invalid routes to be flushed from the network.
While this idea is conceptually very simple, it does not really prevent path exploration, but instead
tries to speed up the process.

9 Conclusions

In this paper, we describe why path exploration, which is the root cause of slow convergence in
BGP, cannot be addressed effectively within the existing BGP framework. We then proposed a
simple, novel mechanism— forward edge sequence number— to annotate the AS paths with path
dependency information. Then we described EPIC, an enhanced path vector protocol, which pre-
vents path exploration after failure, and discussed some of the additional overhead. To the best of
our knowledge, EPIC is the first solution to be shown to work in an extremely general model of
Internet topology and BGP operation. Using theoretical analysis and simulations, we demonstrated
that EPIC achieves a dramatic reduction in routing convergence time, as compared to BGP and other
existing solutions.

References

[BBAS03] Anat Bremler-Barr, Yehuda Afek, and Shemer Schwarz. Improved BGP Convergence
via Ghost Flushing. In Proc. IEEE INFOCOM. IEEE, Mar 2003.

[bgp] BGP path selection algorithm. http://www.cisco.com/warp/public/
459/25.shtml.

[bri] BRITE: Boston University Representative Internet Topology. http://www.cs.
bu.edu/brite/.

[CGH02] Di-Fa Chang, Ramesh Govindan, and John Heidemann. An empirical study of router
response to large BGP routing table load. In ACM Sigcomm Internet Measurement
Workshop, November 2002.

[coo02] The COOK Report on Internet. http://www.cookreport.com, November
2002.

[GP01] Timothy G. Griffin and Brian J. Premore. An experimental analysis of BGP conver-
gence time. In ICNP, November 2001. 9th International Conference on Network
Protocols.

[Gri02] Tim Griffin. What is the sound of one route flapping. Network Modeling and Simula-
tion Summer Workshop, Dartmouth, 2002.

[GW99] Timothy G. Griffin and Gordon Wilfong. An Analysis of BGP Convergence Proper-
ties. In Computer Communication Review, volume 29. ACM, October 1999.

24

[LABJ01] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed Internet
Routing Convergence. IEEE/ACM Trans. Netw., 9(3):293–306, 2001.

[LAWS01] Craig Labovitz, Abha Ahuja, Roger Wattenhofer, and Venkatachary Srinivasan. The
Impact of Internet Policy and Topology on Delayed Routing Convergence. In Proc.
IEEE INFOCOM, pages 537–546, 2001.

[LMJ99] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Origins of Internet Routing
Instability. In Proc. IEEE INFOCOM. IEEE, Mar 1999.

[MGVK02] Zhuoqing Morley Mao, Ramesh Govindan, George Varghese, and Randy Katz. Route
Flap Damping Exacerbates Internet Routing Convergence. In SIGCOMM, August
2002.

[MVW % 00] Madan Musuvathi, Srinivasan Venkatachary, Roger Wattenhofer, Craig Labovitz, and
Abha Ahuja. BGP-CT: A First Step Towards Fast Internet Fail-Over. Technical report,
Microsoft Research, 2000.

[PAN % 03] Dan Pei, Matt Azuma, Nam Nguyen, Jiwei Chen, Dan Massey, and Lixia Zhang.
BGP-RCN: Improving BGP Convergence through Root Cause Notification. Technical
Report 030047, UCLA, October 2003.

[PZW % 02] Dan Pei, Xiaoliang Zhao, Lan Wang, Daniel Massey, Allison Mankin, S. Felix Wu,
and Lixia Zhang. Improving BGP Convergence Through Consistency Assertions. In
Proc. IEEE INFOCOM. IEEE, 2002.

[RLH03] Yakov Rekhter, Tony Li, and Susan Hares. A Border Gateway Pro-
tocol 4 (BGP-4). http://www.ietf.org/internet-drafts/
draft-ietf-idr-bgp4-23.txt, December 2003. Internet Draft.

[VGE99] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent route oscilla-
tions in inter-domain routing. Computer Networks, 32(1):1–16, 1999.

[Vie00] Route Views. University of Oregon Route Views Project. http://antc.
uoregon.edu/route-views/, 2000.

[ZAL03] Hongwei Zhang, Anish Arora, and Zhijun Liu. G-BGP: Stable and Fast Convergence
of the Border Gateway Protocol. Technical Report OSU-CISRC-6/03-TR36, Ohio
State University, June 2003.

25

